
Perspectives on Model
Transformation Reuse

Marsha Chechik

June 2, 2016
Integrated Formal Methods (iFM’16)

A Brief and Partial Research
History

2

Static analysis
of programs,
state
machine
specifications

Model-checking
(Xchek) and
formal
specifications,
para-consistent
logics

Software
model-
checking
(Yasm,
UFO)

Runtime
analysis of
web service
interactions

Reasoning
about
incomplete
and
inconsistent
systems

Modeling
and
reasoning
about
variability,
product
lines

Reuse
(feature-
level)

Reuse (model
transformation
level)

Mid-1990 2000s 2010s now time

Software
compliance
analysis

Perspectives of ModelTransformation
Reuse

Presenter
Presentation Notes
Mention the pieces: Models, transformations, reuse, and only then perspectives

Googling “Model”

4

Original Models

Model: “Purposeful abstraction”

5

Ideally, property-preserving!!!

Why Models?

• Traditional Engineering Approach

– Abstract & Precise

– Amenable to analysis

– Complexity: Model << System

• Pre-development and pre-deployment analysis

– Early detection -> cheaper fixes

• Cost < Benefit

6

Software Engineering Models

Requirements

Architecture
Behaviour Static Design

Use CasesDeployment

Concepts

StructureAbstraction

7

Models vs Programs

8

Programs Models

Goals:
Quality
Speed of development
Understandability

(Formal) Methods:
Specification
Analysis

- Higher level of
abstraction (“for a
purpose”)
- Confirms to the
strongly-typed
meta-model

- Executable
- Present in

abundance “in
real world”

- Complex data
structures and
control flow

- Typically strongly
typed

Transformations

* requisite cute picture of animals

• Use to convert one artifact into another

• Automates mundane tasks and ensures
quality

• Enables raising level of abstraction in
software development

Why Transformations

WideYellow

11

Presenter
Presentation Notes
Heart and soul of model-driven software development

Sendall, Shane, and Wojtek Kozaczynski. Model Transformation - the Heart and Soul of Model-Driven
Software Development. No. LGL-REPORT-2003-007. 2003.

Inefficient
Model

Efficient
ModelRules

Performance Optimization

Model
with Smell

Refactored
ModelRules

Refactoring

High-Level
Language

Model

Low-Level
Language

Model
Rules

Forward Engineering/Refinement

Low-Level
Language

Model

High-Level
Language

Model
Rules

Reverse Engineering

Key enabler of model driven development

Model Transformations

Presenter
Presentation Notes
The context of this work is model-driven software development and its application in global scenarios.Today, there‘s an ongoing trend of software being developed at many distributed locations, be in the context of open source development or in industrial outsourcing scenarios.In distributed scenarios, model-driven software development faces significant challenges.One of these challenges is the great complexity of software projects which leads to models of remarkable size.

Characteristics of Model
Transformations

13

In principle, an arbitrary program

In practice:
Strongly typed (by input and output models)
One-step task with specific intent
Aimed to be chained together, like Unix pipes

Often implemented in languages which allow
easy graph manipulation

Transformation

• Transformation 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅
– Simplifies state machine
– Moves common actions on input transitions to the entry

action of the target state

• Using graph transformation rule:

Example: State Machine Refactoring
Transformation

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
/𝑎𝑎

/𝑎𝑎

𝑥𝑥1

𝑥𝑥2

𝑦𝑦

entry/𝑎𝑎

NAC

𝑦𝑦

entry/𝑎𝑎1

Applicability Condition:
Apply the rule if the LHS matches and no NAC matches

14

Negative Application Condition

LHS RHS

Presenter
Presentation Notes
Mention that intent of this transformation is to facilitate refactoring

Applying FoldEntry – Example 1
𝑥𝑥1

𝑥𝑥2
𝑦𝑦

/𝑎𝑎

/𝑎𝑎

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
entry/𝑎𝑎

FoldEntry
NAC

𝑦𝑦

entry/𝑎𝑎1

One Washing Machine

Locking Waiting

Washing

/wash.Start();

Drying

Unlocking

[delayEnabled]

/ QuickCool()

15

[not delayEnabled]
/ wash.Start();

𝑥𝑥1

𝑥𝑥2

𝑦𝑦

𝑎𝑎
𝑎𝑎

Matching Site

No NAC matches – applicability condition passes
 Apply rule

RHSLHS

Applying FoldEntry – Example 1
𝑥𝑥1

𝑥𝑥2
𝑦𝑦

/𝑎𝑎

/𝑎𝑎

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
entry/𝑎𝑎

FoldEntry
NAC

𝑦𝑦

entry/𝑎𝑎1

One Washing Machine

Locking Waiting

Washing

entry/ wash.Start();

Drying

Unlocking

[delayEnabled]

/ QuickCool()

𝑥𝑥1

𝑥𝑥2

𝑦𝑦

𝑎𝑎

16

[not delayEnabled]

LHS RHS

Applying FoldEntry – Example 2
𝑥𝑥1

𝑥𝑥2
𝑦𝑦

/𝑎𝑎

/𝑎𝑎

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
entry/𝑎𝑎

FoldEntry
NAC

𝑦𝑦

entry/𝑎𝑎1

Another Washing Machine

Locking Waiting

Washing

entry/TempCheck()
Unlocking

[heatEnabled]/ HeaterOn()

/ HeaterOff();
wash.Start();

/ QuickCool()

17

[not heatEnabled]
/ wash.Start();

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
𝑎𝑎 𝑎𝑎

NAC Matches – applicability condition fails
 Do not apply rule

𝑎𝑎1

Matching Site

LHS RHS

Transformation Signatures

• Single model to single model

• Two state machines to a mapping (or
relationship)

18

Perspectives of ModelTransformation
Reuse

Presenter
Presentation Notes
Mention the pieces: Models, transformations, reuse, and only then perspectives

Reuse Transformations

• Why?
– Same reason as program reuse:

• Reduce effort
• Accelerate development
• Increase quality

• Where?
– Within same process
– Across processes

20

How to Reuse?

Transformation reuse
vs

general software reuse

– Adapt, generalize, “reinvent” program reuse
techniques

– Create novel modeling-specific approaches

21

Perspectives of ModelTransformation
Reuse

Presenter
Presentation Notes
Mention the pieces: Models, transformations, reuse, and only then perspectives

23

• Motivation
– Models and Transformations
– Why Reuse

• Transformation Reuse
– PL adaptations: subtyping and mapping
– MDE-specific approaches: lifting and aggregating

• Future perspectives
24

Adaptation: Subtyping

Simple Subtyping: PL

• Int is a subtype of Real since 𝐼𝐼𝐼𝐼𝐼𝐼 ⊆ 𝑅𝑅𝑅𝑅𝑎𝑎𝑅𝑅
• So function Name: Real→String can be applied

to 𝐼𝐼𝐼𝐼𝐼𝐼 inputs
– Name (3.14) = “3.14”
– Name (3) = “3”

26

Simple Model Subtyping

27

State

name :EString [1..1]

StateMachine

initialState0..1

0..1

stateMachine

* Transition

event :EString [1..1]tgt
1

incoming

*

src
1

outgoing

*

entryAction :EString [0..1] action :EString [0..1]

M0

FoldEntryM0

M1M2

subtype ?subtype ?

Multiple transition actionsM2

State

name:EString [1..1]

StateMachine

initialState0..1

0..1

stateMachine

* Transition

event:EString [1..1]tgt
1

incoming

*

src
1

outgoing

*

entryAction:EString [0..1] action:EString [0..*]

Subtype constraints cannot be more
relaxed than super type

M1

State

name :EString [1..1]

StateMachine

initialState
0..1

0..1

stateMachine

* Transition

event :EString [1..1]tgt
1

incoming

*

src
1

outgoing

*

entryAction :EString [0..1] action :EString [0..1]

Final states

FinalState

Subtype can have more element
types

So, FoldEntry can be reused for M1 but not for M2

Presenter
Presentation Notes
Discuss where FoldEntry can be reused!

Coercive Subtyping: PL

Requires an explicit conversion function
Example:
– a conversion function Int2Str: Int → String…

• … allows any Int-valued input to be coerced into a
String value

– function cat: String × String→String
• cat (“hello”, “world”)
• cat (“high”, 5)

28

⟼ “hello world”

⟼ “high 5”
⇝ cat (“high”, Int2Str(5))

Coercive Model Subtyping

29

State

name :EString [1..1]

StateMachine

initialState0..1

0..1

stateMachine

* Transition

event :EString [1..1]tgt
1

incoming

*

src
1

outgoing

*

entryAction :EString [0..1] action :EString [0..1]

M0

M1

State

name :EString [1..1]

StateMachine

initialState
0..1

0..1

stateMachine

* Transition

event :EString [1..1]tgt
1

incoming

*

src
1

outgoing

*

entryAction :EString [0..1] action :EString [0..1]

Final states

FinalState

FoldEntryM0

M1M2

subtypeComposeActions

Multiple transition actionsM2

State

name:EString [1..1]

StateMachine

initialState0..1

0..1

stateMachine

* Transition

event:EString [1..1]tgt
1

incoming

*

src
1

outgoing

*

entryAction:EString [0..1] action:EString [0..*]

So, FoldEntry can be reused for M1 and M2

Presenter
Presentation Notes
ComposeActions takes a list of actions and produces one action that is equivalent to the list of ations

Adaptation: Mapping

[MODELS’15]

Programming Language MAP

• Map <F> (L)
Apply function F to elements of list L

• Example:
Function Double: Int → Int

Double (2) ⟼ 4
Map <Double>([1, 2, 3, 4])

⟼[2, 4, 6, 8]

31

[MODELS’15]

Goal: apply Map to megamodels
A Megamodel is not just a really big model!

32
[MODELS’15]

Megamodels
Represent models and their relationships at a high level of
abstraction to facilitate model management.

Context: Large software projects ⇒ proliferation of model artifacts
– Need to manage this “accidental complexity”

33

ACC:SM

ACC:CD

Engine:SM

Engine:CD

Infotainment:SM

Infotainment:CD

Architecture1:DeploymentDiagram

[MODELS’15]

Map for Megamodels

Key Challenges for Map
1. Must correctly manipulate entire graphs of related models rather than

just sets of models.
• Graph edges (i.e., relationships) have content

2. Must work with transformation signatures
• Transformations accept graphs of models and relationships as

input and output

34
[MODELS’15]

Map Applied to Megamodels
1. First apply FoldEntry refactoring
2. Then apply SMmatch transformations to find state

machine correspondences

35

CarControl

Engine:SM

Steering:SM

Ignition:SM

Console:SM

map[FoldEntry]

CarControl’

Engine’:SM

Steering’:SM

Ignition’:SM

Console’:SM

map[SMmatch]

CarControl’’

Engine’:SM

Steering’:SM

Ignition’:SM

Console’:SM

[MODELS’15]

Presenter
Presentation Notes
Smtatch takes pairs of models and produces a relationship between then. Would work for every pair. The reason whu these new reelationsips are not produced is because there were no matches

Tooling: MMINT

• Model Management INTeractive workbench
https://github.com/adissandro/MMINT

• Support for strongly typed models:
– simple and coercive subtyping
– lazy coherence checking for coercion
– type downcasting when model conforms to subtype

• Support for megamodels
– map / reduce /filter 36[MODELS15-tool]

https://github.com/adissandro/MMINT

Summary of Adaptation Approaches

Subtyping
Mapping

Other
Generic programming

Model concepts

37

Presenter
Presentation Notes
Generic programmingParts of a concrete algorithm abstracted as parameters to an abstract algorithmSame algorithm can be reused with minimal variationExample: Sort (as long as “lessThen” is implemented)Model concepts [De Lara, Rose]Define an abstract version of a transformation on a generic metamodel that represents minimal context in which transformation could possibly be definedThe transformation can be reused for specific concrete metamodels by mapping the concrete metamodel to the generic and using this mapping to automatically specialize the abstract transformation

• Motivation
– Models and Transformations
– Why Reuse

• Transformation Reuse
– PL adaptations: subtyping and mapping
– MDE-specific approaches: lifting and aggregating

• Future perspectives
38

Novel Approaches: Lifting

lift

[ICSE’14]

A slight aside: Product Lines

…

• Goal: Help develop, manage, reuse a large number
of similar but different artifact variants (products)

• Example: Washing Machine Co.

40
[ICSE’14]

Presenter
Presentation Notes
Facilitate reuse, maintain similar but different artifactsBenefits underA company has a bunch of different similar products

Software Product Line Engineering

a discipline that promotes planned and
predictive software reuse

41

K. Pohl et al., Software Product Line Engineering:
Foundations, Principles, and Techniques, 2005

P. C. Clements and L. Northrop, Software
Product Lines: Practices and Patterns, 2001

Product Line Structure + Terminology
• Product line (annotative) represented by

– Domain Model – combined parts from all products, annotated by
features (presence conditions). A.k.a. 150% representation.

– Feature Model – shows possible features and restrictions for product
combinations

• Example : Washing Machine Co.
Feature Model

Wash

Heat

Dry

Delay

excludes

42

Domain Model

Presenter
Presentation Notes
A company has a bunch of different similar productsChange title

Product Line Configuration – Example 1
• +Heat product

– Feature configuration: {Wash, Heat}

Feature Model

Wash

Heat

Dry

Delay

excludes

43

Presenter
Presentation Notes
Explain configurationA company has a bunch of different similar productsChange title

Product Line Configuration – Example 2

• +Dry/Delay product
– Feature configuration: {Wash, Dry, Delay}

Feature Model

Wash

Heat

Dry

Delay

excludes

44

Presenter
Presentation Notes
A company has a bunch of different similar productsChange title

Domain Model

Washing Machine
Product Line

Locking Waiting

Washing

entry/TempCheck()

Drying

Unlocking

[heatEnabled;delayEnabled]
/ HeaterOn()

/ HeaterOff();
wash.Start();

/ QuickCool()

/ QuickCool()

[not heatEnabled;not delayEnabled]/
wash.Start();

Presence Conditions

Feature Model

Wash

Heat

Dry

Delay

excludes

45

Heat Delay

Heat

Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay
Heat

Heat

Heat ∨ Delay

Heat

Dry
Dry

Dry
Dry

¬Dry

Heat Delay

Presenter
Presentation Notes
example

Domain Model

Feature ModelWashing Machine Product
Line: Configuring a Product

Locking Waiting

Washing

entry/TempCheck()

Drying

Unlocking

[heatEnabled;delayEnabled
]/ HeaterOn()

/ HeaterOff();
wash.Start();

/ QuickCool()

/ QuickCool()

[not heatEnabled;not
delayEnabled]/ wash.Start();

Wash

Heat

Dry

Delay

excludes

Heat Delay

Heat

Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay
Heat

Heat

Heat ∨ Delay

Heat

Dry
Dry

Dry
Dry

¬Dry

46

Heat Delay

+Dry/Delay Variant

Result: +Dry/Delay State Machine

Locking Waiting

Washing

Drying

Unlocking

[delayEnabled]

/
wash.Start();

/ QuickCool()

47

[not delayEnabled]/
wash.Start();

Presenter
Presentation Notes
Result

+Dry/Delay Variant

Result: +Dry/Delay state machine

Locking Waiting

Washing

Drying

Unlocking

[delayEnabled]

/wash.Start();

/ QuickCool()

48

[not delayEnabled]/
wash.Start();

• Key problem: Transformations written for models cannot
be used directly with product lines of models

• Ideally we should lift them to product lines - but how?

ModelModel

Our Goal: Reuse Transformation
Defined for Products for Entire PLs

?
Model ModelModelModel′

Model
Product

Line

Model
Product

Line′

configure configure

T

T↑

WideYellow

49[ICSE’14]

Presenter
Presentation Notes
ThickenlinesDon’t currently work togetherWhy not?What are the benefits of doing so?What are the problems with not doing so?Models are a stack of boxesStoryStart bottom left – the kind of trans we are concerned with are bottom left to bottom rightThose models are part of product lines (bring the top and vertical in)Drop top green arrowDon’t say automated yet and just put question mark

Idea 1 – Avoid Lifting Transformation

Wash

Heat

Dry

Delay

excludes

WideYellow

configure

50

• Problems:
– Must keep track of transformations to apply
– Can’t do analysis of transformation’s effect on product line
– No reuse!

⋱

Idea 2: Configure All Products and Merge

WideYellow↑

configure merge

⋱

WideYellow

WideYellow

WideYellow

51

Wash

Heat

Dry

Delay

excludes

Wash

Heat

Dry

Delay

excludes

• Problems:
– Expensive: may be many products!
– Merge is non-trivial
– Still not (much) reuse

Manual
Lift

Idea 3: Manually Lift by Re-developing
Transformation

WideYellow↑

• Problems:
– Requires extensive effort
– Error-prone

52

Wash

Heat

Dry

Delay

excludes

Wash

Heat

Dry

Delay

excludes

WideYellow

Presenter
Presentation Notes
Our approach interprets the rule directly on the product line

Idea: Automate the Lift

53

 Benefits
 Low cost
 Eliminates manual effort
 Guarantees correctness

Automated
Lift

WideYellow↑
Wash

Heat

Dry

Delay

excludes

Wash

Heat

Dry

Delay

excludes

WideYellow

Presenter
Presentation Notes
Our approach interprets the rule directly on the product line

FoldEntry Transformation

LHS

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
/𝑎𝑎

/𝑎𝑎

RHS
𝑥𝑥1

𝑥𝑥2

𝑦𝑦

entry/𝑎𝑎

NAC

𝑦𝑦

entry/𝑎𝑎1

54
[ICSE’14]

Presenter
Presentation Notes
Add second NAC

Domain Model

Feature ModelGoal: Apply FoldEntry to a
Product Line

Locking Waiting

Washing

entry/TempCheck()

Drying

Unlocking

[heatEnabled;delayEnabled]
/ HeaterOn()

/ HeaterOff();
wash.Start();

/ QuickCool()

/ QuickCool()

Wash

Heat

Dry

Delay

excludes

Heat Delay

Heat

Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay
Heat

Heat

Heat ∨ Delay

Heat

Dry
Dry

Dry
Dry

¬Dry

55

Heat Delay
[not heatEnabled;not delayEnabled]/

wash.Start();

This does not prevent from...
… changing the domain model, or
… changing the feature model, or
… reducing the number of products

Correctness Criteria

Model
Product

Line

Model
Product

Line′

𝑅𝑅↑

𝑅𝑅Model Model′

𝜌𝜌 𝜌𝜌

Same set of valid configurations

𝑅𝑅Model Model′

56
[ICSE’14]

Presenter
Presentation Notes
Don’t currently work togetherWhy not?What are the benefits of doing so?What are the problems with not doing so?

Lifting Algorithm Sketch

1. Find matching sites in the domain model
2. Reinterpret rule applicability condition

– Rule must be applicable in at least one
product

• requires a SAT check

3. Reinterpret how to apply the rule
– Modify domain model and presence

conditions so rule effect only occurs in
applicable products

57
[ICSE’14]

Applying 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝒚𝒚↑

58

Domain Model

Locking

Washing

entry/TempCheck()

Waiting

Drying

Unlocking

[heatEnabled;delayEnabled]
/ HeaterOn()

/ HeaterOff();
wash.Start();

/ QuickCool()

/ QuickCool()

Feature Model

Wash

Heat

Dry

Delay

excludes

Heat ∨ Delay

Heat ∨ Delay

Heat

Heat ∨ Delay

+Dry/Delay Variant

Locking Waiting

Washing

/wash.Start();

Drying

Unlocki
ng

[delayEnabled]

/
QuickCool()

/ wash.Start();

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
𝑎𝑎

𝑎𝑎

 +Dry/Delay Variant

+Heat Variant
Lockin

g
Waitin

g

Washing

entry/TempCheck()

Unlock
ing

[heatEnabled]/
HeaterOn()

/ HeaterOff();
wash.Start();

/
QuickCool(
)

/ wash.Start();

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
𝑎𝑎 𝑎𝑎

𝑎𝑎1

 +Heat Variant …

Heat

Dry

Heat

Heat Delay

Heat
Heat ∨ Delay

Dry
Dry

Dry
¬Dry

Heat Delay
[not heatEnabled;not delayEnabled]

/wash.Start();

𝑥𝑥1
𝑥𝑥2

𝑦𝑦

𝑎𝑎
𝑎𝑎

𝑎𝑎1

1) Matching Site

2) Lifted rule applicability condition passes
 Apply rule
2) Rule applicable in at least one product?

Applying 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝒚𝒚↑

59

Domain Model

Locking Waiting

Washing

entry/TempCheck();
wash.Start();

Drying

Unlocking

[heatEnabled;delayEnabled]
/ HeaterOn()

/ HeaterOff();
wash.Start();

/ QuickCool()

/ QuickCool()

Heat ∨ Delay

Heat ∨ Delay

Heat

𝑥𝑥1

𝑥𝑥2

𝑦𝑦

𝑎𝑎
𝑎𝑎

𝑎𝑎13) Apply rule in domain model and update
presence conditions

Heat ∨ DelayHeat ∧ ¬ Delay

Delay

¬Delay

𝑎𝑎

Feature Model

Wash

Heat

Dry

Delay

excludes

+Dry/Delay Variant

Locking Waiting

Washing

/wash.Start();

Drying

Unlocki
ng

[delayEnabled]

/
QuickCool()

/ wash.Start();

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
𝑎𝑎

𝑎𝑎

 +Dry/Delay Variant

+Heat Variant
Lockin

g
Waitin

g

Washing

entry/TempCheck()

Unlock
ing

[heatEnabled]/
HeaterOn()

/ HeaterOff();
wash.Start();

/
QuickCool(
)

/ wash.Start();

𝑥𝑥1

𝑥𝑥2

𝑦𝑦
𝑎𝑎 𝑎𝑎

𝑎𝑎1

 +Heat Variant …

[not heatEnabled;not delayEnabled]
/wash.Start();

Properties of Lifting Algorithm

• Correctness
– Lifting satisfies the correctness condition

• Termination
– Lifting preserves rule set termination

• Confluence
– Lifting preserves rule set confluence …

• … up to product line equivalence

60
[ICSE’14]

Prototype Implementation

• Modified the Henshin [Arendt et al.] graph
transformation engine to …
– … use the lifting semantics for rule execution
– … use Z3 [Microsoft] for SAT checks via MMINT

Henshin Graph Transformation Engine
(modified)

Eclipse Workbench Z3 SMT Solver

Model Management Interactive(MMINT)

61[ICSE’14]

Single Transformation Rule

Lifting Complete Transformation
Languages

Wash

Heat

Dry

Delay

exclud
es

Wash

Heat

Dry

Delay

exclud
es

Full-fledged
transformation

Multiple rules
Control flow
Data flow/Layering
Language constructs and idioms
Language-specific matching
semantics

38
[ICMT’15]

Lifting Complete Transformation
Languages

GM-to-AUTOSAR
[Selim et al., SoSyM’15]

DSLTrans
[Lucio et al., SLE’10]

Wash

Heat

Dry

Delay

exclud
es

Wash

Heat

Dry

Delay

exclud
es

Proprietary GM Metamodel AUTOSAR

39
[ICMT’15]

Novel Approaches: Aggregating

Capture and leverage variability in the
transformation itself
1. Reuse transformation fragments to

create transformations with variability
2. Use variability-based transformations to

reuse intermediate execution artifacts

Some Similar Transformations

65

Large transformation systems often have similar but
slightly different rules

[FASE’16]

Problems:
• Hard to read / reuse / modify
• Issues with performance

Presenter
Presentation Notes
Need to identify commonalities between the two pictures – x1, x2, x

RuleMerger: From similar to
variability-based rules

• Merges similar rules to produce a “150% rule”
– Rule with variability
– Configuration yields original rules

• Uses clone detection and clustering
techniques

• Enables compact specification with improved
performance

66

Diam
Circ

Tri

[FASE’16]

Presenter
Presentation Notes
The context of this work is model-driven software development and its application in global scenarios.Today, there‘s an ongoing trend of software being developed at many distributed locations, be in the context of open source development or in industrial outsourcing scenarios.In distributed scenarios, model-driven software development faces significant challenges.One of these challenges is the great complexity of software projects which leads to models of remarkable size.

Identify commonalities, unify
variabilities:FoldLabel

67
Presence conditions

Features

[FASE’16]

Presenter
Presentation Notes
ANIMATE INDICATION OF COMMON PATTERN of x1, x2, x that is now reused

Select foldEntry to obtain FoldEntry rule

68

Configuring

Select foldExit to obtain FoldExit rule

69

Configuring

Transformations with Variability

• More compact
• Easier to maintain
• Significantly better performance (see later)

70

Novel Approaches: Aggregating

Capture and leverage variability in the
transformation itself
1. Reuse transformation fragments to

create transformations with variability
2. Use variability-based transformations to

reuse intermediate execution artifacts

Implicit Variability Is Bad for Performance

72

Model

Apply rule A

Apply rule B

Apply rule C

Apply rule D

…

[yes][no]

>= 1 rules applicable?

find match

find match

find match

find match

find match

Classic rule
application
engine

[FASE’15]

Presenter
Presentation Notes
The context of this work is model-driven software development and its application in global scenarios.Today, there‘s an ongoing trend of software being developed at many distributed locations, be in the context of open source development or in industrial outsourcing scenarios.In distributed scenarios, model-driven software development faces significant challenges.One of these challenges is the great complexity of software projects which leads to models of remarkable size.

Goal: Consider Variability During Rule Application

73

Model

Match common parts of A-D

…

[yes][no]

>= 1 rules applicable?

Extend base matches

base rule applicable?

[no][yes]
find match

find
match

find match

Variability-aware
rule application
engine

[FASE’15]

Presenter
Presentation Notes
The context of this work is model-driven software development and its application in global scenarios.Today, there‘s an ongoing trend of software being developed at many distributed locations, be in the context of open source development or in industrial outsourcing scenarios.In distributed scenarios, model-driven software development faces significant challenges.One of these challenges is the great complexity of software projects which leads to models of remarkable size.

One Washing Machine

/wash.Start();[not delayEnabled]
/ wash.Start();

Applying FoldLabel – Example

Locking Waiting

Washing

Drying

Unlocking

[delayEnabled]

/ QuickCool()

74

𝑥𝑥1

𝑥𝑥2

𝑥𝑥
𝑎𝑎

𝑎𝑎

Matching Site
for Base Part

 Apply rule

Full Matching Site

Base Part
LHS is extended
with foldEntry=TRUE

One Washing Machine

[not delayEnabled]

Applying FoldLabel– Example

Locking Waiting

Drying

Unlocking

[delayEnabled]

/ QuickCool()

75

𝑥𝑥1

𝑥𝑥2

Washing

entry/ wash.Start(); 𝑎𝑎

𝑥𝑥

Full RHS for
foldEntry=TRUE

Tool Support: VarHenshin

76

• To specify variability-based rules, extended the Henshin editor

• To apply variability-based rules, extended the Henshin interpreter API

RuleApplication

VariabilityBased
RuleApplication

Match

VariabilityBased
Match

Variability
Configuration

finds

finds

*

*

1

1

[FASE’15]

Presenter
Presentation Notes
The context of this work is model-driven software development and its application in global scenarios.Today, there‘s an ongoing trend of software being developed at many distributed locations, be in the context of open source development or in industrial outsourcing scenarios.In distributed scenarios, model-driven software development faces significant challenges.One of these challenges is the great complexity of software projects which leads to models of remarkable size.

Evaluation

77

Materials

• 3 rule sets from different domains
• Edit operation recognition [Bürdek 2015]
• Model constraint translation [Arendt 2014]
• Transformation benchmark [Varró 2006]

Set-up

• Measured performance, scalability,
and compactness

• Input parameters optimized for
performance

[FASE’15, FASE’16]

Presenter
Presentation Notes
The context of this work is model-driven software development and its application in global scenarios.Today, there‘s an ongoing trend of software being developed at many distributed locations, be in the context of open source development or in industrial outsourcing scenarios.In distributed scenarios, model-driven software development faces significant challenges.One of these challenges is the great complexity of software projects which leads to models of remarkable size.

Merged Rules Improve Performance!!!

78

Performance

• 4-158x as fast as “classic” rules
• 36x as fast as manually merged rules
• Caveat: Many matches (0.7x)

Compactness

Scalability

• Performance gain was constant for
larger input models

• Removed 29-75% of all elements
• Manually merged rules were

even more compact
x = sqrt
(model
size)

y = execution
time / sec

[FASE’15, FASE’16]

Presenter
Presentation Notes
29 vs. 67

Novel Approaches: Summary

Lifting transformations
From individual products to product line

Aggregating
Reuse transformation fragments
Reuse intermediate execution artifacts

• Other approaches
– Transformation composition (by chaining and

weaving)
– Transformation reuse across families of related

domain-specific languages [DeLara et. al., SOSYM’15]

79

Presenter
Presentation Notes
Transformation composition… by chaining (UniTI project, MODELS’07)… by weaving (Wagelaar et. Al., SoSym’10)Transformation reuse across families of related domain-specific languages… by specifying transformation at the meta-modeling level (De Lara et. Al., SoSyM 2015)

• Motivation
– Models and Transformations
– Why Reuse

• Transformation Reuse
– PL adaptations: subtyping and mapping
– MDE-specific approaches: lifting and aggregating

• Future perspectives
• Coffee

80

Some Future Perspectives

• Transformation
Intent

• Applying MDE
techniques to
programs

81

Transformation Intent

Recall:
Transformations are aimed to accomplish a one-step

task with specific intent

So reuse objective is to preserve this intent
Subtyping: same intent of trans on subtype inputs
Mapping: same intent of trans for collections
Lifting: same intent of trans for product lines
Aggregation: same intent of fragment in each
transformation

82

General Intent Preservation

Transformation reuse mechanism Γ …
… constructs new trans Γ 𝑚𝑚,𝐹𝐹 given type mapping 𝑚𝑚:𝑇𝑇2 ⇛ 𝑇𝑇1
Is sound for set of transformations Ω iff

∀𝐹𝐹 ∈ Ω ⋅ Γ(𝑚𝑚,𝐹𝐹) has same intent of 𝐹𝐹
Is complete for set of transformations Ω iff

∀𝐹𝐹,𝐹𝐹′ ∈ Ω ⋅ (𝐹𝐹′ has same intent as 𝐹𝐹) ⇒ ∃𝑚𝑚 ⋅ F′ = Γ(𝑚𝑚,𝐹𝐹)

Current research: how to check/guarantee Γ is sound and/or
complete for Ω?

83

𝑇𝑇1

𝑇𝑇2

𝑇𝑇′𝐹𝐹

Γ(𝑚𝑚,𝐹𝐹)
𝑚𝑚

[AMT’15, ICMT’16]

F: a transformation
m: type mapping
Ω: set of transformations
of interest

Presenter
Presentation Notes
So far we manually ensured that intent is preservedM – arbitrary mechanism for subtyping or mappingNeed to preserve intentAnd if there is a transformation that preserves intent, we will find itGamma – reuse mechanismOmega – set of transformations of interestSoundness is relative to a class

Adapting MDE Techniques to Programs
(lifting)

A terrific body of work by Christen Kaestner on reinterpreting
various code analyses – one at a time – on 150% code models
(with #ifdefs)

Problem:
Given an analysis method on programs, reinterpret (lift) it

on 150% representations of programs, together with proofs of
correctness (that the method gives correct analysis on each
variant)

Current work:
Trying to lift analysis behind UFO [CAV’12] - a combination

of over- and under-approximation
84

A parting thought

85

Programs Models

Goals:
Quality
Speed of development
Understandability

(Formal) Methods:
Specification
Analysis

- Higher level of
abstraction (“for a
purpose”)
- Presence of meta-
models

- Executable
- Present in abundance “in
real world”
- Complex data structures
and control flow

Perspectives on Model Transformation
Reuse

86

Programs Models

Goals:
Quality
Speed of development
Understandability

(Formal) Methods:
Specification
Analysis

subtyping
mapping

lifting

aggregating

lifting

subtyping
mapping

A parting thought: Synergy

87

Programs Models

Goals:
Quality
Speed of development
Understandability

(Formal) Methods:
Specification
Analysis

subtyping
mapping

lifting

aggregating

lifting

subtyping
mapping

Acknowledgements

Many thanks for colleagues
in Toronto…

…and elsewhere in the world

• Gehan Selim

88

89

References
90

[ICMT’15] M. Famelis, L. Lúcio, G. Selim, A. Di Sandro, R. Salay, M. Chechik, J. R Cordy, J. Dingel, H.
Vangheluwe, and Ramesh S. Migrating Automotive Product Lines: a Case Study, ICMT’15: 82-97.
[MODELS15Tool] A. Di Sandro, M. Famelis, R. Salay, S. Kokaly, M. Chechik. MMINT: A Graphical Tool for
Interactive Model Management: MODELS 2015 Demos.
[ICSE14] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, Marsha Chechik: Lifting model
transformations to product lines. ICSE 2014: 117-128
[FASE15] Daniel Strüber, Julia Rubin, Marsha Chechik, Gabriele Taentzer: A Variability-Based Approach to
Reusable and Efficient Model Transformations. FASE 2015: 283-298
[FASE16] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele Taentzer, Jennifer Ploger:
RuleMerger: Automatic Construction of Variability-Based Model Transformation Rules. FASE 2016: 122-
140.
[ICMT’16] Rick Salay, Steffen Zschaler, Marsha Chechik: Correct Reuse of Transformations is Hard to
Guarantee. ICMT’16. To appear.
[AMT’15] Rick Salay, Steffen Zschaler, Marsha Chechik: Transformation Reuse: What is the Intent?
AMT@MoDELS 2015: 7-15
[MODELS15] Rick Salay, Sahar Kokaly, Alessio Di Sandro, Marsha Chechik: Enriching Megamodel
Management with Collection-Based Operators. MODELS 2015: 236-245
[CAV12] Aws Albarghouthi, Yi Li, Arie Gurfinkel, Marsha Chechik: UFO: A Framework for Abstraction- and
Interpolation-Based Software Verification. CAV 2012: 672-678

90

	Perspectives on Model Transformation Reuse
	 A Brief and Partial Research History
	Slide Number 3
	Googling “Model”
	Model: “Purposeful abstraction”
	Why Models?
	Software Engineering Models
	Models vs Programs
	Transformations
	Why Transformations
	Model Transformations
	Characteristics of Model Transformations
	Example: State Machine Refactoring Transformation
	Applying FoldEntry – Example 1
	Applying FoldEntry – Example 1
	Applying FoldEntry – Example 2
	Transformation Signatures
	Slide Number 19
	Reuse Transformations
	How to Reuse?
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Adaptation: Subtyping
	Simple Subtyping: PL
	Simple Model Subtyping
	Coercive Subtyping: PL
	Coercive Model Subtyping
	Adaptation: Mapping
	Programming Language MAP
	Goal: apply Map to megamodels
	Megamodels
	Map for Megamodels
	Map Applied to Megamodels
	Tooling: MMINT
	Summary of Adaptation Approaches
	Slide Number 38
	Novel Approaches: Lifting
	A slight aside: Product Lines
	Software Product Line Engineering
	Product Line Structure + Terminology
	Product Line Configuration – Example 1
	Product Line Configuration – Example 2
	Washing Machine Product Line
	Washing Machine Product Line: Configuring a Product
	Result: +Dry/Delay State Machine
	Result: +Dry/Delay state machine
	Our Goal: Reuse Transformation Defined for Products for Entire PLs
	Idea 1 – Avoid Lifting Transformation
	Idea 2: Configure All Products and Merge
	Idea 3: Manually Lift by Re-developing Transformation
	Idea: Automate the Lift
	FoldEntry Transformation
	Goal: Apply FoldEntry to a Product Line
	Correctness Criteria
	Lifting Algorithm Sketch
	Applying 𝐅𝐨𝐥𝐝𝐄𝐧𝐭𝐫 𝒚 ↑
	Applying 𝐅𝐨𝐥𝐝𝐄𝐧𝐭𝐫 𝒚 ↑
	Properties of Lifting Algorithm
	Prototype Implementation
	Lifting Complete Transformation Languages
	Lifting Complete Transformation Languages
	Novel Approaches: Aggregating
	Some Similar Transformations
	RuleMerger: From similar to variability-based rules
	Identify commonalities, unify variabilities:FoldLabel
	Select foldEntry to obtain FoldEntry rule
	Select foldExit to obtain FoldExit rule
	Transformations with Variability
	Novel Approaches: Aggregating
	Implicit Variability Is Bad for Performance
	Goal: Consider Variability During Rule Application
	Applying FoldLabel – Example
	Applying FoldLabel– Example
	Tool Support: VarHenshin
	Evaluation
	Merged Rules Improve Performance!!!
	Novel Approaches: Summary
	Slide Number 80
	Some Future Perspectives
	Transformation Intent
	General Intent Preservation
	Adapting MDE Techniques to Programs�(lifting)
	A parting thought
	Perspectives on Model Transformation Reuse
	A parting thought: Synergy
	Acknowledgements
	Slide Number 89
	Slide Number 90

