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ABSTRACT
Synthesis of system configurations from a given set of features is an
important and very challenging problem. This paper makes a step
towards this goal by describing an efficient technique for synthesiz-
ing pipeline configurations of feature-based systems. We identify
and formalize a design pattern that is commonly used in feature-
based development. We show that this pattern enables composi-
tional synthesis of feature arrangements. In particular, the pattern
allows us to add or remove features from an existing system with-
out having to reconfigure the system from scratch. We describe
an implementation of our technique and evaluate its applicability
and effectiveness using a set of telecommunication features from
AT&T, arranged within the DFC architecture.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

General Terms
Design, Verification

Keywords
Feature-Based Development, Synthesis, Behavioural Design Pat-
terns, Pipelines, I/O Automata.

1. INTRODUCTION
Feature-based development has long been used as a way to pro-

vide separation of concerns, to facilitate maintenance and reuse,
and to support software customization based on end-user needs [34,
24, 18, 1, 25]. Individual features typically capture specific units of
functionality with direct relationships to the requirements that in-
spired the software system in the first place [15]. By closely mirror-
ing requirements, features make it easier to reconfigure or expand
a system as its underlying requirements change over time.

To meet the desirable properties expected from a feature-based
system, the interactions among its features need to be constrained
and orchestrated. This is often done by putting features in a suitable
arrangement, typically a linear one such as a stack or a pipeline, that
inhibits undesirable interactions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-559593-995-1 ...$5.00.

Existing research on feature interaction analysis, e.g., [33, 21,
19, 17, 31, 24, 14, 7], largely concentrates on reasoning about and
resolving undesirable interactions between a set of features whose
arrangement is given a priori. Yet a complementary problem, of
how to automatically synthesize an arrangement when one is not
given, has not been studied much. The problem is important – it
currently takes substantial expertise and effort to find an arrange-
ment of features that does not result in undesirable interactions.

Unfortunately, a naive attempt at automatically arranging fea-
tures is infeasible: there is an exponential number of alternative ar-
rangements to consider when searching for a desirable one. Hence,
we need compositional techniques that can reduce the problem of
finding a desirable arrangement into smaller subproblems. This
need becomes even more pressing in systems that evolve over time,
where features are periodically added, removed, or revised. With-
out compositional techniques for synthesizing evolving systems,
new arrangements of features may have to be created from scratch
after each change.

Our goal is to provide compositional techniques for synthesizing
software systems from an evolving, arbitrarily large set of (differ-
ent) features. To achieve this goal, we draw inspiration from the
literature on component-based software. A general way to enable
compositional reasoning about systems with an arbitrary number of
components is by exploiting behavioural similarities between com-
ponents. For example, [13, 12] show that system-wide verification
tasks can be decomposed if components exhibit identical or virtu-
ally identical behaviours. The motivation for the work is verifica-
tion of low-level operating system protocols, e.g., mutual exclusion
where several identical copies of a process attempt to enter a critical
section. More recent work, e.g., [2], explores similar ideas to bring
compositional reasoning to software systems in which components
have diverse behaviours. There, the required degree of similarity
between components is achieved by having components implement
a design pattern.

In this paper, we aim to study how the design patterns used in
feature-based development can enable compositional synthesis of
feature arrangements. We ground our work on pipelines – popu-
lar architectures for building feature-based systems [4, 21, 19, 24]
which allow one to define the overall behaviour of a system in terms
of a simple composition of the behaviours of the individual fea-
tures [36].

A common objective in designing feature pipelines is to mini-
mize the visibility of each feature to the rest. This is to ensure that
individual features can operate without relying on those appearing
before or after them in the pipeline [36]. To realize this objec-
tive, features are usually designed such that they engage in defin-
ing the overall behaviour of the system only when they perform
their function. More precisely, features alter the flow of signals in
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Figure 1: A simplified linear DFC scenario.

the pipeline only when they are providing their service; otherwise,
they let the signals pass through without side-effects. The ability
of a feature to remain unobservable to other features when it is not
providing its service is called transparency.

In this paper, we argue that transparency is sufficient to make
pipeline synthesis compositional, requiring the analysis of just pairs
of features to determine their relative order in the overall pipeline.
In particular, we make the following contributions:

1. We formalize the transparency pattern of behaviour and show
that for features implementing this pattern, global constraints
can be inferred on the order of the features through pairwise
analysis of the features.

2. We describe a sound and complete compositional algorithm
for synthesizing pipeline arrangements. Given a set of fea-
tures and a set of safety properties describing undesirable
interactions, our algorithm computes an arrangement of the
features that is safe for the given properties. Specifically, the
algorithm uses the safety properties to compute a set of pair-
wise ordering constraints between the features. Due to the
transparent behaviour of the features, any global ordering
that violates a pairwise ordering constraint can be deemed
unsafe and pruned from the search space of the solution,
leaving a relatively small number of global orderings to be
generated and verified by the algorithm. Our algorithm is
change-aware in the sense that after adding or modifying a
feature, we need to update only the pairwise ordering con-
straints related to that particular feature and reuse the remain-
ing constraints from the previous system.

3. We report on a prototype implementation of our synthesis
algorithm, applying it to a set of AT&T telecom features to
find a safe arrangement for them in the Distributed Feature
Composition (DFC) architecture [21]. Our algorithm could
automatically and efficiently compute a safe arrangement for
the DFC features in our study.

The rest of the paper is organized as follows. In Section 2, we
motivate our work using an example from the telecom domain. Af-
ter fixing the notation and reviewing basic notions of refinement
and model checking in Section 3, we formalize features as I/O au-
tomata and define a notion of binding for describing pipelines in
Section 4. Section 5 is the main contribution of the paper. It for-
malizes the transparency pattern that guarantees that synthesis can
be done compositionally. We describe our synthesis algorithm in
Section 6 and its implementation in Section 7. In Section 8, we
evaluate our technique on a set of AT&T telecom features. We re-
view related work and compare it with our approach in Section 9
and conclude the paper with a summary of contributions and an
outline of future research directions in Section 10.

2. MOTIVATION
We motivate our work by analyzing a simplified instance of a

telecom scenario (see Figure 1). Features in this scenario are ar-
ranged in a pipeline and include Call Blocking (CB), Record Voice

A label ''e1/e2'' on a transition indicates that the transition is triggered by 
action ''e1'' and generates action ''e2'' after being taken. Transitions can 
be triggered either by input actions, i.e., those received from outside, or by 
internal actions. When taken, a transition generates zero or  more internal 
or output actions. It is assumed that the actions generated by a state 
machine do not trigger any transition of that state machine.  To distinguish 
between input, output, and internal actions, we append to each action e 
the symbol ''?'' if e is an input action, the symbol ''!'' if e is an output action, 
and the symbol '';'' if e is an internal action. Further, to disambiguate 
between the actions of different state machines, we prefix every action 
with the name of the state machine it belongs to.

checkinginitial

blocked
idle

cb.setup?
cb.reject; /
cb.unavail!

cb.accept; /
cb.setup!

initial waiting
rvm.setup?/
rvm.setup!

check
resources

t1 t2

Record Voice Mail (RVM)

Call Blocking (CB)

s0 s1

s2
s3

t0

rvm.setup?/
rvm.setup!

cb.unavail?/
cb.unavail!

cb.unavail?/
cb.unavail!

rvm.setup?/
rvm.setup!

cb.setup?

cb.unavail?

rvm
.res_unavail;/

rvm
.unavail!

rvm.unavail?/
rvm.unavail!

rvm.unavail?

idle recording

rvm.res_avail; /
rvm.voicemail;

rvm.unavail?/
rvm.unavail!

cb.setup?/
cb.setup!

t3 t4

rvm.unavail?
rvm.setup?

Figure 2: Call Blocking (CB) and Record Voice Mail (RVM).
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Figure 3: Possible orderings of the features in Figure 2.

Mail (RVM), Quiet Time (QT), Sequential Find Me (SFM), No An-
swer Time Out (NATO), and Answer Confirm (AC).

Pipeline features communicate by passing signals to their imme-
diate neighbours. Signals that travel end-to-end pass through all
features, allowing each feature to perceive and modify the overall
function of the pipeline. For example, Figure 1 shows the flow of
the signals setup and unavail. There are many other signal types,
but we show only the most relevant ones here.
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Figure 4: Fragments of the compositions of the features in Figure 2 with respect to the orderings in Figure 3.

The communication between the features in a pipeline is either
buffered or unbuffered (synchronous). The former facilitates re-
liable communication but complicates reasoning: it is known that
verification of a distributed system with unbounded buffers is unde-
cidable [5]. Instead, we assume that features communicate through
synchronous message passing, which makes for more tractable rea-
soning but imposes restrictions on the design of features: they should
be responsive to all potential input at all time, i.e., they should be
input-enabled. This requirement is captured in a number of stan-
dard formalisms for describing concurrent systems, e.g., I/O au-
tomata [26]. For example, all the features in Figure 1 are enabled
for setup and unavail.

To refer to the directions within a pipeline, we use the terms up-
stream (right to left) and downstream (left to right). In our example,
the setup signal travels downstream, and the unavail signal travels
upstream. For features F and F ′ in a pipeline, we write F < F ′ to
indicate that F is upstream (“to the left of”) of F ′. For example, in
Figure 1, CB < NATO.

Figure 2 shows the state machines for CB and RVM in the pipeline
of Figure 1. The purpose of CB is to block calling requests coming
from addresses on a blocked list. CB becomes active by receiving
a setup signal containing initialization data such as the directory
numbers of the caller and callee. Using this data and its internal
logic, CB decides whether the caller should be blocked. If so, it
moves to the blocked state and tears down the call; otherwise, it
moves to the idle state and effectively becomes invisible. The pur-
pose of RVM is to record a voicemail message when the callee is
not available. Like CB, RVM is activated on receipt of a setup sig-
nal. It then remains in its waiting state until it receives an unavail
signal, indicating that the callee is unavailable or unable to receive
the call. If the media resource is available, RVM moves to the
recording state and lets the caller leave a voicemail message. Oth-
erwise, if the media resource is unavailable, e.g., the mailbox quota
for the user is exceeded, RVM moves to its idle state.

Feature Interaction. The behaviour of the composition of the fea-
tures in a pipeline depends on the ordering of the features, and the
goal of our work is to synthesize an ordering which will guaran-
tee absence of undesirable compositions. For example, suppose we
are trying to avoid the composition: “RVM should not record a
message if CB blocks the caller” [37], formalized as the following
negative trace1:

NS1 = cb.reject; rvm.voicemail;

CB and RVM can be put in a pipeline one of the two ways, as
shown in Figure 3. The ordering in Figure 3(a) yields the composi-
1The trace “rvm.voicemail; cb.reject;” could have been considered
instead of NS1 as well.
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tion in Figure 4(a), and the one in Figure 3(b) – the composition in
Figure 4(b). These compositions were computed based on the par-
allel composition semantics in synchronous mode of communica-
tion [29]. The composition in Figure 4(a) results in an undesirable
interaction: the path from (s0, t0) to (s3, t4) generates the trace
NS1, i.e., “rvm.voicemail;” comes after “cb.reject;”. The compo-
sition in Figure 4(b), on the other hand, does not exhibit NS1, im-
plying that CB should come before RVM in a pipeline. Note that
due to lack of space, Figures 4(a) and (b) only show the relevant
fragments of these compositions.

Synthesis Challenge. In general, finding a suitable ordering cannot
be done compositionally when the features in a pipeline have un-
constrained designs. For example, consider sample features A and
B in Figure 5(a) and the property “A voicemail message should not
be recorded”2, i.e., action “b.voicemail;” must not be produced by
the composition of A and B. This property does not hold over ei-
ther a pipeline in which A < B, or the one in which B < A. In the
former case, A sends setup to B, and B generates “b.voicemail;”,
and in the latter case, B receives setup from the environment and
generates “b.voicemail;”. So, it may seem that the given correct-
ness property does not hold on a pipeline containing A and B.
However, consider the new feature C in Figure 5(b) which blocks
the action setup. The pipeline A < C < B in Figure 5(b) satisfies
the given correctness property, i.e., the composition of these fea-
tures, when arranged in the above order, does not generate
“b.voicemail;”. This example shows that, in general, we may not
be able to infer a global ordering over the pipeline by analyzing
subsets of components. Even though the given correctness prop-
erty only concerns B, our analysis needs to consider all the com-
ponents in the pipeline. Hence, given n unrestricted components,
we need to check exponentially many (n! ≈ O(2n log n)) pipeline
arrangements to find one which satisfies the properties of interest.
This is intractable for all but the most trivial pipelines.

2This property is used only for illustration.
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Transparency Pattern. To be able to lift an ordering over a sub-
set of pipeline features to the entire pipeline, we rely on a pattern of
behaviour called transparency. Each feature implementing this pat-
tern can exhibit an execution along which it is unobservable (trans-
parent). When executing transparently, a feature sends any sig-
nal received from its left to its right, and any signal received from
its right to its left, possibly with some finite delay. Features im-
plementing the transparency pattern can still perform their specific
functionality via other executions, or via unobservable behaviours.

For example, in Figure 2, CB’s transparent execution is from s0

to s2, and RVM’s – from t0 to t3. CB behaves transparently if the
call request comes from a non-blocked address. In this case, the
system proceeds as if CB were never present; otherwise, CB pro-
vides its service by blocking the incoming call, i.e., by taking the
path from s0 to s3. As for RVM, the feature exhibits its transparent
behaviour when its media resource is unavailable; otherwise, it al-
lows the user to leave a voicemail message by taking the path from
t0 to t4.

For pipeline features implementing the transparency pattern, we
prove the following (Section 5): if a pipeline consisting of just two
features F and F ′ where F < F ′ violates a safety property ϕ, a
pipeline with an arbitrary number of components in which F <
F ′ violates ϕ as well. This enables a compositional algorithm for
synthesizing pipeline orderings (Section 6).

3. PRELIMINARIES
In this section, we fix the notation and provide background on

composition semantics, refinement, and model checking.

Labelled Transition Systems (LTS). An LTS is a tuple M =
(S, s0, E, R) where S is a set of states, s0 ∈ S is an initial state, E
is a set of actions, and R ⊆ S × E × S is a set of transitions. We
write a transition (s, e, s′) ∈ R as s

e−→ s′.
Two example LTSs are shown in Figure 6. A trace of an LTS M

is a finite sequence σ of actions that M can perform starting at its
initial state. For example, ε, a, ab, and abc are traces of the LTS in
Figure 6(a). The set of all traces of M is called the language of M ,
denoted L(M). We say σ = e0e1 . . . en is a trace over Σ if ei ∈ Σ
for every 0 ≤ i ≤ n. We denote by Σ∗ the set of all finite traces
over Σ.

Let M be an LTS, and E′ ⊆ E. We define M@E′ to be the
result of restricting the set of actions of M to E′, i.e., replacing
actions in E \E′ with the unobservable action τ and reducing E to
E′. For an LTS M with τ -labelled transitions, we consider L(M)
to be the set of traces of M with the occurrences of τ removed.
This is a standard way for hiding unobservable computations of
LTSs [23].

Composition. The composition of two LTSs that run asynchronously
and communicate through synchronous message passing is formal-
ized as parallel composition [29]. The parallel composition op-
erator || combines the behaviours of two LTSs by synchronizing
their shared actions and interleaving their non-shared ones. Unless
stated otherwise, it is assumed that actions with identical names are
shared, and the rest are non-shared.

DEFINITION 1 (PARALLEL COMPOSITION [29]). Let M1 =
(S1, s0, E1, R1) and M2 = (S2, t0, E2, R2) be LTSs. The parallel
composition of M1 and M2, denoted M1||M2, is defined as an LTS
(S1 × S2, (s0, t0), E1 ∪ E2, R), where R is the smallest relation
satisfying the following:

R = {((s, t), e, (s′, t)) | (s, e, s′) ∈ R1 ∧ e 6∈ E2}
S

{((s, t), e, (s, t′)) | (t, e, t′) ∈ R2 ∧ e 6∈ E1}
S

{((s, t), e, (s′, t′)) | (s, e, s′) ∈ R1 ∧ (t, e, t′) ∈ R2}

Refinement. Refinement formalizes the relation between two LTSs
at different levels of abstraction. Refinement is usually defined as
a variant of simulation. In this paper, we use the notion of weak
simulation (also known as observational simulation) to check the
existence of a refinement relation between two LTSs [29]. This
notion can be used for relating LTSs with different sets of actions
by replacing their non-shared actions with τ . For states s and s′ of
an LTS M , we write s

τ
=⇒ s′ to denote s(

τ−→)∗s′. For e 6= τ , we
write s

e
=⇒ s′ to denote s(

τ
=⇒)(

e−→)(
τ

=⇒)s′.

DEFINITION 2 (SIMULATION [29]). Let M1 and M2 be LTSs,
where E1 = E2 = E. A relation �⊆ S1 × S2 is a weak simula-
tion, or simulation for short, where s � t iff

∀s′ ∈ S1 · ∀e ∈ E ∪ {τ} · s e−→ s′ ⇒ ∃t′ ∈ S2 · t
e

=⇒ t′ ∧ s′ � t′

We say M2 simulates M1, written M1 � M2, iff s0 � t0

THEOREM 1. [29] Let M1 and M2 be LTSs where M1 � M2.
Then, L(M1) ⊆ L(M2).

Based on the above theorem, simulation is a sufficient condition for
trace containment. Recall that L(M1) and L(M2) capture only the
observable behaviours of M1 and M2. Thus, Theorem 1 states that
if M1 � M2, then M2 can generate every observable trace of M1,
but not necessarily traces with τ -steps.

Model Checking. We express correctness properties as finite nega-
tive traces over the set of actions of a system. Negative traces char-
acterize the behaviours that a system must not exhibit (safety prop-
erties). For example, the property NS1 described in Section 2 is a
safety property for a telecom system with features CB and RVM. To
satisfy this property, the system must not allow
“rvm.voicemail;” to occur after “cb.reject;” , i.e., the trace
“cb.reject; rvm.voicemail;” is a negative trace.

Let M = (S, s0, E, R) be an LTS, and let σ = e1e2 . . . en be a
trace over E′ where E′ ⊆ E. We say that M satisfies a negative
trace σ if

Stut(σ) ∩ L(M@E′) = ∅

where

Stut(σ) = (E′ \ e1)
∗e1(E

′ \ e2)
∗e2 . . . (E′ \ en)∗en

That is, the system that needs to exclude NS1 should not allow
any trace in the language b∗aa∗b, where a = “cb.reject;” and
b =“rvm.voicemail;”, either. This can be determined by translating
σ to a safety LTS Mσ and computing the parallel composition of
M and Mσ (e.g., see [27]).

Formally, let σ be a trace over E′. A safety LTS Mσ is a tuple
(S, sσ, E′, R) where

S = {sσ′ | σ′ is a (possibly empty) suffix of σ}
R= {(sσ′ , e, sσ′′ ) | σ′ = e.σ′′ ∧ σ′ is a suffix of σ}∪

{(sσ′ , e
′, sσ′ ) | σ′ = e.σ′′ ∧ e′ ∈ E′ ∧ e 6= e′ ∧ σ′ is a suffix of σ}

For example, the LTS in Figure 6(b) can be interpreted as the
safety LTS for the negative trace NS1 in Section 2 by letting a =



“cb.reject;” and b =“rvm.voicemail;”. Note that state sε, which
corresponds to the empty suffix ε, is without outgoing transitions
in every safety LTS. Reachability of this state determines whether
M can generate σ. That is, Stut(σ) ∩ L(M@E′) = ∅ iff state
sε is not reachable in Mσ||M . Thus, model checking an LTS M
against a negative trace σ can be done by composing M with Mσ

and checking reachability of sε.

4. I/O AUTOMATA AND PIPELINES
We describe features as I/O automata [26]. This formalism is

chosen because (1) I/O automata allow distinguishing between the
input, internal, and output actions of features – this distinction be-
tween different types of actions is crucial for properly describing
the communications between features [26]; and (2) I/O automata
are input-enabled by design. Input-enabledness makes it easier to
detect and avoid deadlocks [26, 38] and further, provides a way to
terminate features that are stuck in error loops and hence are wast-
ing resources [38].

DEFINITION 3 (I/O AUTOMATA [26]). An I/O automaton is
a tuple A = (S, s0, E, R), where S is a finite set of states; s0 ∈
S is an initial state; E is a set of actions partitioned into input
actions (Ei), output actions (Eo), and internal actions (Eh); and
R ⊆ S × E × S is a set of transitions.

Input actions are those that a feature receives from its environment.
Internal actions represent events scoped inside a feature and invis-
ible outside of it. Examples of such events include internal timers
and communication with media devices. Output actions represent
a feature’s response to its input and internal actions.

An I/O automaton can be viewed as an LTS if the distinction
between input, output and internal actions is ignored. Given an
I/O automaton A = (S, s0, E = Ei ∪ Eo ∪ Eh, R), we write
LTS(A) to denote the LTS (S, s0, E, R). Similar to LTSs, we
write A@E′ to denote A with its set of actions reduced from E to
E′, and write L(A) to denote the set of traces of A. Figures 7(a)
and (b) show the I/O automata for the state machines in Figures 2(a)
and (b), respectively. The labels of the input and output actions
of these I/O automata have infixes “r” (right) and “l” (left); these
indicate the directions in which these actions are communicated
(see Definition 4).

We say a state s is enabled for an action e if s has an outgoing
transition labelled e. A state s is quiescent if s is not enabled for
any output or internal actions. Intuitively, an automaton in a quies-
cent state is strictly waiting for an input from its environment. An
I/O automaton A is input-enabled if the following conditions hold:

1. A returns promptly to some quiescent state after leaving one.
We assume the execution time of transitions labelled with
output and internal actions to be negligible. Thus, prompt
return to a quiescent state means that output and internal ac-
tions never block the execution, and further, no cycle of tran-
sitions labelled with only internal and output actions exists.

2. Quiescent states of A are enabled for all input actions. For
example, states s0, s3, and s5 in Figure 7(a) are quiescent
and are enabled for all input actions of CB, i.e., “cb.l.setup?”
and “cb.r.unavail?”.

As shown in Figure 1, each feature has one port on its left and
one on its right side, and actions can be sent or received from either
of these two ports. To be able to refer to the direction of com-
munication in a pipeline, we augment I/O automata with action
mappings which specify the port from which an action is sent or
received.

DEFINITION 4 (FEATURES). A feature F is a tuple (AF , f)
where AF is an I/O automaton, and f : Ei ∪ Eo → {r, l} is a
function that maps every input and output action of F to either the
right, r, or the left, l, port of F . We write “F.r.e” (or, respectively,
“F.l.e”) to say that action e is mapped to port “r” (or, respectively,
“l”).

Note that f does not map the internal actions of a feature because
these actions are invisible outside the feature.

In Figure 1, the smaller boxes attached to the features denote
the ports. Actions are visualized as small circles on the appropri-
ate ports. For example, CB has an (output) action “cb.r.setup!”
mapped to its right port, and RVM has an (input) action
“rvm.l.setup?” mapped to its left port.

To formally specify how two consecutive features in a pipeline
communicate, we define a notion of binding for connecting the
right port of one feature to the left port of another.

DEFINITION 5 (PIPELINE BINDINGS). Let F1 and F2 be con-
secutive features in a pipeline; let R = {e ∈ E1 | f1(e) = r}; and let
L = {e ∈ E2 | f2(e) = l}. A (pipeline) binding B ⊆ R×L between
F1 and F2 is a one-to-one correspondence relation between L and
R that relates input actions only to output actions, and output ac-
tions only to input actions; i.e.,

(e1, e2) ∈ B =⇒`
(e1 ∈ Eo

1 ∧ e2 ∈ Ei
2) ∨ (e1 ∈ Ei

1 ∧ e2 ∈ Eo
2)

´
For a binding B, we say an action is shared if it occurs in some
tuple of B, and non-shared otherwise.

The links between the features in Figure 1 can be expressed as bind-
ings. For example, the CB–RVM link in the figure is characterized
by the following binding:

B = {(cb.r.setup!, rvm.l.setup?),
(cb.r.unavail?, rvm.l.unavail!)}

which indicates that the output action “cb.r.setup!” (of CB) syn-
chronizes with the input action “rvm.l.setup?” (of RVM), and the
input action “cb.r.unavail?” (of CB) synchronizes with the output
action “rvm.l.unavail!” (of RVM).

In our working example, bindings are meaningful only if they re-
late actions with identical signal names. For example, had we con-
sidered an additional upstream-traveling signal, unknown in Fig-
ure 1, it would have been incorrect to, say, relate actions
“cb.r.unknown?” and “rvm.l.unavail!”. Thus, in this paper we as-
sume that features use a unified set of signals and all bindings are
based on signal name equivalences. On the other hand, we rec-
ognize that there may be domains where this assumption does not
hold: features may refer to a shared signal by different names, or
refer to non-shared signals by the same name. Through making
mappings between actions explicit, all such bindings can be cap-
tured by Definition 5 directly.

To obtain the overall behaviour of a set of communicating fea-
tures, we compose them with respect to the bindings established
between them. To this end, we define a parallel composition of I/O
automata, whereby features synchronize their shared actions and
interleave their non-shared ones.

DEFINITION 6 (COMPOSITION OF PIPELINE FEATURES). Let
F1 and F2 be consecutive features in a pipeline linked by a bind-
ing B. The parallel composition of F1 and F2 with respect to B,
denoted F1||BF2, is a feature (A, f) where

• A = (S1 × S2, (s0, t0), E = Ei ∪ Eo ∪ Eh, R) with Ei,
Eo, Eh, and R defined as follows:
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rvm.l.unavail!

t10
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rvm.voicemail;

t11
rvm.l.setup?

rvm.r.unavail?

Figure 7: I/O automata for the state machines in Figure 2.

Ei = (Ei
1 ∪ Ei

2) \ {e | e is a shared input action}
Eo = (Eo

1 ∪ Eo
2) \ {e | e is a shared output action}

Eh = (Eh
1 ∪ Eh

2 ) ∪B

R = {((s, t), e, (s′, t)) | (s, e, s′) ∈ R1 ∧ e is a non-shared action}
S

{((s, t), e, (s, t′)) | (t, e, t′) ∈ R2 ∧ e is a non-shared action}
S

{((s, t),(e, e′),(s′, t′)) |(s, e, s′)∈R1∧(t, e′, t′)∈R2∧(e, e′)∈B}
• f = (f1 ∪ f2) \ {e | e is a shared action}

The above is the same as the standard definition of parallel com-
position for I/O automata [26], except that we use bindings to ex-
plicitly specify the shared actions prior to composition. Since bind-
ings are one-to-one, it easily follows that the ||B operator is asso-
ciative. Thus, the global composition of the features in a pipeline
can be formulated as a series of binary compositions.

5. FORMALIZING TRANSPARENCY
Intuitively, if a feature F implements the transparency pattern

(motivated in Section 2), then there is some environment that co-
erces F to exhibit its transparent behaviour. For example, CB (in
Figure 2) exhibits its transparent execution, i.e., from s0 to s2,
when data from the environment indicates that the callee has not
blocked the caller. Since pipeline features act independently [21,
36], each feature can be coerced into its transparent execution in-
dependently of other features.

In this section, we formalize the above intuition and prove (in
Theorem 2) that if all features implement the transparency pattern,
the following holds:

“If a pipeline with two features (F followed by F ′) violates a safety
property ϕ, a pipeline with an arbitrary number of features in which
F < F ′ violates ϕ as well.”

We exploit this result in Section 6 to provide a compositional algo-
rithm for ordering features in a pipeline.

The formalization of the transparency pattern G is shown in Fig-
ure 8. It is expressed as an I/O automaton with generic input ac-
tions G.l.〈x〉? and G.r.〈y〉?, and generic output actions G.l.〈y〉!
and G.r.〈x〉!. State S0 is quiescent, and states S1 and S2 are tran-
sient. A feature implementing this pattern can exhibit some exe-
cution along which it forwards any signal it receives from its left

S0

S2S1〈y〉! 〈y〉?
〈x〉? 〈x〉!

rl
G.l.〈x〉?

G.r.〈x〉!

G.r.〈y〉?

G.l.〈y〉!

Figure 8: G: Generic transparency pattern.
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S2

S0
P.l.setup?

P.r.setup! P.l.unavail!

P.r.unavail?
setup? setup!

unavail! unavail?

l r

Figure 9: P : Adaptation of the generic transparency pattern to
the pipeline in Figure 1.

port onto its right port, and vice versa. On this execution, a feature
can delay the transmission of actions for a finite amount of time to
perform its internal behaviours, but is not allowed to add or omit
any actions, or to change the order of actions being transmitted.
If the environmental data is such that a feature has to provide its
service in response, the feature chooses a non-transparent execu-
tion or simply fulfills its functionality through internal actions on
its transparent execution.

The cycle between states S0 and S1 in Figure 8 (hereafter, the
downstream cycle) handles signals that travel downstream, and the
cycle between S0 and S2 (hereafter, the upstream cycle) handles
signals traveling upstream. To adapt the generic transparency pat-
tern to a specific pipeline problem, we need a copy of the down-
stream cycle for every signal traveling downstream, and a copy of
the upstream cycle for every signal traveling upstream. For exam-
ple, Figure 9 shows the adaptation, P , of the pattern to the pipeline
in Figure 1. Since this pipeline has one downstream traveling sig-
nal, setup, and one upstream traveling signal, unavail, P has one
copy of the downstream and one copy of the upstream cycle. Had
we considered further signals, we would have had more copies of
the corresponding cycles in this adaptation.



We characterize the implementation relation between a feature
and its adaptation by weak simulation (see Definition 2), which al-
lows us to relate features with different sets of actions. Having such
flexibility is key: although the features in a pipeline share the same
input and output actions with the pattern adaptation, each feature
has its own set of internal actions. For example, consider features
CB and RVM in Figure 7. CB’s internal actions are “cb.reject;”
and “cb.accept;”, whereas RVM’s are “rvm.res unavail;”,
“rvm.res avail;” and “rvm.voicemail;”. Such internal actions are
not used in P in Figure 9.

To establish a simulation relation between a feature and its pat-
tern adaptation, we need to hide the feature’s internal actions. For
example, after replacing actions “cb.reject;” and
“cb.accept;” of CB and “rvm.voicemail;” of RVM with τ , both CB
and RVM simulate P . The simulation relation for CB is {(s0, S0),
(s1, S1), (s2, S1), (s3, S0), (s6, S2), (s7, S2), (s8, S1)}, and for
RVM is {(t0, S0), (t1, S1), (t2, S0), (t3, S2), (t4, S2), (t5, S0),
(t6, S2), (t7, S1), (t8, S2), (t9, S1)}.

Before giving the main result of this section, Theorem 2, we state
two lemmas used in the proof of the theorem. For the remainder of
this section, let P be the adaptation of the generic transparency
pattern, G, for a particular pipeline.

LEMMA 1. Let F be a feature, and let B1 bind F.r to P.l. If F
violates a desired safety property, so does F ||B1P . Similarly, let
B2 bind P.r to F.l. If F violates a desired safety property, so does
P ||B2F .

The proof of this lemma follows from the fact that the set of traces
of an arbitrary pipeline feature F is preserved in the composition
of F with P , i.e., P does not affect traces of the composition.

The following lemma states that if the features in a pipeline im-
plement the transparency pattern, so does the entire pipeline. That
is, the features cannot prohibit one another from exhibiting their
transparent behaviour.

LEMMA 2. Let F1, . . . , Fn be consecutive features in a pipeline,
where Bi binds Fi.r to Fi+1.l. If every Fi (1 ≤ i ≤ n) implements
(i.e., weak simulates) P , so does the composition

F1||B1F2||B2 . . . ||Bn−1Fn.

Proof. We first recall two standard results on parallel composition
of state transition systems (see [9]).

(1) for every M1, M2 and M3, if M1 � M2 then M3||M1 �
M3||M2.

(2) for every M , we have M � M ||M

The proof follows by induction on n. The base case, n = 1, is
trivial. Let F = F1||B1F2||B2 . . . ||Bn−2Fn−1.

P � F1 ∧ . . . ∧ P � Fn

(by the inductive hypothesis)
⇒ P � F ∧ P � Fn

(by (1))
⇒ P ||Bn−1Fn � F ||Bn−1Fn ∧ P ||Bn−1P � P ||Bn−1Fn

(by transitivity of �)
⇒ P ||Bn−1P � F ||Bn−1Fn

(by (2))
⇒ P � F ||Bn−1Fn

Note that the actions of the left and right ports of all features F1, . . . , Fn

are the same as those of P . Thus, all bindings B1, . . . , Bn are
identical. Therefore, for any Bi, the operator ||Bi can be used to
compose any pair of features or any feature with P .

(a) (b)

F F ′ F1 F Fi Fj F ′ Fn

Figure 10: An illustration for Theorem 2.

Finally, we present the main theorem of this section:

THEOREM 2. Let F, F ′, F1, . . . , Fn be pipeline features, and
let F , F ′ and every Fi (1 ≤ i ≤ n) implement P . If the pipeline
in Figure 10(a) does not satisfy a desired safety property, neither
does the pipeline in Figure 10(b).

Proof (sketch). Let X1 be the pipeline segment from F1 to Fi−1,
X2 be the segment from Fi to Fj , and X3 be the segment from
Fj+1 to Fn in Figure 10(b). Suppose X is the pipeline obtained
by replacing each X1, X2 and X3 in Figure 10(b) with P , i.e., X
consists of F , F ′ and three instances of P . By Lemma 2, if X is
not safe, neither is the pipeline in Figure 10(b). By Lemma 1 and
Theorem 1 in Section 3, if the pipeline in Figure 10(a) is not safe,
neither is X .

In Section 6, we use Theorem 2 to propose an efficient pipeline
ordering algorithm. Another application of this theorem, which we
do not consider in this paper, is for pipeline verification. Specif-
ically, it follows from the contrapositive of the theorem that if a
given pipeline satisfies a safety property, any subsequence of the
pipeline satisfies that property as well.

6. COMPOSITIONAL SYNTHESIS
In this section, we describe the algorithm for computing order-

ing of features in a pipeline, to ensure that they do not admit any of
the undesirable interactions. The algorithm, ORDERPIPELINE, is
shown in Figure 11. The main engine of this algorithm is the func-
tion FINDPAIRWISECONSTRAINTS, shown in Figure 12, which
computes a set C of ordering constraints between feature pairs.
These constraints are inferred by model checking the two possi-
ble compositions of each feature pair against the safety properties
defined over that pair. For example, let F1 = CB and F2 = RVM,
and let negTr = NS1 (see Section 2). With these inputs, FIND-
PAIRWISECONSTRAINTS yields CB < RVM because the property
NS1 holds in the composition where CB comes before RVM (line 5
in Figure 12), but not in the other composition (line 7). The result-
ing constraint CB < RVM is added to C (line 11) which is returned
on line 16. By Theorem 2, a pipeline ordering that does not respect
pairwise ordering constraints is unsafe, and thus inadmissible. This
provides us with an effective strategy for pruning the search space
for solutions.

Given a pair of features, FINDPAIRWISECONSTRAINTS can in-
fer an ordering over the pair, if exactly one of their two possible
compositions violates the given properties. Otherwise, if neither
composition violates the properties, the features in question can
be put in any order, and hence no constraint is derived (line 15).
If both compositions violate the properties, FINDPAIRWISECON-
STRAINTS returns error (line 9). In this case, the given features
need to be revised before they can be put together in a pipeline;
hence, ORDERPIPELINE terminates unsuccessfully (line 3).

If FINDPAIRWISECONSTRAINTS does not return error, ORDER-
PIPELINE enters a repeat-until loop (lines 4–8). Every iteration of
this loop starts by finding a permutation of the n features compris-
ing the pipeline that satisfies the set of constraints computed by
FINDPAIRWISECONSTRAINTS. Such a permutation, called T, sat-
isfies a set C of constraints if for every constraint Fk < Fl in C, we



Algorithm. ORDERPIPELINE

Input: - Features F1, . . . , Fn with action sets E1, . . . , En, resp.
- A set negTr ⊆ (

S
1≤k≤n Ek)∗ of negative traces.

Output: A permutation, T, of 1 to n giving an order on F1, . . . , Fn.

1: C := FINDPAIRWISECONSTRAINTS(F1, . . . , Fn, negTr)

2: if (C = error) :
3: return error

4: repeat
5: T:= Next permutation of 1, 2, · · · , n satisfying C
6: Let Bi bind FT[i].r to FT[i+1].l for 1 ≤ i < n

// Bi connects the feature at position i
// to the one at position i + 1

7: safe := MODELCHECK(FT[1]||B1 . . . ||Bn−1FT[n], negTr)
8: until safe

9: return T

Figure 11: Algorithm for pipeline ordering.

Algorithm. FINDPAIRWISECONSTRAINTS
Input: Features F1, . . . , Fn and negative trace negTr.
Output: A set C or pairwise ordering constraints.

1: C := ∅
2: for 1 ≤ k < l ≤ n: // choose a pair Fk, Fl

// restrict negTr to Fk and Fl

3: negTr′ := negTr ∩ (Ek ∪ El)
∗

4: B1 := Binding(Fk.r, Fl.l) // put Fk before Fl

5: safe1 := MODELCHECK(Fk||B1Fl, negTr′)

6: B2 := Binding(Fl.r,Fk.l) // put Fk after Fl

7: safe2 := MODELCHECK(Fk||B2Fl, negTr′)

8: if (¬safe1 ∧ ¬safe2) :
9: return error

10: if (safe1 ∧ ¬safe2) :
11: add Fk < Fl to C
12: else if (¬safe1 ∧ safe2) :
13: add Fl < Fk to C
14: else : // i.e., safe1 ∧ safe2

15: do nothing // inconclusive result;
// no constraint on Fk w.r.t. Fl

16: return C

Figure 12: Algorithm for finding pairwise ordering constraints.
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Figure 13: Local ordering vs. global ordering.

have T[k] < T[l], i.e., feature Fk is positioned to the left of feature
Fl in the pipeline. For example, let F1 = CB, F2 = QT, and F3

= RVM. The permutation T satisfying constraints { CB < RVM,
RVM < QT} is [1, 3, 2]. Afterwards, a global composition of the

features is built with respect to the computed permutation T. If
this composition satisfies all the given properties, T is returned as
a solution. Otherwise, the loop continues until a solution is found,
or all permutations that satisfy C are exhausted. In the latter case,
ORDERPIPELINE returns error.

Notice that merely satisfying C does not make a given permuta-
tion T a solution to the pipeline ordering problem. For example,
consider features A and B in Figure 13(a)3. The composition of A
and B in the figure is safe for the trace “b.error;”, i.e., “the error ac-
tion is unreachable”. However, once feature C is inserted between
A and B in Figure 13(b), the resulting pipeline is no longer safe for
this property: Theorem 2 only guarantees safety violations to lift
from a pairwise to the global setting. However, safety properties
that are satisfied over a pair of features are not necessarily lifted4.
Therefore, we need to check all safety properties over the global
composition induced by a candidate ordering. Further, although in
practice most safety property traces are expressed over pairs of fea-
tures, we can envision traces that refer to several and potentially to
all features in the system. Checking such properties requires the
construction of a global composition.

Our pipeline ordering algorithm is sound because we construct
a global composition and verify it against all the given properties.
The algorithm is complete because by Theorem 2, it never prunes
an ordering that is a possible solution to the pipeline ordering prob-
lem. Finally, the algorithm is change-aware, allowing for the reuse
of synthesis results across changes to pipelines. Specifically, after
adding or modifying a feature F , all we need to do is to (re)compute
the pairwise constraints between F and the rest of the features in
the pipeline. In other words, constraints not involving F remain
valid and can be carried over from the previous system.

The scalability and effectiveness of our approach ultimately de-
pend on how well we can narrow down the search for potentially
admissible pipeline permutations, and whether verifying composi-
tions (lines 5 and 7 in Figure 12, and line 7 in Figure 11) is feasible.
In Section 8, we apply our approach to an industrial telecom exam-
ple. There, we demonstrate that substantial pruning of the search
space can be achieved by utilizing the pairwise constraints inferred
from the known undesirable interactions in the domain. The fea-
tures used in our evaluation were not very large, and therefore, we
could verify their compositions in a conventional way. But, for
larger systems, we can improve the scalability of ORDERPIPELINE
algorithm using existing automated compositional techniques for
checking safety properties (e.g., [10]).

7. IMPLEMENTATION
We have developed a prototype implementation of the pipeline

ordering algorithm described in Section 6. We discuss inputs to the
algorithm as well as the relevant technical details below.

Inputs. Our algorithm in Section 6 receives a set of features ex-
pressed as I/O automata and a set of negative traces capturing unde-
sirable interactions between these features. In order to use standard
verification tools, in our case, the LTS Analyzer (LTSA) tool [27],
our tool translates the input features to LTSs and the negative traces
– to safety LTSs (see Section 3).

Parallel composition. Our technique requires us to compute com-
positions of pipeline features (lines 5 and 7 of FINDPAIRWISEC-

3This example is similar to that given in Section 2, but the details
are not identical.
4The features in Figure 13 can be completed to implement the
transparency pattern (the completions not shown here due to space
limitations) and yet exhibit the same problem.



ONSTRAINTS in Figure 12 and line 7 of ORDERPIPELINE in Fig-
ure 11), for which we need to implement the parallel composition
operator ||B (Definition 6) – one is not readily available in LTSA.
This is achieved as follows: first, we do an action relabelling to en-
sure that shared actions, with respect to a given binding B, have
identical labels in the features to be composed. We then apply
LTSA’s parallel composition operator (Definition 1) to compose the
features.

Model checking. Since we translate negative traces to safety LTSs,
model checking (lines 5 and 7 of FINDPAIRWISECONSTRAINTS
and line 7 of ORDERPIPELINE) can be done directly using LTSA.
Note that our technique involves model checking not only pairwise
but also the global composition (line 7 of ORDERPIPELINE). Our
tool currently uses LTSA directly for this latter check, which has
not presented a challenge so far because the number and the size
of features we have been working with so far have been relatively
small (see Section 8). However, this check may become an issue
when analyzing larger systems, and in the future we intend to use an
enhanced version of LTSA [10] that enables compositional model
checking for safety properties. This approach applies to our work
directly, since the negative traces we use are safety properties.

Ordering permutations. To generate ordering permutations that
satisfy a given set of constraints (line 5 of ORDERPIPELINE), we
use a backtracking constraint solver, Choco [22]. All constraints
used in our approach are binary, and for those, the state-of-the-art
look-ahead techniques for solving CSP problems are very efficient.

8. EVALUATION
In this section, we provide initial evidence for the usefulness of

our approach through a case study from the telecom domain. Our
study involves six features from AT&T deployed in the DFC archi-
tecture [21].

When conducting the study, we had a number of goals. The first
goal was to check that the features present in the case study simu-
late our formalization of the transparency pattern in Figure 9 (G1).
The other two goals were to investigate whether our technique can
sufficiently narrow down the search for a safe pipeline ordering,
which includes the ability to identify enough negative scenarios of
interaction (G2), and to evaluate the performance of our technique
on a realistic example (G3). We begin this section with a descrip-
tion of the domain of our study, and discuss the experience with the
above goals in Section 8.2.

8.1 Domain Description
In DFC, a simple telecom usage is implemented by a linear pipeline

such as the one shown in Figure 1. The original DFC pipeline has
several additional signals, e.g., avail and unknown, which we omit-
ted from Figure 1 for simplicity. The pipeline in the figure includes
six features, namely, CB and RVM (see Section 2), as well as QT,
SFM, AC, and NATO. A high-level description of the four new fea-
tures, taken from [37], is as follows:

Quiet Time (QT) enables the subscriber to avoid an incoming call
by activating a dialog with the caller, saying that the sub-
scriber wishes not to be disturbed. If the caller indicates that
the call is urgent, this feature allows the call to go through.
Otherwise, it signals failure (unavail) upstream.

Sequential Find Me (SFM) attempts to find the callee at a sequence
of locations. If the first location does not succeed, then while
all the other locations are being tried, the feature plays an

Feature CB RVM QT SFM NATO AC
# of states 9 10 12 22 7 10

# of transitions 13 13 19 31 16 21

Table 1: Sizes of the resulting translations.

announcement, letting the caller know that the call is still ac-
tive.

Answer Confirm (AC) uses a media resource to elicit confirma-
tion that the call has been answered by a person rather than
by a machine. If the test is not passed, it signals unavail
upstream, even though the call was actually answered.

No Answer Time Out (NATO) signals failure (unavail) upstream
if an incoming call is not answered after a certain amount of
time.

The DFC architecture supports dynamic architectural reconfigu-
ration. This means that features and bindings can be created, de-
stroyed, or reassigned at runtime. In fact, the pipeline in Figure 1
is a static snapshot of a dynamic structure. For example, in the fig-
ure, each new location tried by SFM results in a new setup signal
sent downstream, and creation of new instances of AC and NATO.
We do not consider such advanced capabilities here. Specifically,
we abstract away feature behaviours involving runtime reconfigu-
ration. Hence, a pipeline ordering synthesized by our technique is
over a static snapshot of a (potentially) dynamic DFC pipeline. In
this sense, the real value of our technique with respect to DFC is
as an exploration tool through which analysts can consider differ-
ent snapshots of the same pipeline and ensure that the synthesized
orderings for these snapshots are consistent with one another.

The features in our case study are specified in Boxtalk [38] –
a domain-specific language for specifying telecom features. Each
Boxtalk specification is a state machine with a set of states and a
set of transitions which can be triggered by actions. Boxtalk also
provides constructs for manipulating data and media, but we do not
consider these constructs in this work. Boxtalk is similar to I/O au-
tomata in that the models described in it are input-enabled; the lan-
guage also distinguishes between input, output, and internal actions
of features [38]. Hence, the control behaviours of Boxtalk specifi-
cations can be conveniently captured using our I/O automata-based
formalism (Definition 4).

In this case study, all of the features except NATO and CB have
additional ports through which they communicate with media re-
sources that record speech, play announcements, detect touch-tones,
etc. We have abstracted away from these ports, replacing their sig-
nals with internal actions such as “rvm.voicemail;”. This abstrac-
tion is safe because the interaction of each feature with its media
resource is independent and and logically contained within the fea-
ture, thus not affecting feature composition.

8.2 Experience
We manually translated the six Boxtalk features into I/O au-

tomata. The sizes of the translated models are shown in Table 1,
whereas the original Boxtalk specifications and the resulting I/O
automata are available in [30].

Our analysis indicates that all these features implement our for-
malization of the transparency pattern. We already exemplified the
simulation relation for CB and RVM in Section 5. For the remain-
ing features, see [30]. The realization of the transparency pattern
satisfies goal G1 and enables the application of our pipeline order-
ing algorithm.



G2. The scenarios used in our study are shown in Table 2 (left
column). These scenarios came from [37] and from the experience
of the domain expert – the last author of this paper. Note that these
scenarios may not be always known in advance. To elicit them, the
domain expert may have to inspect or monitor the models and their
interactions using automated analysis tools. Table 2 (right column)
shows the constraints inferred by our technique for the individual
scenarios. These constraints were sufficient to conclusively order
all the features in Figure 1 except for the SFM feature. The role of
SFM is to transform a number that was dialed, i.e., a personal num-
ber, into some device number: a home phone, a cell phone, etc.
Scenarios involving SFM cannot be expressed as sequences of ac-
tions because they refer to data, i.e., personal and device numbers.
In this work, we do not model data and instead rely on the domain
expert to provide the constraints for SFM. Specifically, CB, RVM,
and QT should precede SFM because they are personal features,
i.e., they apply to the personal number. In contrast, AC and NATO
should follow SFM because they apply to each phone try individ-
ually, and there will be a different instance of AC and NATO for
each try. Using these additional constraints, we were able to nar-
row down the set of possible global orderings to a single one.

While we had no problem in this domain where the nature of
interactions between feature pairs was well studied and well under-
stood, our technique may be less effective in other domains. The
degree to which it narrows down the search is influenced by fac-
tors such as the size and the number of features in the domain, the
amount of domain expertise available, and the existence of formal
design guidelines for feature development, and all of these may
vary widely.

To extend the applicability of our approach to domains where an
adequate set of negative scenarios is hard to obtain, the approach
can be combined with simulation and monitoring tools which as-
sist users in identifying additional undesirable scenarios. The idea
is that analysts often have certain heuristics for detecting “suspi-
cious” behaviour, even though they may not have pinned down the
exact undesirable interactions. For example, it might be dangerous
for certain pairs of features to be active in the same usage scenario.
The ability of a tool to report pairs of features that can be active si-
multaneously may help analysts to identify additional safety prop-
erties and thus reduce the number of feature orderings.

Different monitoring tools can be used in conjunction with our
approach, but the one that readily integrates with our formalism
is LTSA’s simulation module. This module can be used to mon-
itor the parallel composition of a set of features and report traces
leading to suspicious behaviours. These traces can then be studied
by analysts as potential candidates for negative scenarios. Since
our approach requires traces only over pairs of features to infer or-
dering constraints, users can concentrate on pairwise compositions,
for which traces are typically small and intuitive enough for manual
inspection.

G3. We measured the time and memory performance of the dif-
ferent steps in our technique, applied to the features in our study.
The reported times are for a PC with a 2.2GHz Pentium Core Duo
CPU and 2GB of memory; our implementation used version 1.2 of
Choco and version 2.3 of LTSA.
FINDPAIRWISECONSTRAINTS: Executing lines 5 and 7 of this
algorithm (Figure 12) involves building pairwise compositions of
LTSs and model checking them. Since I/O automata can be seen as
LTSs, the sizes of our LTS translations are those shown in Table 1.
The number of states of the pairwise compositions ranged between
60 to 259, and the number of transitions between 210 to 785. The

Negative Scenario Constraint(s)
QT cannot stop a caller from leaving a voicemail message. RVM < QT
A blocked caller should not be allowed to engage in a di-
alogue with the system (this is to avoid wasting expensive
media resources).

CB < AC,
CB < QT
CB < RVM

If QT is enabled and the call is not urgent, the system should
not disturb the callee with a confirmation dialogue.

QT < AC

The timer interval should never include the time that the
system takes having a dialogue with a user (because that
should not be included in the time allowance for answering).

AC < NATO,
QT < NATO

Table 2: Negative scenarios and the resulting constraints.

running times for generating the compositions were negligible, i.e.,
under 1s.

To model check the compositions, we expressed safety proper-
ties as (safety) LTSs, which, for the properties in Table 2, ranged
between 3 to 5 states, and 5 to 8 transitions. For example, Figure 6
can be interpreted as a safety LTS for the property NS1 described
in Section 2 by letting a = “cb.reject;” and b = “rvm.voicemail”.
The running times of individual model checking tasks were negli-
gible.

For the six features in the study and the properties in Table 2, the
total execution time of FINDPAIRWISECONSTRAINTS was 6.47s
and the maximum required memory was 10M. The result of run-
ning the algorithm is the set of ordering constraints in the second
column of Table 2.
ORDERPIPELINE: Line 5 of this algorithm (Figure 11) invokes a
constraint solver Choco to compute a permutation satisfying the
pairwise ordering constraints. The running time and memory usage
of this step were negligible due to the nature of our CSP problem
(see Section 7), and resulted in a single permutation that satisfied
all of the pairwise constraints in Table 2.

Line 7 of the ORDERPIPELINE algorithm requires computing a
global composition of the features. Since there is only one permu-
tation satisfying the constraints in Table 2, only one global com-
position needed to be built and verified. The number of states and
transitions in this global composition are 1.5× 106 and 22× 106,
respectively5. The time and memory needed for generating this
composition are 71.4s and 913M, respectively. The total model
checking time, i.e., the sum of model checking times for individ-
ual properties in Table 2, was 16min, and the maximum memory
requirement was 1G.

Overall, we were able to compute a safe feature ordering in about
a quarter of an hour. The order that we computed is the same as the
one that was produced by the domain expert via manual analysis of
the feature pairs. As we discussed in Section 2, this may not be the
case when the features do not satisfy the transparency pattern. The
most expensive part of our algorithm is model checking of a global
composition, which took about 16min. This cost is incurred no
matter what approach one takes for ordering a set of features. Even
if we were to select a feature ordering randomly, we would still
have to build the global composition and verify it. Since the size of
global compositions grows quickly, compositional techniques for
dealing with space explosion are needed. While we managed to
build global compositions using LTSA in our case study without re-
sorting to compositional analysis tools, efficient tools for checking
global compositions already exist and can be readily incorporated
into our approach as discussed in Section 7.

5We have observed that global compositions for other permutations
are of roughly the same size.



9. RELATED WORK
The ideas and techniques presented in this paper are related to

a variety of research areas such as concurrent systems [26, 27],
web service composition [16], software architectures [36, 27], etc.
A complete survey of all these threads is not intended here, and
instead, we focus on comparing our work with the most relevant
research thrusts.

Feature interaction is a well studied problem in feature-based
software development, and many approaches addressing this prob-
lem have been proposed, e.g., [21, 3, 19, 31, 17, 24]. Some of
the earlier work required extensive manual intervention. For exam-
ple, [3] proposed a logic-based approach for detecting undesirable
interactions by manually instrumenting potential interactions with
exception clauses and employing a theorem prover for finding in-
consistencies. [31] developed a scheme whereby users manually
specify the join points at which new features can be inserted into
a base system. Feature interactions are explored by weaving the
features and model checking the result.

Recent approaches offer better automation: [19] resolves unde-
sirable interactions using predefined priorities prescribing which
feature should be favoured should a conflict arise. [24] proposes
a compositional method for verifying features that are composed
sequentially through known interface states. [17] provides an au-
tomated unification operator for combining features (described in
a functional language) with respect to given unifiers. These ap-
proaches assume that the relationships between features (i.e., prior-
ities in [19], interfaces in [24], and unifiers in [17]) are developed
a priori. Our work deals with a complimentary problem of how to
synthesize these relationships.

Several approaches propose the use of architectural styles, such
as layered [6, 33] or pipeline architectures [21, 4], as a way to pre-
vent undesirable interactions. The arrangement of features within
these architectures is typically done manually. Our work offers a
solution to automate this task for the pipeline architectural style.

Our work also relates to [11] which focuses on verifying port-
based systems (with buffered links between features). The work
builds on domain-specific knowledge about the DFC architecture,
such as regularity of feature properties and symmetry of commu-
nication port behaviours, to enable compositional verification of
DFC usage pipelines. However, [11] does not address the synthe-
sis of these pipelines, and also does not exploit the transparent be-
haviours of DFC features for reasoning.

The closest work to ours is that of [39] which reduces the effort
of computing global feature orderings by partitioning features into
categories, and then separately sorting the set of categories and the
set of features found within each category. To make their analy-
sis scalable, the authors use an assumption similar to transparency
which is that features in a scenario can be arbitrarily added or re-
moved at runtime. Reasoning about soundness in [39] is similar
to ours; however, since the authors do not formalize transparency,
they cannot reason about the completeness of their approach. In
contrast, our formalization of feature behaviours and the notion of
transparency enables us to show completeness in addition to sound-
ness.

Compositional analysis extends the applicability of verification
methods by reducing reasoning about a large system to reasoning
about its individual components. For example, assume-guarantee
reasoning [32] enables verification of individual components in con-
junction with assumptions about their environment, and allows lift-
ing of the results to the entire system. Existing work on this topic
is not directly applicable to synthesis of feature-based systems be-

cause one needs to know about the bindings between features in
order to specify the environmental assumptions. However, our syn-
thesis algorithms could directly benefit from automated assume-
guarantee techniques for safety properties, e.g., [10]. Specifically,
our feature ordering algorithm in Section 6 involves model check-
ing pairwise and global compositions induced by specific bindings.
These model checking tasks can be done more efficiently using the
technique of [10].

Design for verification promotes the use of domain-specific pat-
terns and guidelines to facilitate efficient automated verification [35,
28, 2, 8]. For example, [2] provides a concurrency controller pat-
tern for making verification of concurrent Java programs more scal-
able, and [35] studies the use of structural design guidelines for ef-
ficient verification of UML models. To the best of our knowledge,
the use of patterns for compositional reasoning about feature-based
systems has not been investigated previously.

10. CONCLUSION
In this paper, we presented a sound and complete compositional

approach for synthesizing feature arrangements. The formal ground-
work for our technique is a pattern of behaviour called transparency.
We proved that this pattern enables inferring global constraints on
feature arrangements through pairwise analysis of the features. We
also reported on a prototype implementation and a preliminary eval-
uation of our work for synthesizing orderings of AT&T telecom
features.

In our case study, the desired properties were described as nega-
tive traces (safety). Our algorithm can also readily work with pos-
itive traces. In fact, a corollary of Theorem 2 is that the trans-
parency pattern lifts existence of positive traces from a pairwise
to the global setting. We leave extending our technique to (finite)
liveness, i.e., dealing with universal positive behaviours, to future
work.

Further, the properties in our case study did not contradict one
another. However, one could envision cases where some of these
properties are mutually inconsistent. Our feature ordering algo-
rithm detects such inconsistencies as circular, or over-constrained,
orderings. Alternatively, users may want to establish consistency
before applying our algorithm, e.g., using Alloy [20].

While this paper focused on pipeline arrangements, our tech-
nique can be used for synthesis of more complex arrangements as
well. In particular, we can synthesize graph arrangements consist-
ing of linear pipeline segments by first synthesizing the segments
and then combining them to construct the overall system.

Our current approach assumes that each feature implements a
distinct requirement. Yet, it is possible for individual features, par-
ticularly in legacy systems, to implement multiple functions, each
invoked depending on external parameters or user preferences. Our
approach may create circular dependencies between such features.
We leave the methodology of breaking these cycles and dealing
with parameterized feature arrangements for future work.
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