
Thorough Checking Revisited
Shiva Nejati, Mihaela Gheorghiu, and Marsha Chechik

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada.

Email:{shiva,mg,chechik}@cs.toronto.edu

Abstract— Recent years have seen a proliferation of 3-valued
models for capturing abstractions of systems, since these enable
verifying both universal and existential properties. Reasoning
about such systems is either inexpensive and imprecise (compo-
sitional checking), or expensive and precise (thorough checking).
In this paper, we prove that thorough and compositional checks
for temporal formulas in their disjunctive forms coincide, which
leads to an effective procedure for thorough checking of a variety
of abstract models and the entire µ-calculus.

I. INTRODUCTION

Recent years have seen a proliferation of approaches to
capturing abstract models using rich formalisms that enable
reasoning about arbitrary temporal properties. Examples of
such formalisms include Partial Kripke Structures (PKSs) [1],
Mixed Transition Systems (MixTSs) [2], [3], Hyper-Transition
Systems (HTSs) [4], [5], [6], etc. Model checking over these is
either conclusive, i.e., the property of interest can be proven
or refuted, or inconclusive, denoted maybe, indicating that the
abstract model needs to be refined.

Two distinct 3-valued semantics of temporal logic are used
over these abstract models. One is compositional, in which
the value of a property is computed from the values of its
subproperties (as in classical model checking), and the other
one is thorough [1]. The latter assigns maybe to a property
only if there is a pair of concretizations of the abstract model
such that the property holds in one and fails in the other.
In general, model checking with thorough semantics is more
expensive than compositional model checking – EXPTIME-
complete for CTL, LTL and µ-calculus (Lµ) [7]. Thorough
semantics, however, is more conclusive than compositional.
For example, consider the program P shown in Figure 1(b),
where x and y are integer variables and x, y = e1, e2
indicates that x and y are simultaneously assigned e1 and e2,
respectively. A PKS M , shown in Figure 1(c), is an abstraction
of P w.r.t. predicates p (meaning “x is odd”), and q, (meaning
“y is odd”). The CTL formula ϕ = AGq∧A[pU¬q] evaluates
to maybe on M under compositional semantics and to false
under thorough, since every refinement of M refutes ϕ.

For the purpose of effective reasoning about abstract
models, it is important to enable thorough-quality analy-
sis using (compositional) 3-valued model checking. Specif-
ically, we aim to identify classes of temporal formulas
whose compositional model checking is as precise as thor-
ough. Otherwise, we want to transform the formulas into
equivalent ones (in classical logic), for which composi-
tional checking yields the most precise answer. For exam-

ple, we would transform the formula AGq ∧ A[pU¬q] into
A[p ∧ q U false], that is unsatisfiable (over total models) and
thus always false. [9], [8] refer to this process as semantic
minimization, and the formulas for which thorough and com-
positional semantics coincide as self-minimizing.

This paper addresses thorough checking of Lµ formulas
over various abstract models with 3-valued semantics follow-
ing the algorithm in Figure 1(a). This algorithm consists of
three main steps: (1) (compositional) model checking of ϕ over
an abstract model M (e.g.,[1], [2], [5]), (2) checking if ϕ is
self-minimizing, and (3) computing semantic minimization of
ϕ, and then model checking the resulting formula. Computing
semantic minimization is the most expensive part and is at least
as hard as thorough checking [8]. Therefore, it is important to
identify as many self-minimizing formulas as possible in step
(2), and avoid step (3).

In [8] and [10], it was shown that positive/monotone tem-
poral formulas, i.e., the ones that do not include both p and
¬p, are self-minimizing over abstract models described as
PKSs. This self-minimization check, however, is not robust
for more expressive abstraction modelling formalisms such as
HTSs. For example, consider an abstraction of program P ,
described as an HTS H , shown in Figure 1(d). Based on the
3-valued semantics of Lµ over HTSs, the monotone formula
AGp ∧ AGq evaluates to maybe over H [5], [4]. However,
this formula is false by thorough checking, because every
concretization of H refutes either AGp or AGq.

In this paper, we extend step (2) of the thorough checking al-
gorithm by proving that the disjunctive and conjunctive normal
forms of Lµ defined in [11] are self-minimizing over abstract
models described as HTSs. We focus on HTSs because other
3-valued abstraction formalisms can be translated to them
without loss of precision, but not the other way around [4].
Godefroid and Huth [8] proved that monotone disjunctive Lµ
formulas without greatest fixpoints are self-minimizing for
PKSs, and pointed out that by a naive inductive proof the self-
minimization of greatest fixpoint disjunctive formulas cannot
be shown. We improve on this result by using an automata
intersection game inspired by [12], to show that the disjunctive
and conjunctive normal forms of Lµ with greatest fixpoint
are self-minimizing over HTSs. Our result yields a simple
syntactic check for identifying self-minimizing formulas over
HTSs and can be used along with the monotonicity condition
for PKSs and MixTSs.

Our result further provides an alternative semantic min-
imization procedure for step (3) of the algorithm, via the

(a)
THOROUGHCHECK(M , ϕ)
(1): if (v := MODELCHECK(M , ϕ)) 6= maybe

return v
(2): if ISSELFMINIMIZING(M , ϕ)

return maybe
(3): return MODELCHECK(M , SEMANTICMINIMIZATION(ϕ))

(b)
P::
int x, y = 1, 1;
int t;
x, y = t, t+1;
x, y = 1, 1;

(c)M
p

q

q = m

p = m

p

q

s0

s1

s2

(d)H
p

q

p

q

¬q

p¬p

q

s0

s1 s2

s3

Fig. 1. (a) A sketch of an algorithm for thorough checking. A simple program P (adapted from [8]) (b) and its abstractions described as: (c) a PKS M ; and
(d) an HTS H .

tableau-based translation of Janin and Walukiewicz [11].
Godefroid and Huth [8] proved that Lµ formulas are closed
under semantic minimization, i.e., every Lµ formula can be
translated to an equivalent Lµ formula (in classical logic), for
which compositional checking yields the most precise answer.
The translation, however, is complicated and includes several
steps: transforming Lµ formulas to non-deterministic tree
automata, making non-deterministic tree automata 3-valued,
and translating back these automata to Lµ. Our semantic min-
imization procedure is more straightforward and only uses the
simple tableau-based construction described in [11]. Finally,
we show that our semantic minimization procedure can be
extended to abstract models described as PKSs and MixTSs,
thus providing a general SEMANTICMINIMIZATION() subroutine for
the algorithm in Figure 1(a).

The rest of this paper is organized as follows: Section II
outlines some preliminaries. Section III defines an automata in-
tersection game inspired by the abstraction framework in [12].
This game is used in Section IV to prove the main result of the
paper which establishes a connection between self-minimizing
formulas over HTSs and disjunctive/conjunctive forms of
Lµ. Section V provides a complete algorithm for thorough
checking of Lµ over arbitrary abstract models including PKSs,
MixTSs, and HTSs, and discusses the complexity of this
algorithm. In Section VI, we present some self-minimizing
fragments of CTL for HTSs. We further discuss our work and
compare it to related work in Section VII. Section VIII con-
cludes the paper. Proofs for the major theorems are available
in the extended version of this paper [13].

II. PRELIMINARIES

In this section, we provide background on modelling
formalisms, temporal logics, refinement relation, and compo-
sitional and thorough semantics.
3-valued logic. We denote by 3 the 3-valued Kleene logic [14]
with elements true (t), false (f), and maybe (m). The truth
ordering ≤ of this logic is defined as f ≤ m ≤ t, and negation
as ¬t = f and ¬m = m. An additional ordering � relates
values based on the amount of information: m � t and m � f,
so that m represents the least amount of information.
Models. In what follows, we introduce different modelling
formalisms that are used in this paper.

A Kripke structure (KS) is a tuple K = (Σ, s0, R, L,AP),
where Σ is a set of states, s0 ∈ Σ is the initial state, R ⊆ Σ×Σ

is a transition relation, AP is the set of atomic propositions,
and L : Σ → 2AP is a labelling function. We assume KSs are
total, i.e., R is left-total.

A Partial Kripke Structure (PKS) [1] is a KS whose la-
belling function L is 3-valued, i.e., L : Σ → 3

AP . Figure 1(c)
illustrates a PKS, where propositions p and q are m in state s1.

An Mixed Transition System (MixTS) [2], [3] is a tuple
(Σ, s0, R

must, Rmay, L,AP), where Σ is a set of states, s0 ∈
Σ is the initial state, Rmust ⊆ Σ × Σ and Rmay ⊆ Σ × Σ
are must and may transition relations, respectively, AP is the
set of atomic propositions, and L : Σ → 3

AP is a 3-valued
labelling function.

A hyper-transition system (HTS) [4], [5], [6] is a tuple
H = (Σ, s0, R

must, Rmay, L,AP), where Rmust ⊆ Σ×P(Σ)
and Rmay ⊆ Σ × Σ are must and may transition relations,
respectively, L : Σ → 2AP is a 2-valued labelling function,
and Σ, s0 and AP are defined as above. Intuitively, an HTS is
a MixTS with a 2-valued labelling function and must hyper-
transitions. We assume HTSs and MixTSs are total, i.e., Rmay
is left-total. Figure 1(d) illustrates an HTS, where must and
may transitions are represented as solid and dashed arrows,
respectively. Throughout this paper, we often write relations
as functions: for instance, Rmay(s) is the set {s′ | (s, s′) ∈
Rmay}.

An HTS H is concrete if for every s, s′ ∈ Σ, we have
s′ ∈ Rmay(s) ⇔ {s′} ∈ Rmust(s). For every KS K =
(Σ, s0, R, L,AP), there is an equivalent concrete HTS HK =
(Σ, s0, R

must, Rmay, L,AP), where Rmay = R and s′ ∈
R(s) ⇔ {s′} ∈ Rmust(s) for every s, s′ ∈ Σ.
Temporal logics. Temporal properties are specified in the
propositional µ-calculus Lµ [15].

Definition 1: Let Var be a set of fixpoint variables, and
AP be a set of atomic propositions. The logic Lµ(AP) is the
set of formulas generated by the following grammar:

ϕ ::= true | p | Z | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ | µZ · ϕ(Z)

where p ∈ AP , Z ∈ Var , and ϕ(Z) is syntactically monotone
in Z.

The derived connectives are defined as follows:
ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
AXϕ = ¬EX¬ϕ
νZ · ϕ(Z) = ¬µZ · ¬ϕ(¬Z)

Any Lµ formula can be transformed into an equivalent
formula in which negations are applied only to atomic propo-
sitions. Such formulas are said to be in negation normal form

2

||true||>e = Σ
||true||⊥e = ∅
||p||>e = {s | p ∈ L(s)}
||p||⊥e = {s | p 6∈ L(s)}
||Z||>e = e(Z)

||Z||⊥e = e(Z)
||¬ϕ||>e = ||ϕ||⊥e
||¬ϕ||⊥e = ||ϕ||>e
||ϕ1 ∧ ϕ2||>e = ||ϕ1||>e ∩ ||ϕ2||>e
||ϕ1 ∧ ϕ2||⊥e = ||ϕ1||⊥e ∪ ||ϕ2||⊥e
||EXϕ||>e = ex(||ϕ||>e)
||EXϕ||⊥e = ax(||ϕ||⊥e)
||µZ · ϕ||>e =

T
{S ⊆ Σ | ||ϕ||>e[Z → S] ⊆ S}

||µZ · ϕ||⊥e =
S
{S ⊆ Σ | S ⊆ ||ϕ||⊥e[Z → S]}

Fig. 2. The semantics of Lµ.

(NNF). An Lµ formula ϕ is universal (resp. existential) if
NNF(ϕ) does not contain any EX (resp. AX) operators. We
write ϕ∀ (resp. ϕ∃) to denote a universal (resp. existential) for-
mula, and write ϕprop when ϕ is a propositional formula, i.e.,
when ϕ consists only of literals, conjunctions and disjunctions.

Definition 2: [5] Let H be an HTS, ϕ be an Lµ formula,
and e : Var → P(Σ) be an environment. We denote by
||ϕ||H>e the set of states in H that satisfy ϕ, and by ||ϕ||H⊥e the
set of states in H that refute ϕ. The sets ||ϕ||>e and ||ϕ||⊥e are
defined in Figure 2, where ex(S) = {s | ∃S ′ ∈ Rmust(s) · S′ ⊆

S} and ax(S) = {s | ∀s′ ∈ Rmay(s) · s′ ∈ S}.
For a closed Lµ formula ϕ, ||ϕ||Hλ e1 = ||ϕ||Hλ e2 for any e1

and e2 and λ ∈ {>,⊥}. Thus, e can be safely dropped when ϕ
is closed. We also omit H when it is clear from the context.
Since KSs are special cases of HTSs, the above semantics
applies to them as well.

In this paper, we often express temporal formulas in the
computation tree logic CTL [16] whose syntax is defined w.r.t.
a set AP of atomic propositions as follows:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | EXϕ | AXϕ | E[ϕUϕ] |

A[ϕUϕ] | E[ϕŨϕ] | A[ϕŨϕ]

where p ∈ AP . The operators AU and EU are universal and
existential until operators, respectively; and operators EŨ and
AŨ are their duals, respectively. Other CTL operators can be
defined from these:

AGϕ = A[falseŨϕ] EGϕ = E[falseŨϕ]
AFϕ = A[trueUϕ] EFϕ = E[trueUϕ]

CTL has a fixpoint characterization which provides a
straightforward procedure for translating CTL to Lµ. Thus,
the semantics of CTL over HTSs follows from Definition 2.
3-valued compositional semantics. An HTS H is consis-
tent [4] if for every s ∈ Σ and S ∈ Rmust(s), S∩Rmay(s) 6=
∅. Therefore, for every consistent HTS H and ϕ ∈ Lµ,
||ϕ||>∩||ϕ||⊥ = ∅, i.e., a consistent H does not satisfy ϕ∧¬ϕ.

The semantics of Lµ over a consistent HTS H can be
described as a 3-valued function ||.||H

3
: Lµ × Σ → 3. We

write ||ϕ||H
3

(s) = t if s ∈ ||ϕ||H> , ||ϕ||H
3

(s) = f if s ∈ ||ϕ||H⊥ ,
and ||ϕ||H

3
(s) = m otherwise. The value of ϕ in H , denoted

||ϕ||H
3

, is defined as ||ϕ||H
3

(s0), where s0 is the initial state of
H . To disambiguate from an alternative semantics presented
later, we refer to this 3-valued semantics of Lµ over HTSs as
compositional.
Refinement relation. Models with 3-valued semantics are

compared using ordering relations known as refinement re-
lations [17].

Definition 3: [5] Let H1 and H2 be HTSs. A refinement
relation ρ ⊆ Σ1 × Σ2 is the largest relation where ρ(s, t) iff

1) L1(s) = L2(t),
2) ∀S ⊆ Σ1 ·R

must
1 (s, S) ⇒ ∃T ⊆ Σ2 ·R

must
2 (t, T)∧ ρ̂(S, T),

3) ∀t′ ∈ Σ2 · R
may
2 (t, t′) ⇒ ∃s′ ∈ Σ1 · R

may
1 (s, s′) ∧ ρ(s′, t′),

where ρ̂(S, T) ⇔ ∀t′ ∈ T · ∃s′ ∈ S · ρ(s′, t′).
We say H2 refines H1 and write H1 � H2, if there is

a refinement ρ such that ρ(s10, s20), where s10 and s20 are the
initial states of H1 and H2, respectively.
Refinement preserves Lµ formulas [5], i.e., if H1 � H2, then
for every ϕ ∈ Lµ, ||ϕ||H1

3
� ||ϕ||H2

3
. Refinement can relate

HTSs to KSs as well. Recall that every KS K is equivalent
to a concrete HTS HK . We say that a KS K refines an HTS
H , denoted H � K, iff H � HK . For an HTS H , let C[H]
denote the set of completions of H , that is, the set of all KSs
that refine H .
Thorough semantics and semantic minimization. Thorough
semantics of Lµ over HTSs is defined w.r.t. the completions
of HTSs: A formula ϕ is true in H under thorough semantics,
written ||ϕ||Ht = t, if it is true in all completions of H; it is
false in H , written ||ϕ||Ht = f, if it is false in all completions
of H , and it is maybe in H , written ||ϕ||Ht = m, otherwise [1].

Thorough semantics is more precise than compositional
semantics [1]. That is, ||ϕ||H

3
� ||ϕ||Ht for every HTS H and

Lµ formula ϕ. A formula ϕ is a positive semantic minimization
of a formula ϕ′ if for every HTS H , ||ϕ′||Ht = t ⇔ ||ϕ||H

3
= t,

and is a negative semantic minimization of ϕ′ if for every
HTS H , ||ϕ′||Ht = f ⇔ ||ϕ||H

3
= f. Further, a formula ϕ

is called positively self-minimizing when it is its own positive
semantic minimization, and is negatively self-minimizing when
it is its own negative semantic minimization. A formula that
is both positively and negatively self-minimizing is called
semantically self-minimizing or self-minimizing for short. For
instance, AGp ∧ AGq is not negatively self-minimizing, be-
cause for the HTS H in Figure 1(d), ||AGp∧AGq||H

3
= m and

||AGp∧AGq||Ht = f. As we show later in the paper, AG(p∧q)
is a negative semantic minimization of AGp ∧ AGq. Dually,
EF (p∨q) is a positive semantic minimization of EFp∨EFq.
Since thorough semantics is defined in terms of completions
of HTSs, it is desirable to define self-minimizing formulas in
the same terms, via an equivalent definition, as done below.

Definition 4: An Lµ formula ϕ is negatively self-
minimizing if for every HTS H , ||ϕ||H

3
6= f ⇒ ∃K ∈

C[H] · K |= ϕ, and is positively self-minimizing if for every
HTS H , ||ϕ||H

3
6= t ⇒ ∃K ∈ C[H] ·K |= ¬ϕ.

Our definitions for positive and negative semantic minimiza-
tion are, respectively, the same as those for pessimistic and
optimistic semantic minimization in [8].

III. AN AUTOMATA INTERSECTION GAME

In this section, we define an automata intersection game in-
spired by the automata-based abstraction framework proposed
in [12]. In this framework, both temporal formulas and abstract

3

models are represented as finite automata. For a formula ϕ,
the language of its corresponding automaton Aϕ is the set
of KSs satisfying ϕ, i.e., K ∈ L(Aϕ) iff K |= ϕ. For an
abstract model H , the language of its corresponding automaton
AH is the set of completions of H , i.e., C[H] = L(AH).
Viewing formulas and abstract models as automata allows
us to uniformly define both (thorough) model checking and
refinement checking as automata language inclusion. That is,
H |= ϕ iff L(AH) ⊆ L(Aϕ) (model checking), and H1 � H2

iff L(AH1
) ⊆ L(AH2

) (refinement checking) [12].
The class of automata used in [12] is known as µ-

automata [11]. These automata, although very similar to non-
deterministic tree automata (e.g., [18]), are more appropriate
for working with branching time logics, because they precisely
capture Lµ over transition systems with unbounded branch-
ing. We use a simplified definition of µ-automata adapted
from [11], [12].

Definition 5: [11], [12] A µ-automaton is a tuple
A = (Q,B, q0, CH,BR,L,Ω, AP), where Q is a non-empty,
countable set of states called choice states; B is a countable
set of states, disjoint from Q, called branch states; q0 ∈ Q

is the initial state; CH ⊆ Q × B is a choice relation, from
choice states to branch states; BR ⊆ B × Q is a transition
relation, from branch states to choice states; L : B → 2AP is
a labelling function mapping each branch state to a subset of
atomic propositions in AP ; and Ω : Q → N is an indexing
function, defining a parity acceptance condition.

Unless stated otherwise, “automata” and “µ-automata” are
used interchangeably in the rest of the paper. Given an infinite
tree T rooted at r0, a tree run of an automaton A on T is an
infinite tree T ′ whose root is labelled with (r0, q0). Every
node of T ′ is labelled with either a pair (r, q) or (r, b), where
r is a node from T , and q and b are respectively choice and
branch states of A. Every node (r, q) has at least one child
node (r, b), where b ∈ CH(q) and the labelling of b matches
that of r. For every node (r, b) and every child r′ of r in T ,
there exists a child (r′, q′) of (r, b) s.t. q′ ∈ BR(b). For every
node (r, b) and every q′′ ∈ BR(b), there exists a child (r′′, q′′)
of (r, b) s.t. r′′ is a child of r in T . A tree run T ′ is accepting
if on every infinite path π of T ′, the least value of Ω(q), for
the choice states q that appear infinitely often on π, is even.
An input tree T is accepted by A if there is some tree run
of A on T that is accepting. The language of an automaton
is the set of trees it accepts. For example, the language of
the automaton shown in Figure 3(b) is the set of all infinite
trees whose nodes are labelled by {p, q} or {p,¬q}. Input
trees for µ-automata have arbitrary branching degrees and are
not necessarily binary. For a more detailed treatment of µ-
automata, reader can refer to [12]. We give a translation from
HTSs to automata as follows.

Definition 6: Let H = (Σ, s0, R
must, Rmay, L,AP)

be an HTS. The automaton associated with H , AH =
(Q,B, q0, CH,BR,L

′,Ω, AP), has choice states Q = {qi |
si ∈ Σ}, branch states B = {bi,S | si ∈ Σ, S ⊆ Rmay(si)},
and the initial state q0 that corresponds to s0. The labelling of
a branch state bi,S is the labelling of si in H , i.e., L′(bi,S) =

L(si). The indexing function assigns 0 to every choice state,
making all choice states accepting. The transition relations are:
CH = {(qi, bi,S) | ∀S′ ∈ Rmust(si) · S′ ∩ S 6= ∅} and
BR = {(bi,S , qj) | sj ∈ S}.

For example, the translation AH of the HTS H in Fig-
ure 1(d) is shown in Figure 3(a). For every abstract model H ,
L(AH) should be equal to C[H]. For a consistent HTS H , all
of whose completions are expressible as KSs, our translation
in Definition 6 guarantees that L(AH) = C[H].

Theorem 1: Let H be a consistent HTS with the additional
requirement that for every s ∈ Σ and every S ∈ Rmust(s),
we have S ⊆ Rmay(s). Then, L(AH) = C[H].
The proof of Theorem 1 is similar to that of Lemma 1 in [12].

In [12], a game-based simulation over automata has been
defined as a sufficient condition for language inclusion, i.e.,
if A1 is simulated by A2, then L(A1) ⊆ L(A2). We adapt
the definition of automata simulation from [12] to define an
automata intersection game. We prove that the existence of
a winning strategy for this game is a sufficient condition for
non-emptiness of L(A1) ∩ L(A2). Each play in an automata
intersection game is a sequence of pairs of states of the same
type. Here, being of the same type means that both states are
either choice states or branch states. A pair of choice (resp.
branch) states is called a choice (resp. branch) configuration.
At a choice configuration (q1, q2), only Player I can move,
choosing one branch state in CH(q1) and one in CH(q2) that
match on labels. Player I’s goal is to find a common path that
is accepted by both A1 and A2. At a branch configuration
(b1, b2), Player II moves first and chooses any side, b1 or b2,
and any successor of that side. Player I has to respond with a
successor of the other side. Intuitively, Player I wins the play
if Player II cannot steer it onto a path which is not accepted
by either of the automata.

Definition 7: Let A1 and A2 be automata with initial states
q10 and q20 , respectively. A (q10 , q20)-game is defined as follows:

1) (Initial) The initial configuration is (q10 , q
2
0)

2) (Choice) In a choice configuration (q1, q2) ∈ Q1 ×Q2,
Player I chooses b1 in CH1(q1) and b2 in CH2(q2). The
play continues from configuration (b1, b2).

3) (Branch) In a branch configuration (b1, b2) ∈ B1 ×B2,
the play can proceed in one of the following ways:

a) The play ends and is a win for Player I if L1(b1) =
L2(b2); it is a win for Player II otherwise.

b) Player II chooses a ‘side’ i ∈ {1, 2}, and a choice
state qi in BRi(bi); Player I must respond with a
choice state qj in BRj(bj) from the other side j.
The play continues from the configuration (q1, q2).

If a finite play ends by rule 3a, the winner is as specified in
that rule1. For an infinite play π and i ∈ {1, 2}, let proj i(π)
be the infinite sequence from Qωi obtained by projecting the
choice configurations of π onto component i. Then, π is a win

1Since KSs are assumed to be total, we do not deal with finite plays in
this paper. Thus, condition 3a in Definition 7 only ensures that if an infinite
play π is won by Player I, then for every branch configuration (b1, b2) on π,
L1(b1) = L2(b2).

4

for Player I iff proj 1(π) and proj 2(π) satisfy the acceptance
conditions for A1 and A2, respectively.

We say that there is an intersection relation u between A1

and A2, written as A1uA2, if Player I has a winning strategy
for the (q10 , q

2
0)-game.

Theorem 2: A1 u A2 implies L(A1) ∩ L(A2) 6= ∅.
By Definition 4, a formula ϕ is negatively self-minimizing

if for every HTS H over which ϕ is non-false, there is a
completion satisfying ϕ. In automata-theoretic terms, some
completion of H satisfying ϕ exists iff L(AH) ∩ L(Aϕ) 6= ∅.
The following theorem shows that finding a winning strategy
for the intersection game between an HTS automaton and a
formula automaton is sufficient to show self-minimization.

Theorem 3: An Lµ formula ϕ is negatively self-
minimizing if for every HTS H , ||ϕ||H

3
6= f ⇒ AH uAϕ, and

is positively self-minimizing if for every HTS H , ||ϕ||H
3

6=
t ⇒ AH u A¬ϕ.

This theorem follows from Theorem 2 and Definition 4. We
use it in the next section to prove the main result of the paper.

IV. DISJUNCTIVE/CONJUNCTIVE Lµ AND
SELF-MINIMIZATION

In this section, we introduce disjunctive Lµ and its dual,
conjunctive Lµ, defined in [11], and prove that Lµ formulas in
disjunctive and conjunctive forms are, respectively, negatively
and positively self-minimizing.

We start by noting that arbitrary Lµ formulas may not
be self-minimizing. For instance, HTS H in Figure 1(d)
has completions that satisfy either AGp or AGq, but there
is no completion satisfying AGp ∧ AGq. Thus, we cannot
inductively prove that formulas of the form ϕ1 ∧ϕ2 are nega-
tively self-minimizing (or ϕ1∨ϕ2 positively self-minimizing).
Intuitively, this is the same reason why satisfiability of ϕ1∧ϕ2

cannot be proven by structural induction. [11] proposes a
syntactic form of Lµ formulas, referred to as disjunctive Lµ,
for which satisfiability can be proven inductively. The analogy
between identifying negatively self-minimizing formulas and
the satisfiability problem suggests that disjunctive Lµ may be
negatively self-minimizing. We prove this below.

Definition 8: [11] Let Γ be a finite set of Lµ formulas. We
define ref(Γ) =

∧
ψ∈ΓEXψ ∧AX

∨
ψ∈Γ ψ. Disjunctive Lµ,

denoted L∨
µ , is the set of formulas generated by the following

grammar:
ϕ ::= p | ¬p | Z | ϕ ∨ ϕ | ϕ1 ∧ . . . ∧ ϕn | σ(Z) · ϕ(Z)

where p ∈ AP , Z ∈ Var and σ ∈ {µ, ν}; and for σ(Z)·ϕ(Z),
Z occurs in ϕ(Z) only positively, and does not occur in any
context Z ∧ψ or ψ ∧Z for some ψ; ϕ1 ∧ . . .∧ϕn (n > 1) is
a special conjunction: every ϕi is either a literal (p or ¬p) or
a formula of a form ref(Γ) for a finite set Γ of L∨

µ formulas,
and at most one of the ϕi is of the form ref(Γ). Dually,
we define conjunctive Lµ, denoted L∧

µ , consisting of all Lµ
formula ϕ where NNF(¬ϕ) ∈ L∨

µ .
Every ϕ ∈ L∨

µ can be linearly translated to a µ-automaton
Aϕ so that K ∈ L(Aϕ) iff K |= ϕ [11]. For example,
a µ-automaton AAGp corresponding to AGp is shown in

Figure 3(b) 2. Let K be a KS over AP = {p, q}. K satisfies
AGp iff all its states are labelled with {p, q} or {p,¬q}, i.e.,
unfolding K from its initial state results in an infinite tree, all
of whose nodes, are labelled with {p, q} or {p,¬q}. Hence,
the tree is accepted by AAGp, and so is K.

The formula AG(p ∧ q) = νZ · p ∧ q ∧AXZ is in L∨
µ , but

AGp ∧AGq is not, because the conjunction is not special. A
non-disjunctive formula such as AGp ∧ AGq would be first
written in its disjunctive form, AG(p∧ q), and then translated
to a µ-automaton. Automaton AAG(p∧q) is exactly the same
as AAGp but without branch state b1.

Theorem 4: Every closed L∨
µ formula is negatively self-

minimizing.
Using Definition 4, we can show by structural induction that

every L∨
µ formula except the greatest fixpoint is negatively

self-minimizing [8]. As argued in [8], a naive proof does not
work for the greatest fixpoint formulas: Let ϕ′ = νZ · ϕ(Z)
and ||ϕ′||H

3
6= f. By the semantics of the greatest fixpoint,

||ϕi(t)||H
3

6= f for every i > 0. By inductive hypothesis, for
every i there is a completion Ki of H that satisfies ϕi(t).
While the sequence of ϕi(t) converges to the fixpoint ϕ′ on
H , it is not clear whether the sequence of Ki converges to a
completion of H satisfying ϕ′.

In our proof, we use the automata intersection game intro-
duced in Section III. Instead of explicitly constructing a KS
K ∈ C[H] satisfying ϕ′, we prove that such a completion
exists by showing a winning strategy of Player I for the game
AH uAϕ′ . We sketch the proof and illustrate it by an example
that uses a greatest fixpoint operator.

By inductive hypothesis, Player I has a winning strategy T i
for AH u Aϕi(t) for every i. For a large enough i, we can
convert T i to a winning strategy T for AH uAϕ′ : Automaton
Aϕi(t) is a finite chain of unfoldings of Aϕ′ , i.e., there is a
morphism h which partially maps states of Aϕi(t) to those of
Aϕ′ . We apply h to T i to obtain T .

For example, let ϕ′ = AGp = νZ · p ∧ AXZ. For this
formula, ϕ(Z) = p ∧ AXZ. Consider automata AAGp and
Aϕ4(t) shown in Figure 3(b) and (c) respectively. The mapping
h is defined as follows: choice state qϕ4(t) is mapped to qAGp,
choice states qϕi(t) to qZ for 1 ≤ i ≤ 3, and branch states
bl,i to bl for l ∈ {0, 1} and 1 ≤ i ≤ 4. State qt and its
corresponding branch states are left unmapped.

The winning strategy T i is a function that for a choice
configuration, returns a branch configuration, and for a branch
configuration and a choice of Player II from either side, returns
a choice state from the opposite side. We call two choice
(branch) configurations (s1, s2) and (s1, s

′
2) indistinguishable

by h if h(s2) = h(s′2). For convenience, we extend h to pairs
(s1, s2) of states, where s1 is in AH and s2 is in Aϕi(t) by
letting h(s1, s2) = (s1, h(s2)). We define a strategy function
T for Player I in the game AH u Aϕ′ as follows:

(i) For every choice configuration (q1, q2), let
T (q1, q2) = h(T i(q1, q

′
2)) for some q′2 in Aϕi(t),

2In contrast to [12], [11], we assume that KSs are total. Therefore, every
branch state in AAGp has at least one successor.

5

AGp ∧ AGq1.

2.

3.

4.

5.

6.

νZ1 · p ∧AXZ1 ∧ νZ2 · q ∧AXZ2

νZ1 · p ∧AXZ1, νZ2 · q ∧AXZ2

p ∧ AXZ1, q ∧ AXZ2

p, AXZ1, q, AXZ2

Z1, Z2

1.

2.

3.

4.

5.

6.

p ∧ q ∧ AXY

p, q, AXY

Y

νY · p ∧ q ∧AXY

AG(p ∧ q)

νY · p ∧ q ∧AXY

qAGp
Ω = 1

p, q p, q p, q

Ω = 0

Ω = 0 Ω = 0

¬p, q p, ¬q

Ω = 0

p, q

p, q p, ¬q

qZ

Ω = 0

Ω = 1

p, q p, ¬q

p, q p, ¬q

Ω = 1

qtp, q
p, ¬q

¬p, q¬p, ¬q

Ω = 0

b0
b1

b0,0

b1,0 b3,0

b5,0

(a) (b) (c) (d) (e)

...

AH AAGp
q0

q1 q2

b0,{s1} b0,{s2}b0,{s1,s2}

b1,{s3} b2,{s3}

b3,{s3}

q3

q0, qAGp

b0,{s2}, b0

q2, qZ

b2,{s3}, b1

q3, qZ

b3,{s3}, b0

q3, qZ

b3,{s3}, b0

Aϕ4(t)
qϕ4(t)

qϕ3(t)

b0,4 b1,4

b0,3 b1,3

qϕ2(t)

p, q p, ¬q

qϕ(t)

p, q p, ¬q

Ω = 1

Ω = 1

b1,1b0,1

b0,2 b1,2

q0, qϕ4(t)

q2, qϕ3(t)

q3, qt

b0,{s2}, b0,4

b2,{s3}, b1,3

b3,{s3}, b0,2

b3,{s3}, b0,1

b3,{s3}, b0,0

q3, qϕ2(t)

q3, qϕ(t)

...

TT 4 (f) (g)

Fig. 3. Examples of automata, winning strategies, and semantic tableau: (a) automaton AH corresponding to HTS H in Figure 1(d); (b) automaton AAGp;
(c) automaton Aϕ4(t); (d) winning strategy T 4 for AH uAϕ4(t); (e) winning strategy T for AH uAAGp; (f) the tableau associated to AGp∧AGq [11];
and (g) extracting the disjunctive form of AGp ∧ AGq from its tableau by the procedure of [11].

where q2 = h(q′2);
(ii) For every branch configuration (b1, b2) and every

choice q1 of Player II from AH , let T (b1, b2, q1) =
h(T i(b1, b

′
2, q1)) for some b′2 in Aϕi(t), where b2 =

h(b′2);
(iii) For every branch configuration (b1, b2) and every

choice q2 of Player II from Aϕ′ , let T (b1, b2, q2) =
T i(b1, b

′
2, q

′
2) for some q′2 and b′2 in Aϕi(t), where

q2 = h(q′2) and b2 = h(b′2).
We first show that T is a function. Since unfoldings of

Aϕi(t) are isomorphic, there is some T i s.t. for every two
choice (branch) configurations indistinguishable by h, T i re-
turns configurations indistinguishable by h as well. That is, T i
returns the same results modulo h for arbitrary b′2 ∈ h−1(b2)
and q′2 ∈ h−1(q2), making T a function.

Since h is undefined for qt, to ensure that T is a valid
strategy, we need to show that in the case (ii) above, there is
always a b′2 where T i(b1, b′2, q1) 6= qt. Since Aϕ′ and AH are
finite, such b′2 ∈ h−1(b2) is found for a large enough i,

Strategy T as defined above is a valid strategy function for
Player I in the game AH uAϕ′ . Note that T is undefined for
the inputs for which T i modulo h is undefined. It remains to
show that T is winning. Let π be any play produced by T .
Play π is an infinite sequence of configurations. Automata AH

and Aϕ′ are finite. Thus, there must be a configuration (q1, q2)
repeated infinitely often in π. We map π back through h−1,
and distinguish two cases: (1) π is mapped back to a play π′

generated by T i s.t. infinitely many occurrences of (q1, q2) are
mapped to a single configuration (q1, q

′
2 6= qt) in π′. Since T i

is a winning strategy for Player I, π′ is won by Player I. Since
h preserves parity of state indices, π is won by Player I in T
as well. (2) π is mapped back to a prefix of some π′ generated
by T i s.t. infinitely many pairs of consecutive occurrences of
(q1, q2) are mapped to two different configurations (q1, q

′
2) and

(q1, q
′′
2) in π′, where h(q′2) = h(q′′2). These two configurations

are different; but since they are indistinguishable by h, they
have to belong to two different unfoldings in the chain Aϕi(t).
Passing between unfoldings requires going through some state

of the form qϕj(t) for some j < i. Since h(qϕj(t)) = qZ , there
is an occurrence of (q, qZ) for some state q of AH between
two consecutive occurrences of (q1, q2) in π. Thus, π satisfies
the acceptance conditions of both AH and Aϕ′ and as such, is
a play won by Player I. This happens for every play generated
by strategy T , and hence, strategy T is winning for Player I.

A winning strategy for AH u Aϕ4(t), denoted T 4, and
its translation T by h are shown in Figures 3(d) and (e),
respectively. For this example, unfolding automaton Aϕ(t)

four times is enough, because the only play produced by T 4

(shown in Figure 3(d)) visits two configurations (q3, qϕ2(t))
and (q3, qϕ(t)) indistinguishable by h.

The following holds by duality to Theorem 4.
Theorem 5: Every closed L∧

µ formula is positively self-
minimizing.

Theorems 4 and 5 provide sufficient syntactic checks for
identifying self-minimizing Lµ formulas that can be used in
step (2) of the algorithm in Figure 1(a). Note that Theorems 4
and 5 only hold for HTSs, but not for PKSs or MixTSs. For
example, p∧¬p is in L∨

µ , but is not negatively self-minimizing
over such models. Consider a model M with a single state in
which proposition p is maybe. In M , p ∧ ¬p is maybe, but
this formula is false in any completion of M . In Section V,
we show that by syntactically modifying disjunctive and
conjunctive Lµ formulas, these formulas become negatively
and positively self-minimizing over PKSs and MixTSs.

V. THOROUGH CHECKING ALGORITHM

In this section, we complete the thorough checking al-
gorithm shown in Figure 1(a) by describing its subroutines
ISSELFMINIMIZING() and SEMANTICMINIMIZATION(). Since we want
this algorithm to work for arbitrary abstract models described
as PKSs, MixTSs, or HTSs, we first need to show how dis-
junctive (resp. conjunctive) formulas can be made negatively
(resp. positively) self-minimizing over these models.

Theorem 6: Let ϕ be a closed L∨
µ formula s.t. for every

special conjunction ψ = ψ1 ∧ . . . ∧ ψn in ϕ, there are no
literals ψi and ψj (1 ≤ i, j ≤ n) where ψi = ¬ψj . Then, ϕ is

6

THOROUGHCHECK(M , ϕ)
1: if (v: = MODELCHECK(M , ϕ)) 6= maybe
2: return v
3: if ISSELFMINIMIZING(M , ϕ)
4: return maybe
5: v := MODELCHECK(M , SEMANTICMINIMIZATION(ϕ))
6: if (v = false) return false
7: v := MODELCHECK(M , ¬(SEMANTICMINIMIZATION(NNF(¬ϕ))))
8: if (v = true) return true
9: return maybe

ISSELFMINIMIZING(M , ϕ)
10: if M is a PKS or an MixTS and ϕ is monotone
11: return true
12: if M is an HTS and ϕ ∈ L∨

µ ∩ L∧

µ

13: return true
14: return false

SEMANTICMINIMIZATION(ϕ)
15: convert ϕ to its disjunctive form ϕ∨

16: replace all special conjunctions in ϕ∨ containing p and ¬p with false
17: return ϕ∨

Fig. 4. The thorough checking algorithm.

negatively self-minimizing over abstract models described as
HTSs, PKSs, or MixTSs.
The above theorem can be proven using the same argument
as Theorem 4. The proof of Theorem 4 fails for MixTSs and
PKSs, when some special conjunction in ϕ is of the form
p∧¬p∧ . . .∧ϕn, but Theorem 6 explicitly excludes this case,
and hence, remains valid. Similarly, conjunctive formulas can
be made positively self-minimizing for PKSs and MixTSs with
a condition dual to that in Theorem 6.

The complete thorough checking algorithm is shown in
Figure 4: THOROUGHCHECK() takes an abstract model M , de-
scribed as an HTS, PKS or MixTS, and an Lµ formula ϕ,
and returns the result of thorough checking ϕ over M . In
THOROUGHCHECK(), semantic minimization is carried out in two
steps: On line 5, ϕ is converted to its negative, and on line 7, to
its positive semantic minimization formula. If model checking
the negative semantic minimization returns false, ϕ is false by
thorough checking, too; and if model checking the positive
semantic minimization returns true, ϕ is true by thorough
checking, as well.

If the model is a PKS or an MixTS, self-minimization
follows from the monotonicity of ϕ, and so does the check in
line 10 [8], [10]. Otherwise, we check whether ϕ ∈ L∨

µ ∩ L∧
µ

which, by our Theorems 4 and 5, guarantees self-minimization.
In SEMANTICMINIMIZATION(), ϕ is first converted to its disjunc-

tive form ϕ∨ by the tableau-based conversion in [11]. Then,
any special conjunction in ϕ containing two literals p and ¬p is
replaced with false. This ensures that ϕ∨ satisfies the condition
in Theorem 6. Therefore, when passed ϕ (resp. NNF(¬ϕ)) as a
parameter, SEMANTICMINIMIZATION() computes a negative (resp.
positive) semantic minimization of ϕ.

To illustrate the algorithm, recall the formula ϕ = AGq ∧
A[pU¬q] from Section I. By compositional semantics, ϕ is
maybe over both PKS M in Figure 1(c) and HTS H in
Figure 1(d). Since ϕ is non-monotone and non-disjunctive, it
is not self-minimizing for either M or H . SEMANTICMINIMIZA-
TION() computes ϕ’s negative semantic minimization by first
converting it into a disjunctive form ϕ∨ = µZ ·(q∧AXAGq∧
¬q) ∨ (p ∧ q ∧ AXZ), and then replacing the first conjunct

with false. The result is the formula µZ · false∨(p∧q∧AXZ)
which is false over both M and H , meaning that ϕ is false by
thorough checking over both models. On the other hand, the
formula AGp ∧ AGq is monotone and thus self-minimizing
for M . However, this formula is not disjunctive and thus
not self-minimizing for H . SEMANTICMINIMIZATION() computes a
negative semantic minimization of this formula by converting
it to its disjunctive form AG(p∧q) which turns out to be false
over H . This shows that AGp ∧ AGq is false by thorough
checking over H .

Complexity. Let ϕ ∈ Lµ and M be an abstract model. The
complexity of ISSELFMINIMIZING(M , ϕ) is linear in the size of ϕ,
and that of MODELCHECK(M , ϕ) is O((|ϕ| · |M |)bd/2c+1), where
d is the alternation depth of ϕ [19]. Thus, for the class of self-
minimizing formulas, the running time of THOROUGHCHECK(M ,
ϕ) is the same as that of compositional model checking, i.e.,
O((|ϕ| · |M |)bd/2c+1).

The complexity of SEMANTICMINIMIZATION(ϕ), i.e., the com-
plexity of converting an Lµ formula ϕ to its disjunctive ϕ∨

or conjunctive ϕ∧ form, is O(2O(|ϕ|)), producing formulas
of size O(2O(|ϕ|)) [11]. Therefore, for formulas requiring se-
mantic minimization, the running time of THOROUGHCHECK(M ,
ϕ) is O((2O(|ϕ|) · |M |)bd/2c+1), where d is the maximum
of the alternation depths of ϕ∨ and ϕ∧. When ϕ∨ and
ϕ∧ are alternation-free, i.e., d = 0, the complexity of
THOROUGHCHECK(M , ϕ) becomes linear in the size of the ab-
stract model, making the procedure efficient. However, we
leave to future work the study of the relationships between
the alternation depths of ϕ∨ and ϕ∧ and that of ϕ.

VI. SELF-MINIMIZATION FOR CTL
In Section IV, we gave sufficient syntactic conditions for

identifying self-minimizing Lµ formulas. Since CTL is used
more often than Lµ in practice, it is useful to identify
self-minimizing fragments of CTL as well. We do so by
constructing grammars that generate positively/negatively self-
minimizing CTL formulas.

[8] gives two grammars for negatively/positively self-
minimizing formulas. Using our results on self-minimization
checks of disjunctive/conjunctive Lµ, we extend these gram-
mars as shown in Figure 5: ϕneg generates negatively and
ϕpos generates positively self-minimizing formulas. The new
constructs A[ϕpropUϕ

neg] and A[ϕneg Ũϕprop] added to the
ϕneg grammar include formulas such as AGp and A[pUq] that
are negatively self-minimizing by Theorem 4. The construct
E[ϕposUϕprop] added to the ϕpos grammar includes, for in-
stance, EFp that is positively self-minimizing by Theorem 5.
Clearly, these grammars still do not capture the entire CTL
which is not surprising because CTL is not closed under
semantic minimization [8].

The notion of self-minimization in our grammars works
only for HTSs. For example, ϕneg can generate p∧¬p which
is not positively self-minimizing for either PKSs or MixTSs.
To extend our grammars to these formalisms, we could restrict
the grammar rules as in [9], [8] for propositional formulas, so
that they do not produce non-monotone formulas.

7

ϕneg ::= p | ¬p | ϕneg ∨ ϕneg | ϕneg

∃
∧ ϕneg

∃
| ref(Γneg) | E[ϕneg

∃
Uϕneg] |

E[ϕneg

∃
Ũϕneg

∃
] | A[ϕpropUϕ

neg] | A[ϕneg Ũϕprop]

ϕpos ::= p | ¬p | ϕpos ∧ ϕpos | ϕpos

∀
∨ ϕpos

∀
| cref(Γpos) | E[ϕposUϕprop] |

E[ϕpropŨϕ
pos] | A[ϕpos

∀
Uϕpos

∀
] | A[ϕpos

∀
Ũϕpos]

Fig. 5. The grammar ϕneg (resp. ϕpos) generates negatively (resp. positively)
self-minimizing subsets of CTL: Γneg (resp. Γpos) is a finite set of formulas
generated by ϕneg (resp. ϕpos), and dref is the dual of the operator ref.

VII. RELATED WORK AND DISCUSSION

The problem of thorough checking for propositional logic
was considered by [9] which proposed an efficient BDD-
based algorithm for semantic minimization of propositional
formulas. [1], [7] studied complexities and lower bounds for
thorough checking of various temporal logics. [10] proposed
self-minimizing checks for CTL, and [8] extended those
checks to Lµ, and further, studied semantic minimization of
various temporal logics.

In [8], a series of conversions between tree-automata and
Lµ formulas is used to show that a semantic minimization
of an Lµ formula can be computed in exponential time.
This approach is hard to implement because it uses non-
deterministic tree automata whose states have unbounded
arities. The method proposed in [11] for translating an Lµ
formula to its disjunctive form has the same complexity but
is easier to implement, because it uses µ-automata instead– in
this kind of automata, the number of successors of each state
can be obtained from the structure of the formula.

As an example, the process of transforming AGp∧AGq into
its disjunctive form AG(p∧ q) was illustrated in Figures 3(e)
and (f). The tableau for AGp∧AGq, constructed based on the
Lµ proof rules of [11], is shown in Figure 3(e). The disjunctive
form of AGp ∧AGq is constructed by traversing this tableau
from its leaves to the top and labelling each node with a
formula according to the procedure of [20] (see Figure 3(f)).
Similar tableau methods were used in [21] for automata-based
model checking of formulas whose conjunctions are restricted
to having at most one conjunct with fixpoint variables.

In our paper, we only considered HTSs with 2-valued labels.
This is in contrast to the HTSs in [4], [5] where states have
3-valued labels. Following [12], HTSs with 3-valued labels
can be translated to ours. If the resulting HTSs satisfy the
conditions in Theorem 1, then our results apply to the more
general HTSs of [4], [5] as well.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proved that disjunctive Lµ and conjunctive
Lµ are, respectively, negatively and positively self-minimizing
over HTSs. We base our proof on an automata intersection
game. Our results provide a simple syntactic check for identi-
fying self-minimizing formulas. For such formulas, thorough
checking is as cheap as compositional model checking. We
also proposed an algorithm for semantic minimization of Lµ
and showed that its complexity is linear in the size of abstract
models for Lµ formulas with alternation-free disjunctive and
conjunctive forms.

In [7], it was shown that the complexity of thorough check-
ing for the class of persistence properties [22], i.e., properties
recognizable by co-Buchi automata, is also linear in the size
of the abstract model. Studying the relationships between
persistence properties and Lµ formulas with alternation-free
disjunctive and conjunctive forms is left for future work.

Dams and Namjoshi [12] envisioned that viewing abstract
models as µ-automata can open up many important connec-
tions between abstraction and automata theory. We believe that
our work establishes one such connection, paving the way for
further research on automata-based approaches to abstraction.

Acknowledgment. We thank Mehrdad Sabetzadeh for his
help in improving the presentation of this paper. We thank
the anonymous referees for their useful comments. Financial
support was provided by NSERC and MITACS.

REFERENCES

[1] G. Bruns and P. Godefroid, “Generalized model checking: Reasoning
about partial state spaces,” in CONCUR, ser. LNCS, vol. 1877, 2000,
pp. 168–182.

[2] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of reactive
systems,” ACM TOPLAS, vol. 2, no. 19, pp. 253–291, 1997.

[3] R. Cleaveland, S. P. Iyer, and D. Yankelevich, “Optimality in abstractions
of model checking,” in SAS, ser. LNCS, vol. 983, 1995, pp. 51–63.

[4] L. de Alfaro, P. Godefroid, and R. Jagadeesan, “Three-valued abstrac-
tions of games: Uncertainty, but with precision,” in LICS, 2004, pp.
170–179.

[5] S. Shoham and O. Grumberg, “Monotonic abstraction-refinement for
ctl,” in TACAS, ser. LNCS, vol. 2988, 2004, pp. 546–560.

[6] K. Larsen and L. Xinxin, “Equation solving using modal transition
systems,” in LICS, 1990.

[7] P. Godefroid and R. Jagadeesan, “Automatic abstraction using general-
ized model-checking,” in CAV, ser. LNCS, vol. 2404, 2002, pp. 137–150.

[8] P. Godefroid and M. Huth, “Model checking vs. generalized model
checking: Semantic minimizations for temporal logics,” in LICS, 2005,
pp. 158–167.

[9] T. Reps, A. Loginov, and S. Sagiv, “Semantic minimization of 3-valued
propositional formulae,” in LICS, 2002.

[10] A. Gurfinkel and M. Chechik, “How thorough is thorough enough,” in
CHARME, ser. LNCS, vol. 3725, 2005, pp. 65–80.

[11] D. Janin and I. Walukiewicz, “Automata for the modal mu-calculus and
related results,” in MFCS, 1995, pp. 552–562.

[12] D. Dams and K. Namjoshi, “Automata as abstractions,” in VMCAI, 2005,
pp. 216–232.

[13] S. Nejati, M. Gheorghiu, and M. Chechik, “Thorough checking revis-
ited.” U of Toronto, Tech. Rep, CSRG-540, 2006.

[14] S. Kleene, Introduction to Metamathematics. New York: Van Nostrand,
1952.

[15] D. Kozen, “Results on the propositional µ-calculus,” TCS, vol. 27, pp.
334–354, 1983.

[16] E. Clarke, E. Emerson, and A. Sistla, “Automatic verification of finite-
state concurrent systems using temporal logic specifications,” ACM
TOPLAS, vol. 8, no. 2, pp. 244–263, 1986.

[17] K. Larsen and B. Thomsen, “A modal process logic,” in LICS, 1988,
pp. 203–210.

[18] E. Emerson and C. S. Jutla, “Tree automata, mu-calculus and determi-
nacy,” in FOCS, 1991, pp. 368–377.

[19] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and W. Marrero, “An
improved algorithm for the evaluation of fixpoint expressions,” TCS,
vol. 178, no. 1–2, pp. 237–255, 1997.

[20] I. Walukiewicz, “Notes on the propositional µ-calculus: Completeness
and related results,” BRICS, NS-95-1, Tech. Rep., 1995.

[21] G. Bhat, R. Cleaveland, and A. Groce, “Efficient model checking via
buchi tableau automata,” in CAV, 2001, pp. 38–52.

[22] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, 1992.

8

