
χChek: A Model Checker for Multi-Valued Reasoning

Steve Easterbrook, Marsha Chechik, Benet Devereux, Arie Gurfinkel, Albert Lai,
Victor Petrovykh, Anya Tafliovich and Christopher Thompson-Walsh

Department of Computer Science
University of Toronto, Toronto, Canada M5S 3H5

xchek@cs.toronto.edu

This paper describes our multi-valued symbolic model-
checker χChek. χChek is a generalization of an existing
symbolic model-checking algorithm for a multi-valued ex-
tension of the temporal logic CTL. Multi-valued model-
checking supports reasoning with values other than just
TRUE and FALSE.

Multi-valued logics are useful in software engineering
because they support explicit modeling of uncertainty, dis-
agreement, and relative desirability or priority. For exam-
ple, 3-valued logics have been used for interpreting results
of static analysis with abstraction [5, 10], and for analyzing
partial models [1]. The intermediate value of the logic is
used to denote missing information. 4-valued logics have
been used to model disagreements that arise when models
drawn from different sources are composed [6]. The four
values represent the four possible ways of combining the
two classical values of the source models.

Our model checker generalizes these approaches — it
works for the class of multi-valued logics whose logical
values form a finite distributive lattice, and where there is
a suitably defined negation operator that preserves De Mor-
gan laws and involution (¬¬a = a). Such structures are
called quasi-boolean algebras [9]. Classical logic, as well
as the 3- and 4-valued logics described in the literature, are
examples of quasi-boolean algebras. In [3], we describe the
properties of these logics. For tractability, we restrict our-
selves to logics with a finite number of values.

Examples of these logics are shown in Figure 1. 1(a) is
classical 2-valued logic. 1(b) is a 3-valued logic suitable
for representing partial models. 1(c) is the 4-valued logic
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Figure 1. Some example lattices.

describe above. Note that its lattice is the product of two 2-
valued lattices. 1(d) is the product of two 3-valued lattices,
and is suitable for composing two partial models allowing
both disagreement and missing information.

Implementation

χChek is implemented in Java, and provides support for
both model-checking with fairness and the generation of
counter-examples (or witnesses). The tool consists of three
components: (1) the model-checking engine itself (χChek);
(2) a counter-example generator (KEG); (3) a web-based
front-end for interactive exploration and visualization of
counter-examples (KegVis).

χChek receives a χKripke structure (a multi-valued gen-
eralization of a Kripke structure) K and a χCTL formula ϕ,
and produces a value of ϕ at every state of K. The mod-
ular implementation of χChek allows it to support a wide
variety of specification languages for χKripke structures.
Currently, these structures can be specified either explicitly,
as directed graphs in XML, or as compositions of modules
expressed in an SMV-like notation.

The analysis is performed using different decision dia-
grams: MDDs and MBTDDs implemented as a custom de-
cision diagram package [4], as well as BDDs and ADDs us-
ing the standard CUDD library. The complexity of model-
checking of a χCTL formula ϕ, under the assumption that
all operations on decision diagrams take constant time, is
O(|S| × |ϕ|), where S is the state space of the model [7].

[3] presents a more detailed description of the architec-
ture of χChek. The tool itself can be downloaded from
http://www.cs.toronto.edu/fm.

Applications

Multi-valued model-checking has a number of potential
applications in software engineering.

The intermediate values of the logic can represent in-
complete information (or uncertainty). Such applications
typically use a 3-valued logic. A 3-valued model can be



interpreted as a compact representation for a set of comple-
tions [1], where a completion is generated by replacing each
M value in the model by either T or F. If a property is T (re-
spectively, F) in a partial model, then it is T (F) in all com-
pletions. If a property is M in a partial model, then it takes
different values in different completions; the missing infor-
mation affects the property. Thus, χChek can determine if
a property holds, even though the model is incomplete. We
can also use this approach to reduce the size of classical
model-checking problems by creating (partial) abstractions
of models that have large state-spaces. The approach can be
generalized to logics with more than 3 values, to distinguish
levels of uncertainty for the incomplete information, but we
have not yet explored such applications.

The intermediate values of the logic can represent dis-
agreement. Such applications typically use product lattices.
A model based on a product lattice can be interpreted as a
compact representation for a set of models (or views), where
the views may disagree on the values of some transitions or
propositions. For example, a 4-valued model based on the
lattice of Figure 1(c) can be formed by merging information
from two 2-valued views. Where the views disagree on the
value of a transition or proposition, it will take the value TF
or FT. If a property is TT (respectively, FF) in each indi-
vidual view, then it will be TT (FF) in the merged model.
If a property is FT or TF in the merged model, then the
disagreement affects the property. χChek can check prop-
erties that cannot be expressed in the individual views, be-
cause the properties combine vocabulary of several views
or refer to interactions between different views. We are ex-
ploring this approach for the feature interaction problem in
telephony [6], and as a tool to support stakeholder negotia-
tions in requirements engineering.

The intermediate values of the logic can represent rela-
tive desirability (or criticality). Such applications typically
use chain lattices (total orders). A model based on a chain
lattice can be interpreted as a compact representation for a
set of partial layers, where each successive layer specifies
values for transitions left unspecified by previous layers.
For example, a model based on a 4-valued chain lattice can
be used to represent a system with two levels of criticality.
Transitions labeled T and F represent core functionality—
transitions that must (or must not) occur. Transitions la-
beled with other values represent optional functionality. If
a property is T (respectively, F) in this model, then it is true
(false) in just the core layer, irrespective of behaviors at the
optional layer. We are exploring this approach for reasoning
about requirements prioritization and survivable systems.
χChek allows us to check which properties are supported
by which layer, without having to maintain separate models
of the individual layers.

Elements of our quasi-boolean algebras need not be in-
terpreted as logical values. Consider the query-checking

problem [2] for which the inputs are a (classical) model
and a temporal logic query (TLQ). A TLQ is a temporal
logic formula with placeholders for some subformulas, e.g.,
AG?. A query-checker finds the strongest set of assign-
ments of propositional formulas for each placeholder, such
that replacing each placeholder with any assignment chosen
from its set gives a temporal logic formula that holds in the
model. Thus, query-checking can be used to discover in-
variants, guards, and postconditions of (sets of) transitions
in the model. The query checking problem can be formu-
lated as a multi-valued model checking problem, where the
elements of the lattices are sets of propositional formulas
ordered by set inclusion [8].
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