
Finding Environment Guarantees

Marsha Chechik, Mihaela Gheorghiu, Arie Gurfinkel

University of Toronto, Toronto, ON M5S 3G4, Canada
{chechik,mg,arie}@cs.toronto.edu

Abstract. When model checking a software component, a model of the environ-
ment in which that component is supposed to run is constructed. One of the major
threats to the validity of this kind of analysis is the correctness of the environment
model. In this paper, we identify and formalize a problem related to environment
models — environment guarantees. It captures those cases where the correctness
of the component under analysis is due solely to the model of its environment. En-
vironment guarantees provides a model-based analog to a property-based notion
of vacuity by identifying cases when the component is irrelevant to satisfaction
of a property. The paper also presents a model checking technique for the detec-
tion of environment guarantees. We show the effectiveness of our technique by
applying it to a previously published study of TCAS II, where it finds a number
of environment guarantees.

1 Introduction

As software is controlling more and more critical aspects of our lives, its reliability is
ever more important. Formal verification can help increase confidence in the software
systems being built. Among the verification methods, model checking is gaining popu-
larity due to its automated approach. In this approach, a model of the software compo-
nent being analyzed is closed with a model of the environment in which the component
is expected to run. Correctness properties of the component are then checked on the
resulting model. One of the major threats to this kind of analysis is the correctness of
the environment model. Creating a faithful model of the environment is error-prone, as
often the environment consists of parts of the physical world whose behavior is only
partially understood, or it is a complex system, e.g., an operating system, whose behav-
ior is also hard to capture in a unified model. Moreover, the model of the environment
is often simplified to enable effective model-checking, potentially leading to errors.

To illustrate the kinds of modeling errors we address, consider, for example, model
checking a traffic light controller. In this system, cars arrive at an intersection, trip
sensors, and wait for the green light. The controller, which is the component being
analyzed, uses the sensors, that represent the environment, to maximize the flow of
cars through the intersection. An essential property of the system is that if a sensor is
ever tripped, an appropriate light eventually turns green. This property is formalized
in CTL [10] (defined in Section 2) as ��������� Sensor Tripped 	 �
��� Light � green �� .
Suppose there is a bug in the environment model due to which Sensor Tripped is always
off. This property holds regardless of the correctness of the controller. Thus, although
the desired property is satisfied, the component should not be deemed correct. Instead,
we want the model checker to detect that the environment model may be wrong.

Industrial researchers noted that in practice properties with implication (such as �)
may hold for the wrong reasons, referring to the problem as “antecedent failure” [2].

IBM researchers generalized this notion to properties that are not necessarily implica-
tions, naming it vacuity [3]. The definition of vacuity is property-based: a formula �

is vacuous in a subformula
�

in a given model if
�

does not influence the value of �

in the model. That is, in the traffic light example above with the faulty environment
model, the property � is vacuous in Light=green: it is satisfied independently of the
color of the light because the antecedent of the implication is false. [3] also defined a
vacuity detection method for a restricted class of CTL formulas and noted that when
found, vacuity always pointed to a problem in either the component, its environment,
or in the property, which was observed for 20% of the properties checked. Other re-
searchers [24, 1, 21] extended vacuity detection to general properties expressed in CTL
and other common languages. All these approaches, however, remain property-based,
and are not adequate to detect errors in the model. Vacuity information is not sufficient
to decide when the environment model is faulty. Consider the property � again — it is
also vacuous in Light=green in a model where the activation of the sensors depends on
a flag being set by the controller independently of the environment, and the controller
never sets that flag. In this case, the vacuity is due to the component, and not to its
environment, and is often not effective for finding problems with the model.

In contrast to the property-centric approach of vacuity detection, Shlyakhter et
al. [30] devised a technique to debug models more directly. They identified the problem
of “overconstraining” declarative models, and pointed out that overconstraining occurs
most often in the definition of the models being checked rather than in the specifica-
tion of their correctness properties. They have developed a technique for extracting and
displaying the part of the model used for establishing satisfaction of a property. When
most of the model was unnecessary to prove a property, the authors were able to con-
clude that was due to overconstraint, caused by subtle modeling errors. This technique,
however, is restricted to declarative models, and does not exploit the view of the model
that separates the component from its environment.

In our work, we also aim to provide a technique for model debugging, but in the
case of operational models, such as those specified by state-machines, and we target the
analysis toward debugging environment models. We consider a model to be “overcon-
strained” if a property that should hold of the software component in the given environ-
ment is guaranteed solely by the environment. In other words, the component can be
replaced by another, arbitrary, component in the same environment, without affecting
the satisfaction of the property. We say that such properties are environment guaran-
tees. Environment guarantees always indicate a problem: either the desired property is
not a property of the component, and should rather be reconsidered as a property of its
environment, or there is an error in the model of the environment or in expressing the
property. The naive approach to detect environment guarantees is to generate all pos-
sible components, compose each with the given environment, and check whether the
property holds on all the composed models. This is clearly infeasible. Instead, we show
how to model the environment as an open system and check properties on it directly,
using a symbolic model-checking algorithm.

A similar approach, called robust satisfaction was proposed and studied in [23].
It is aiming to identify whether a property holds in all possible environments, and is
the same as environment guarantees with the roles of the environment and the system

2

(a)

(b)

(c)

(d)

(e)

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

��� ���

��� ���

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

� � � �

� � � �

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

� � � �

� � � �

S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

	
� 	��

	�� 	
�
S=t
L=t

S=t
L=f

S=f
L=t

S=f
L=f

S=t
L=m

S=f
L=m

S=m
L=m

to all above

 � � � �

�
�

�

Fig. 1. An example Kripke structure (a). A four-valued Kripke structure of an open system (e),
and its three completions (b), (c), and (d).

.reversed. While the method in [23] is complete (it always finds errors when they are
present), it is rather expensive (see Section 7 for a detailed discussion).

This paper makes the following contributions: (1) We argue that a way to discover
faulty environment models is to detect cases where properties are guaranteed solely by
the environment. Although this process does not find all possible environment modeling
errors, the errors reported by this analysis always point to some error in understanding
of the model-checking results. (2) We formalize the meaning of a property being guar-
anteed by the environment by modeling the environment as an open system. (3) We
show how to model open systems and define a model-checking algorithm which can
lead to a scalable technique for discovering environment guarantees. (4) We describe
a simple implementation for checking environment guarantees for true universal prop-
erties. (5) We show that our technique finds real errors and is scalable for handling
non-trivial systems by applying it to the well-known example of the Traffic Collision
and Avoidance System (TCAS II) [26, 6]. In our case study, we found that several es-
sential properties of TCAS II, including some analyzed by Chan et al. in [6], hold as
the result of environment guarantees: the model of the environment used in verifying
this system has been simplified too much.

The rest of this paper is organized as follows. After reviewing the relevant notation
in Section 2, we formalize the meaning of a property being guaranteed by the environ-
ment in Section 3. In Section 4, we describe the modeling and reasoning about open
systems. While this framework is general, we do not currently have an implementa-
tion for checking for environment guarantees for arbitrary temporal logic properties. In
Section 5, we describe the algorithm we have implemented for checking true universal
properties. We illustrate effectiveness of checking for environment guarantees by ana-
lyzing true universal properties of the TCAS II system in Section 6. We compare our
approach with related work, specifically, with vacuity detection and module checking,
in Section 7 and conclude the paper in Section 8.

2 Background

In this section, we review the model-checking process and fix the notation.

Definition 1. A model
�

consists of a set ���������������������! #" of variables and a set $
of rules describing the temporal behavior of those variables. A state of the model

�
is

a valuation of all variables in � . A rule is an expression over the model variables that
relates their values in a state at time % (current) with those at time %'&)((next).

3

��������� 	�
 � ����
������ ��������� 	���� � ����������� 	����������� 	�� �"!#� ��������$� 	%�&�&��������� 	%! ��������� 	%'$()�*� ,+.-0/)12�3�4�5�6-��7/98:�;�����6-3� 	��� � ����� 	%'�<�� � ,+�=?>A@CBD�E	%��FA���5GH�HI I I.JKI @HIMLON�PH� � ���CQR� 	%���������� 	%'TS �VU�!7WX� ,+�=?>A@CBD�E	%� F ��� G �HI I I �7JHI @�IO+5N�PH������� Q � 	%!Y�ZL\[�P][^VNR_`�������]a�� 	b�
Fig. 2. Semantics of CTL.

Without loss of generality, we assume that the variables are boolean. Therefore, the setc
of states consists of all d -tuples of boolean values. For instance, consider our previous

example of a traffic light system. It can be modeled by a variable Light, which is true
iff the light is green (Light=green), and a variable Sensor, which is true iff the sensor is
tripped. For a variable � , we use � (unprimed) and ��e (primed) to denote its current and
next state value, respectively, and define �#e � � ��e� ���������
�2e " .

We assume that rules are described in the style of the SMV language [9]. Each rule
is an assignment of the form �feg"hji � where �2eg9k �Ve and i is a boolean formula over
the variables in �ml ��e�n � ��eg " . We assume no circularity in the rules, i.e., no variable
depends on itself if we follow any chain of the rules, and there is at least one assignment
for each variable. In our example, the rules may be Sensor oTprq Sensor s Light and
Lighto p Sensor, which indicate that the sensor is on in the next state if it is currently
off, or the light is on, and the light is on in the next state if the sensor is currently on. It
is convenient to think of each assignment as an equivalent boolean formula, i.e., �7e hi iff t �2e�u iXvxw t�y ��efuby iXv . Multiple assignments per variable are used to indicate that
the variable changes non-deterministically, e.g., when the model

�
contains rules �7e h

true and �2e h false, it means that �2e can be either true or false in the next state of
�

.
Given a model

�
, we associate with it a state-transition graph zV{ , known as a

Kripke structure: The Kripke structure z|{ is a tuple } c �A~ �]�2� , where
c

is the set of
states, ~�� c���c

is the transition relation, and ��� � ��c�� � true � false " is the
interpretation of variables. For each variable � g and state � , �7t � g �A� v , or ��t�� v for short, is
the value of � g in � . Let � and �?e denote valuations of all unprimed and primed variables,
respectively. The relation ~ is the set of all pairs of states tC� �5��e v such that � and �?e satisfy
at least one of the rules of $ for every variable in � .

The Kripke structure for our example is shown in Figure 1(a). For brevity, we use S
for Sensor and L for Light in the diagrams. For example, in state �?� , the right hand sides
of the rules for both Sensor and Light are true. Thus, both Sensor and Light have to be
true in the successor state, creating the self-loop at �?� .

Properties of a model
�

are formulated in a temporal logic CTL [10], the seman-
tics of which is given in Figure 2 and evaluated in the states of the associated Kripke
structure z){ . For example, ��� �`����� is true in � if along some path from � , � con-
tinuously holds until � becomes true. The following derived CTL formula is also com-
monly used: � � �`� �V� true � �7� . For instance, in the structure of Figure 1(a), the
formula � � Light (the light eventually becomes green) is true in all states, whereas the
formula � � � Sensor s Light � (always the sensor is tripped or the light is green) is true
in states ��� �5��� �A��� and false in ��� . The subclass of CTL formulas containing only uni-
versal path quantifiers is called ACTL. Often, some state of a Kripke structure, say, ��� ,
is designated as initial. In this case, we say that a formula � holds in a Kripke structure
z { to mean that z { �5�O��� � � . A model

�
satisfies a CTL formula � if z { � � � .

3 Environment Guarantees
In this section, we formalize the notion of environment guarantees. A model described
in Section 2 is a composition of the software component being analyzed, called the

4

component from now on, with its environment. The boundary between them is often
blurred during verification: they are simply specified using a collection of rules. In what
follows, we make this boundary more explicit.

We assume that the set � of model variables is partitioned into a set � of component
variables and a set � of environment variables. We further assume that this partition
can be determined syntactically, (e.g., by the names or types of the variables, or their
location, etc.), or by the model documentation. Environment variables represent the in-
puts to the software, coming from the environment. Component variables represent the
outputs from the software to the environment. The variable partition induces a partition
on the rules of a model into component rules and environment rules.

Definition 2. A partitioned model
�

is a tuple }�t�� �]� v �\t�$�� ��$�� v � , where �����,lT�
and $ � l $�� � $, such that $ � consists of assignments to �fe for each � k � , and
$ � consists of assignments to �fe for each � k � .

Definition 3. Given a partitioned model
� � }�t	� �A� v �3t $�� ��$
� v � , the environment

of
�

is a tuple � � }�� � $ � � .
That is, the environment consists of its rules together with all variables in the model.
In our traffic light example, Sensor is an environment variable, whereas Light is a com-
ponent variable. Consequently, the rule Sensor o p q Sensor s Light is the environment
rule, and Light o p Sensor is the component rule. Models in which all variables have
associated rules are called closed. For example, the combination of the sensor and the
light controller for the model in Figure 1(a) is a closed system. A model that does not
contain rules for all of its variables is called open. The environment is the open model
obtained by removing the component rules from a closed model. In our example, it
consists of a single rule Sensor o p q Sensor s Light, and variables Sensor and Light.

When does the environment guarantee a property? Intuitively, when satisfaction of
some property of the model depends solely on the environment rules. For instance, if the
environment rule in our example were Sensor o3p true, then in any state where Sensor
is true, the property � � � Sensor s Light � would be guaranteed by the environment.
In this case, it is obvious that the environment alone guarantees the property; in real-
life models, however, such as the one considered in our case study (see Section 6), the
intricate logic may hinder the easy detection of such environment guarantees.

To define when the environment satisfies a property, we construct all possible “clo-
sures” of the environment with component rules, and then use the standard semantics of
temporal logic over the resulting closed models. In our example, one closure was shown
earlier, where the component rule Light o p Sensor is added to the rules of the environ-
ment. We can construct another closure by adding component rule Light o p q Sensor to
the rules of the environment.

Definition 4. A model
� � t � ��$ v is a closure of an environment � � t�� �� v if

����� and �)$, where � component variables in
�

, � a rule in $�n� .

Rules are identified modulo logical equivalence, so ��e h i and �2e h y�y i are the same.

Definition 5. An environment � guarantees a satisfaction of temporal property � in
state � , written � �A��� � � , if and only if all of its closures satisfy � in � . An environment
guarantees a failure of � in state � , written � �A��� � y � , if and only if � fails in �
in all closures of � . Finally, an environment � guarantees a property � in state � iff
� �A��� � � w � �A��� � y � .

5

4 Environment Guarantees: Modeling and Algorithms
Given the environment rules, the rules closing them represent the behavior of a possible
component in that environment. Intuitively, our notion of environment guarantee, given
in Section 3, means that regardless of the component the environment is combined
with, the resulting model still satisfies the property. This suggests the following naive
approach to detecting environment guarantees: generate and model check all closures
of the environment. Since there are exponentially many such closures, this approach is
clearly infeasible. To solve this problem, in this section we use another representation of
the environment that implicitly encodes all of its closures, and define a model-checking
algorithm over this representation that checks all closures at once.

4.1 Logics for Open Systems
We aim to model open systems as state-transition graphs that can be model-checked
directly. However, it is possible that an open system does not guarantee either the prop-
erty, or its negation. That happens when the truth of the property depends on how the
system is closed: in some closures the property is false; in the others, it is true.

Consider the model of the environment described in Section 3, with variables Sen-
sor and Light and a single rule Sensor orp q Sensor s Light. Suppose we want to
check a property that the sensor does not stay off for two consecutive states, e.g., if
the sensor is off in a given state, it will be on in all of its next states, formalized as��� � ��� � q Sensor 	 ��� Sensor � . We check this property in a state where both
the sensor and the light are on. Note that the rule of the environment guarantees that
� � is true, independently of Light. Therefore, this is an environment guarantee and will
evaluate to true on all of the closures. On the other hand, consider a slightly different
property: in any state, if the sensor is off, it remains off for one more time step, or��� � � � � q Sensor 	 ��� q Sensor � . In this case, we can find two closures of the en-
vironment that disagree on the value of this property. In one of them, the environment
is closed with rule (1) Light o p true, in the other – with (2) Light o p false. With (1),
in any state, after at most two steps, the sensor becomes on and stays on forever. With
(2), the sensor alternates between on and off. If checked in a state where both the sensor
and the light are on, ��� is true in the first closure, but false in the second. In this case,
we want the property to evaluate to “unknown” on the model of the environment alone,
meaning that the environment by itself does not have enough knowledge to satisfy or
refute the property. By this discussion, classical Kripke structures are not appropriate
for modeling open systems since thay limit reasoning to only two values. Instead, struc-
tures defined using multi-valued logics have been employed for this task [5, 13]. In our
approach, we use the four-valued logic, known as Belnap [4] (see Figure 3), We use this
logic instead of the 3-valued approach of [5] because it enables a more precise analysis
by distinguishing between the partiality in the behaviour of the component and of the
environment. We denote by � the set of values �
	������� ��� " : 	 and � stand for “known to
be true” and “known to be false”, respectively; (maybe, or unknown) represents the
lack of evidence to decide truth or falsity (“possibly true or false”); and � represents
“necessarily true”. Their information content defines an information ordering (see Fig-
ure 3(b)) � : ���	���� and 	�������� .

The usual boolean operations are extended � . For example, conjunction of with
	 is since may be resolved to true, in which case the result is true, or to false,

6

�

� �

�

�

�

�

�
�

���
���
�
�
� �

�
�
�
�
�
�
�
�

�

��
�
�
�
�

�
�
�
�
�

(a) (b)

�

(c)

Fig. 3. Belnap logic � : (a) truth ordering, (b) information ordering, (c) truth table.

and then the result is false. Figure 3(c) presents a table for computing conjunction and
negation of values of this logic. These operations are computed on the truth ordering
pictured in Figure 3(a), by using greatest lower bound for conjunction and symmetry
for negation. We denote by � the subset �
	������� " of � , and by 	 – the subset ��	�� ��" .

4.2 Representing an Open System as a State-Transition Graph

So far, we have established the requirements that a model of an open system should
satisfy in order to help us in detecting environment guarantees: (1) it should support
direct model-checking, (2) it should allow properties to evaluate to more values than
just true or false, (3) it should represent all closures of the open system, and (4) its
model-checking result should be equivalent to model-checking all those closures. In
the rest of this section, we show that we can extend Kripke structures to the four-valued
logic so that these requirements are satisfied.

The four-valued Kripke structure for our example open system is shown in Fig-
ure 1(e). It captures the interaction of the environment with all possible machines. Val-
ues of variables for which the environment does not have rules are unknown to the
environment, captured by the logic value . The transitions between states are four-
valued. In the figure, solid and dashed lines are used to represent � and transitions,
respectively. Definite transitions, � , indicate local environment guarantees. For exam-
ple, the � transitions from
 � and
 � to
�� in Figure 1(e) indicate that in a state where
the sensor is off, the environment guarantees that it will next become on, which can
be inferred from the corresponding rule. The value of Light is unknown in
� since
the environment cannot guarantee anything about it, as it does not have rules allowing
changes to this variable. The transitions capture what the machine can do, subject to
environment restrictions. For example, the two transitions from
� indicate that the
machine has full control of the light. The absence of transitions from
 � to
0� and
 �
means that the machine cannot violate the environment guarantee for sensor to be on.

Definition 6. A four-valued Kripke structure
�

over a set of variables ��� � � �����������
�! #"
is a tuple } c { �]� { �]~ { � , where

c { is the set of states, consisting of all possible d -
tuples of values from � ; � { � � �Zc { � � is the interpretation of the variables that
associates to every variable, in every state, a value from � , i.e., for every � k c { and
(�� ����d , �.{mt � g �A� v � ��t6� v ; and ~*{ � c { � c { � � is a � -valued transition
relation. For an d -tuple � , we denote by ��t6� v its � th component.

Given an open system described by a set of rules $, for every pair of three-valued
states tC� �5��e v , (1) transition t�� �A��e v is if ��e is boolean (i.e., every variable in this state
has value in); (2) transition tC� �A�?e v is � if for each variable � g that is boolean in �?e , �
and ��e satisfy some rule �2eg h i�k $, and � and �?e do not violate some rule �2eg h i�k $;
(3) otherwise, the transition is false. The four-valued structure in Figure 1(e) has been
constructed using this algorithm.

7

4.3 Checking for Environment Guarantees
Our method for detecting whether the environment guarantees a property is as follows.
Given the environment rules, (1) construct the associated four-valued Kripke structure
(using Definition 6). (2) use the multi-valued model-checking algorithm to check the
property on this structure. (3) if the algorithm answers 	 or � , the property is guaran-
teed by the environment. An interpretation of CTL formulas over multi-valued Kripke
structures and a corresponding model-checking algorithm have been defined [7], and
apply to our four-valued Kripke structures without modification. We illustrate how the
property “there is a next state where the light is on”, written as � � Light, is model-
checked in state
 � of the structure in Figure 1(e). In the classical case, the property is
true if and only if there exists a next state where Light in true. Equivalently, the value of
the property in a Kripke structure z � } c�� �]� � �A~ � � is given by the boolean formula�������
	����� ���
��� o ����� � ��� o � Light � , where ~ � tC� �A��e v is true if and only if tC� �A�?e v k ~ � .
The same formula is used in the four-valued case, where the operations involved are
interpreted over � , and for our example, we get:

��� ��� � // transition ����������� � s �! � � � // transition ����������" �s ��� ��# � // transition ��� � ��� � � s$# // all missing transitions

which evaluates to . This is expected, because this property evaluates to true in the
first closure of our example, and to false in the second. Model-checking of other CTL
operators uses the evaluation of �&% as a basic step. For example, for any formula ' ,
“eventually ' ”, or ��()' , is expanded as ' w ��%jt*' w ��%jt � � � v�v , and this expansion
is finite since the system is finite-state. A property “always ' ”, or +�,-' , is equivalent
to y$��(y.' . If we check properties � � and � � on the structure of Figure 1(e) using
this algorithm, we obtain 	 and , respectively. Our algorithm points to an environment
guarantee if the property evaluates to either true or false, as it does for � � .
4.4 Correctness
To show that the method presented in Section 4.3 is sound, we need to show that if the
model-checking algorithm answers 	 , then all of the closures of the environment satisfy
the property. In Section 3, we showed that each closed system is mapped to a classical
Kripke structure. Thus, such a structure exists for every closure of the environment. For
example, the structures for the two closures in our example are shown in Figure 1(b)-
(c). We first define state compatibility by extending the information ordering to tuples
of values component-wise.

Definition 7. Let
 be a 3-valued state and / be a boolean state over the same vari-
ables. / is more informative than
 , e.g.,
 �0/ if, for all (�Y� �Yd ,
$t6� v �1/�t6� v .

The compatibility relation between the boolean and four-valued structure is defined
as follows: a three-valued state
 is compatible to all boolean states / where
 �2/ ;
for any two compatible states, any � transition out of the three-valued state is matched
by a transition out of the boolean state; conversely, any transition out of the boolean
state is matched by a transition out of the three-valued state. The matched transitions
mean that the destinations of these transitions are compatible. We can verify compati-
bility of the structures in Figure 1(b)-(c) with the four-valued structure in Figure 1(e).
For example, state
 � is compatible with /"� . The � transition t
 � �
 � v is matched by
t!/ � �3/D� v , since
 � and /D� are compatible. The � transition t
 � �
54 v can also be matched

8

by t�/ � �3/T� v since
.4 is also compatible with / � . Conversely, a transition t!/"� � /D� v is
matched by the transition t
 � �
0� v .

Any classical Kripke structure compatible with a four-valued Kripke structure is
called its completion.

Definition 8. A classical Kripke structure z �rt c � �]� � �x~ � v is a completion of a
four-valued Kripke structure

� � t c { �A�.{ �A~ { v if for any
 k c { and / k c � ,

 � / implies: (1) for all
 e k c { such that ~*{�t
 �
0e v � 	 , there exists / e k c �
such that
 e �0/9e and t!/ �3/9e vDk ~ � , and (2) for all / e k c � such that t!/ �3/9e vTk ~ � ,
there exists
 e k c { such that
 e �1/9e and ~*{�t
 �
 e v � 	 .
The structures in Figure 1(b) and (c) are thus completions of that in Figure 1(e). In fact,
all classical structures corresponding to the closures of an open system are completions
of the four-valued structure associated with this system.

Theorem 1. Let � be an open system and
���

be its associated four-valued Kripke
structure. Then, every closure of � corresponds to a classical Kripke structure that is a
completion of

� �
.

Thus, we can conclude that if all completions of the four-valued Kripke structure satisfy
a property, then all closures of the open system do so as well. To complete our soundness
argument, we note that the multi-valued model-checking algorithm has the following
property: If on a given structure and a given property � , the answer of the model-
checking algorithm is 	 (�), then all completions of that structure satisfy (violate) � ,
and thus � is guaranteed by the environment.

Theorem 2. Let � be an open system and
���

be its associated four-valued Kripke
structure. For any CTL formula � and any boolean state � , if the result of the multi-
valued model-checking algorithm on

���
is 	 or � , then � guarantees � in state � .

When model-checking yields 	 (�), we can further conclude that � holds (fails to hold)
in the composition of � with every component.

Our method is not complete, i.e., if the answer of the model-checking algorithm is
 , the environment may or may not guarantee the property.

5 Implementation
The multi-valued model-checking algorithm that reasons over four-valued Kripke struc-
tures has been implemented in a tool � Chek [8] – a symbolic model-checker built on
top of the state-of-the-art decision diagram library CUDD [31]. We can use � Chek to
check models of the environment directly or reduce the multi-valued model-checking
problem to two classical ones, via a reduction described in [19], and thus use a classical
model-checker such as NuSMV [9]. In either case, this approach is more efficient than
checking all possible closures of the environment.

Unfortunately, while � Chek can provide an effective reasoning over models once
they have been constructed, building such models from text-based descriptions remains
a challenge. Specifically, the case study in Section 6 involved a model specified in
SMV [9], where the full generality of the SMV modeling language was used. In what
follows, we discuss a simple implementation that can decide environment guarantees
true ACTL formulas. An example ACTL property is ��� � Sensor s Light � . Intuitively,
since any ACTL property refers to “all paths”, if it holds on the model with the most
paths, it will hold on any model having a subset of those paths. It was shown in [19] that

9

truth of ACTL properties can be decided by restricting the model-checking algorithm
only to the transitions. In the four-valued structures we use to model open systems
(see Section 4.2), a destination of an transition is always a boolean state. Thus, the
reachable state space of a structure restricted to those transitions is completely boolean.
Furthermore, this boolean structure corresponds to a composition of the environment
with the component that changes its variables nondeterministically.

Let us consider the most nondeterministic component to be the one where all vari-
ables change nondeterministically, i.e., for every � k � , the rules for � are � h true
and � h false. The closure of the environment with this component results in the model
with the most paths. If this closure satisfies an ACTL property, the closure with any
other component will satisfy the property as well. Thus, to check if an ACTL property
is an environment guarantee, it is sufficient to check if it is satisfied by the closure of
the given environment with the most nondeterministic component.

Consider the environment in our example, consisting of the rule Sensor o p q Sensor s
Light. The most nondeterministic component in this case is described by rules Light o p
true, Lighto p false. The Kripke structure associated with their composition is shown
in Figure 1(d). With � � as the initial state, the property � � � Sensor s Light � holds in
this structure. Three other closures of the same environment, shown in Figures 1(a)-(c),
satisfy the property as well.

Correctness of using the most nondeterministic component for checking environ-
ment guarantees also follows from the fact that the closure of the environment with such
component simulates all other closures of that environment. For instance, the Kripke
structure in Figure 1(d) is a simulation of models in Figure 1(a)-(c). By [18], simulation
preserves true ACTL properties, giving us a correct algorithm. Because of the duality
of CTL operators, the same result holds for false existential properties.
Theorem 3. Let � be an environment, � be a true ACTL property, and

�
be the closure

of � with the most nondeterministic component. � guarantees � iff
�

satisfies � .
The most nondeterministic environment is routinely used for checking correctness

of true universal properties of the component, e.g., [16]. However, we believe we are the
first to propose the use of this technique for finding environment guarantees. The com-
position between the environment and the most nondeterministic component is trivial to
construct syntactically from a text-based description of a system. Specifically, we have
implemented this method for the modeling language of NuSMV, to facilitate reasoning
about the TCAS II system (see Section 6). The language of NuSMV is similar to ours,
and its semantics is such that if for any variable a rule is not given, the variable is as-
sumed to change nondeterministically. Thus, to implement the detection of environment
guarantees for true ACTL properties, it suffices to remove the component rules from a
model1, and then check the properties on the remaining model using NuSMV [9]. The
implementation is also highly efficient: increasing nondeterminism reduces the sizes of
the decision diagrams used by NuSMV, and hence its running time.

6 Case Study: Checking the TCAS II System
We illustrate our approach with the Traffic Collision Avoidance System, TCAS II [32].
TCAS II implements a protocol for conflict detection and resolution between an aircraft

1 If the language did not have this default semantics, we would have to also insert rules � o�� � true
and � o � � false for every component variable � , which is simple to do syntactically as well.

10

Properties
Results Time (sec.) BDD nodes

Full Env. Full Env. Full Env.
0 reachability — — 1034.61 4.2 1349878 145246
1 ��������� 	�
����
�������� ��� true true 20.63 3.8 173041 37846
2 ����� ����� ���� ����!��"� 	�#��$��%'&(�*)+������� ���� ����!��"� �������"����,�- true true 20.81 3.84 175280 37991
3 �����/.��10 �� 2�������� 	�#����% 3�
���� �1� 4��657	�
 ���1
�������� ���98:���������"��,'5 true true 27.83 3.87 341216 38352

."� �1
�� ;�4�!�# <1!�����, =���! ��������9&>	���� ��
"� 	"?�!���@���, =���!���������1-
4 �����A	�
����
�������� ��� ;�4�!�#�<�!"����, ;�4������9&(����=�B � �1��
 ������� ���"����- true maybe 40.67 6.1 224611 39709

Table 1. Results of checking properties of TCAS II.

and neighboring aircraft so as to avoid collisions during flight. This is a safety-critical
system required on every U.S. commercial aircraft transporting more than thirty pas-
sengers, and has also been deployed in other countries. TCAS II has also been used as a
classical case study for requirements modeling [26] and formal verification [22, 27, 6].

An SMV model of TCAS II has been translated from RSML [26] by Chan et al. [6]
and is part of the NuSMV distribution. It views TCAS as consisting of two main mod-
ules: Own Aircraft, which is the aircraft having TCAS II installed, and Other Aircraft,
which is a neighboring aircraft that may or may not have TCAS installed. An instance
of Own Aircraft may communicate with several instances of Other Aircraft. Own Aircraft
maintains information about the state of the host aircraft, including its altitude, direc-
tion, horizontal and vertical speeds, and it also receives similar information from Other
Aircraft. Based on this information, Own Aircraft assesses possible threats and, in case
it finds any, computes an escape maneuver (e.g., climb, or descend) and the strength of
this maneuver (i.e., the altitude rate at which it is to be carried out) and outputs both as
advisory to the pilot. TCAS II escape maneuvers are limited to the vertical plane.

The SMV model we looked at contains one instance of the Own Aircraft state ma-
chine and one instance of an abstraction of Other Aircraft that behaves mostly nonde-
terministically. In this work, we view Own Aircraft as the component and Other Aircraft
as its environment. Even with many features of TCAS II abstracted away, this SMV
model is non-trivial for the NuSMV model-checker: computing the reachable states of
this model takes 17 minutes on our machine (a Dell PC with an Intel Pentium 4 CPU
at 2.8 GHz and 1 GB of RAM, running Red Hat Linux 7.3) yielding 1,349,878 BDD
nodes. The model comes with several CTL formulas capturing essential properties of
the system. All of these properties are in ACTL and happen to hold in the implementa-
tion provided. Therefore, our implementation described in Section 5 could be applied.
We used it to check these properties, as well as a few additional ones. For the summary
of results, please refer to Table 1.

Our analysis focuses on two SMV variables: CED1FHGHDJIJKMLEN OEP which encodes the es-
cape maneuver, or Resolution Advisory, and QRKJISGHT�UWVEN�X YHDWXENET ZEDJU�T , which encodes its
strength. A desirable property of CJD1FHGHDEI�KMLEN OJP is that it should change deterministi-
cally (see [22]): this is essential for ensuring that Own Aircraft has predictable behavior
and does not decide on different maneuvers under similar conditions. We checked that
nondeterminism is not attained using a macro [JQ CED1F\GHDEIJKMLJN OEP defined in the model to
encode possible nondeterminism (row 1 of Table 1). We performed the check on the
original system and on the open model of the environment, and the property evaluated
to true under both checks, which shows that it is in fact guaranteed by the environment.
It seems that the modeler oversimplified the state machines, eliminating much of the
logic that computes CED1FHG\DEIJKMLEN OEP , which is essential in TCAS II. Table 1 summarizes

11

the performance of the check in terms of time and BDD node allocation, on the full
model (Full) and the environment alone (Env.).

Next, we verified a property which we expect to hold in any aircraft controller sys-
tem: no aircraft can immediately switch from increasing the rate of climbing to in-
creasing the rate of descending, i.e., an aircraft must stop climbing before descending.
The model defines macros [EN�� ������� NEUJIWN CETJK�F
	 and [\N�� ������� NEUEIWN Q\N\I � N � X to encode
the respective resolution advisories, which we used to formulate the question (row 2 in
Table 1). It also passed in both the original model and the environment only, hence be-
ing guaranteed by the environment. This confirms the modeling error we have noticed
before, i.e., that Other Aircraft controls the resolution advisories of Own Aircraft.

We also checked whether it is possible for the direction (up or down) of Other
Aircraft to change without being noticed by Own Aircraft. More precisely, we checked
whether it is possible for CED1FHGHDJIJKMLEN OEP of Own Aircraft to remain constant if Other
Aircraft changes from climb to descend (row 3 of Table 1). Using Dwyer et al.’s property
patterns [14], we expanded �WP [HDWL ��\U�T��HUWLENWX Y\NEU � LHK�F N as
��� ���
��� �������! ���"�#%$ ���&#�'&")(*�,+-�
����. /0' 1�#�'�2%# 3&#�2�4%#�'&$ 5�6&2&/0"�/7�&#�8�9:�!��. /;' 1�#!'�2�# 3�#&2�4%#!'�$ 5&6�2&/0"�/0��#=<
and similarly, >�?�@ A
B�C >�D
E�FHG�IKJ L�I�E�F�C�M%NOI as
P�Q RTS�U!V&W�U�X�Y7Z�[\�]_^)`&[�X�a�[�b&cedfPhg-i�j!]�k Y;b l�[!b�X%[`�[�X�a%[!b�c m&U�X&Y0Z�Y0n�[�o
p-j!]�k Y0b l�[�b�X�[`�[&X�a�[�b�c m&U�X�Y7Z�Y0n�[=qrk
This property is also guaranteed by the environment. The antecedent of the implication
fails both in the full model and in the environment This reveals an environment assump-
tion, rooted in the semantics of RSML: environment variables cannot change without
being evaluated by the component. Discovering such assumptions is important [16, 11]
to make verification experts aware of conditions under which their analysis is valid.

Finally, we checked one of the original properties of the TCAS II system [6]. It
states that when >�B&Nts
BtuHM�CHI ?�@ is evaluated, v�MHu�s
wHE�x�IKJ LtB�J�I�w y�BHEHw is computed “con-
sistently”, i.e., the cases by which its value is decided are mutually exclusive. A macro
vKLty z&FO{�B�FOuKMHu�C�I�FHC , defined in the model, captures the inconsistency conditions, result-
ing in the formula shown in row 4 in Table 1. Since the property holds in the full
model, but not on the environment, the environment alone does not guarantee it, and
the property does depend on the component. A vacuity check [24, 21, 15], however,
indicates that the antecedent of the implication is vacuous, potentially misleading the
user into thinking that something is wrong. [6] notes that in this model, >�B&Nts
BtuHM�CHI ?�@
sometimes disagrees with v�MHu�s
wHE�x�IKJ LtB�J�I�w y�BHEHw (e.g., the advisory indicates climb,
but the strength of the maneuver is negative), but does not provide an additional expla-
nation. Our method helped us in identifying the reason for these anomalies: the logic
for computing the escape maneuver does not depend on the component, whereas that
for computing its strength does.

As we argued in Section 5 and observed in our experiments in Table 1, for true uni-
versal properties, verifying the environment alone is much more efficient than checking
the full model. This suggests that at least for this class of properties, checking whether
the environment guarantees the property can precede the verification process: if the
property evaluates to true on an environment alone, it will yield this answer when the
environment is composed with the system.

How representative our experience of finding a model with only true ACTL prop-
erties to verify? [6] indicate that the value of vOMHu�s
wKE�x�IKJ L
B�J�I�w y�BHEKw is computed by a

12

case analysis consisting of seven cases. These cases are supposed to be mutually exclu-
sive. The property � � q QJY\Z ����� D � IJKJIMLEN � L checks whether this is indeed the case. This
property was initially found false2. Upon manual inspection of the counterexample pro-
duced by the model-checker, the environment model was identified as the cause of the
violation, and it was fixed so that the property finally passed. Thus, we have evidence
to believe that false universal properties exist “in the wild”, and detecting environment
guarantees for those is a worthwhile task which would eliminate the manual analysis of
the counterexample. A yet more important class of properties to handle is CTL proper-
ties with mixed path quantifiers. For example, it is conceivable to demand that a reactive
system can always be reset. One way to implement it is to have an initial state Init and
require a property ��� � � Init, i.e., from every state of the system, state Init is always
reachable. Whether such a property holds or fails, a counterexample for it cannot be
generated, and a special-purpose technique for detecting environment guarantees, such
as the one proposed in Section 4 is required. We leave implementing a technique for
checking environment guarantees of arbitrary CTL properties for future work.

7 Related Work and Discussion

The original definition of vacuity attempted to capture the conditions under which sat-
isfaction of a property in the model does not indicate that the model behaves correctly.
This definition was motivated by practical experience at the IBM Haifa Research Lab in
applying model-checking to verifying hardware systems [3]. This definition was devel-
oped in a context of a rather restricted fragment of a temporal logic, in which a property
is divided between a stimulus provided by the environment and an expected response
of the component. In this context, this work provided an efficient algorithm for vacuity
detection that identifies errors in practice. However, it does not work for more general
properties and when the placed assumptions are not satisfied.

Over the years, the algorithm for vacuity has been generalized and extended to
various temporal logics, e.g, see [24, 3, 1, 20, 21, 28], and several tools [29, 15] have
been implemented. However, this work has concentrated on the technical definition of
vacuity – i.e., whether every subformula of a property is important for it satisfaction.
Without additional assumptions used by Beer et al., these techniques can produce false
positives, i.e., cases of vacuity that are not indicative of errors in the system. Instead of
detecting trivial satisfaction, they indicate when a property can be simplified. Although
this may be useful for model-checking, by itself it does not help in identifying problems.

For example, consider the property � ����� � Sensor Tripped 	 �
��� Light � green ��
from Section 1. It is vacuous in Sensor Tripped in a model where the light changes color
periodically, whether there is a car waiting at the intersection or not. Thus, a stronger
property, ��� ��� � Light � green � , holds in the model, but does not necessarily signal
any errors. Suppose that � was given by the requirements stakeholder for creating a
more optimal traffic controller system, and the model is just one implementation of the
controller that does not require the assumption of the sensor being tripped. Another
example is when Sensor Tripped is under the control of the component (and not the
environment), so vacuity in it may not lead to a problem either: the controller might
have some values of the sensor hard-coded into it, just to make sure that the rest of the

2 Unfortunately, we were unable to obtain this erroneous model.

13

controller behaves correctly. We refer to such cases as property overengineering – re-
quiring a property that is weaker than the one that actually holds in the model by making
potentially unnecessary assumptions about the environment or the state of the system.
Industrial experience [12] indicates that properties are hard to get right. This process is
expensive, and the properties, once deemed correct and validated with all stakeholders,
remain fixed throughout the duration of the project, and even between different releases
of the system. So, engineers are often reluctant to modify overengineered properties,
and vacuity reports that point to such cases only distract from finding real problems.

In this paper, we have shown that Kripke structures based on 4-valued Belnap logic
can be used to approximate open systems. Godefroid [17] has also proposed to use
multi-valued logic, in his case, 3-valued Kleene logic, to model open systems. He shows
that under an assumption that the component can block the environment, his 3-valued
model-checking technique is equivalent to module-checking. However, we believe that
this assumption is highly unrealistic – a component can interact with the environment,
but cannot deter its progress.

The setting of work on robust satisfaction [23] is similar to ours: given a system
�

, determining whether a property holds in all environments composed with
�

under
synchronous parallelism (for environment guarantees, the roles of the system and the
environment are reversed). This algorithm is complete, and the authors note that for
checking satisfaction of ACTL, robust satisfaction has the same complexity as model-
checking and can be decided using the same implementation as ours. For other proper-
ties, robust satisfaction is exponentially more expensive than model-checking. In con-
trast, our algorithm is partial, i.e., in some cases it may fail to detect that a property is
guaranteed by the environment, but is of the same complexity as model-checking.

Module checking [25] is similar to robust satisfaction, but is defined over asyn-
chronous composition. It has the same complexity as model-checking for true ACTL
properties as well as for reachability (��(�) and universal reachability (+ ,|� (�). We
plan to use this approach for detecting environment guarantees in asynchronous systems.

The work of [30] is the closest to ours in spirit: determining which part of the model
is needed for checking the correctness property can alert the user to the presence of an
overconstraint in their declarative models and help him/her locate its source. As in our
case, the algorithm of [30] is efficient but not complete, and the authors report of several
overconstraints that were not detectable by it.

8 Conclusion and Future Work
In this paper, we argued for the need to provide support for debugging environment
models used in model-checking software systems. Specifically, we noted that when the
environment single-handedly guarantees a (truth or falsity of) property which is ex-
pected of the component, then either the property should be reconsidered as one of the
environment, or there is an error in the model of the environment. We have called this
problem environment guarantees and argued that it can be found if the environment is
modelled as an open system. We also discussed how to construct open models of the
environment from rule-based descriptions of state-machine models, such as those cre-
ated by SMV specifications, and implemented this technique for checking whether true
ACTL properties are guaranteed by the environment. We reported our experience with
a model of the TCAS II system which showed that environment guarantees present a

14

real threat, especially when the modeler attempts to create abstractions of their systems
to overcome the state explosion problem of model-checking. We also argued that the
problem is not limited to true ACTL properties, and while we have theoretical decision
procedure for arbitrary CTL properties, implementing it and comparing its performance
against an implementation of robust satisfaction [23] is left for future work.

Our work opens a number of questions related to debugging models of the en-
vironment: (1) We assumed that every variable belongs to the environment or to the
component (but not both), i.e., the environment and the component do not have shared
variables. Moreover, we considered only cases of synchronous parallelism between the
two. To make our approach applicable to more general domains, we plan to address
these limitations. (2) Clearly, there are environments that may not guarantee a property
by themselves; however, there are additional constraints imposed on them by compo-
nents, i.e., via communication channels, that lead to environment guarantees. We intend
to study this problem in future work. (3) We also assumed that there is a clear separation
between the component and its environment, and thus the environment can be captured
and its model constructed. This may not always be the case. For example, we may aim to
verify a collection of components compositionally, so while checking one component,
all remaining ones form its environment. This environment might be simply too big
to analyze. There might also be cases when the component is composed with multiple
environments, or when determining what constitutes an environment is difficult. One
potential direction to remedy these problems is to follow the approach of Shlyakhter et
al. [30], aimed at computing and highlighting the part of the overall system on which
the property depends. The user can then see whether the highlighted part is the environ-
ment and decide whether this constitutes a problem. Of course, highlighting is useful
even when the boundary between the component and the environment is well under-
stood: it points the user to the part of the environment that is entirely responsible for
satisfying the desired property, facilitating debugging.

Acknowledgment. We thank Shoham Ben-David for her comments on an earlier
draft of this paper. Financial support has been provided by NSERC and IBM.

References

1. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Vardi. “En-
hanced Vacuity Detection in Linear Temporal Logic ”. In Proceedings of CAV’03, volume
2725 of LNCS, pages 368–380, July 2003.

2. D. Beatty and R. Bryant. “Formally Verifying a Microprocessor Using a Simulation Method-
ology”. In Proceedings of DAC’94, pages 596–602, 1994.

3. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Efficient Detection of Vacuity in Temporal
Model Checking”. FMSD, 18(2):141–163, March 2001.

4. N.D. Belnap. “A Useful Four-Valued Logic”. In Dunn and Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 30–56. 1977.

5. G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-Valued Temporal
Logics”. In Proceedings of CAV’99, volume 1633 of LNCS, pages 274–287, 1999.

6. W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, and D. Notkin. “Model Checking
Large Software Specifications”. IEEE TSE, 24(7):498–520, July 1998.

7. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. “Multi-Valued Symbolic
Model-Checking”. ACM TOSEM, 12(4):1–38, October 2003.

15

8. M. Chechik, B. Devereux, and A. Gurfinkel. “ � Chek: A Multi-Valued Model-Checker”. In
Proceedings of CAV’02, volume 2404 of LNCS, pages 505–509, July 2002.

9. A. Cimatti, E.M. Clarke, , E. Giunchilia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. “NUSMV Version 2: An Open Source Tool for Symbolic Model
Checking”. In Proceedings of CAV’02, volume 2404 of LNCS, pages 359–364, 2002.

10. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
11. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. “Learning Assumptions for Com-

positional Verification”. In Proceedings of TACAS’03, volume 2619 of LNCS, 2003.
12. F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi. “Efficient Debugging in a Formal

Verification Environment”. STTT, 4(3):335–348, May 2003.
13. L. de Alfaro, P. Godefroid, and R. Jagadeesan. “Three-Valued Abstractions of Games: Un-

certainty, but with Precision”. In Proceedings of LICS’04, pages 170–179, 2004.
14. M. Dwyer, G. Avrunin, and J. Corbett. “Patterns in Property Specifications for Finite-State

Verification”. In Proceedings of ICSE’99, May 1999.
15. M. Gheorghiu, A. Gurfinkel, and M. Chechik. “VaqUoT: A Tool for Vacuity Detection“. In

Proceedings of Tool Track, FM’06, August 2006.
16. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. “Assumption Generation for Soft-

ware Component Verification”. In Proceedings of ASE’02, pages 3–12, 2002.
17. P. Godefroid. “Reasoning about Abstract Open Systems with Generalized Module Check-

ing”. In Proceedings of EMSOFT’03, volume 2855 of LNCS, pages 223–240, October 2003.
18. O. Grumberg and D.E. Long. “Model Checking and Modular Verification”. In Proceedings

of CONCUR’91, 1991.
19. A. Gurfinkel and M. Chechik. “Multi-Valued Model-Checking via Classical Model-

Checking”. In Proceedings of CONCUR’03, volume 2761 of LNCS, pages 263–277, 2003.
20. A. Gurfinkel and M. Chechik. “Extending Extended Vacuity”. In Proceedings of FM-

CAD’04, volume 3312 of LNCS, pages 306–321, November 2004.
21. A. Gurfinkel and M. Chechik. “How Vacuous Is Vacuous?”. In Proceedings of TACAS’04,

volume 2988 of LNCS, pages 451–466, March 2004.
22. M. Heimdahl and N. Leveson. “Completeness and Consistency in Hierarchical State-Based

Requirements”. IEEE TSE, SE-22(6):363–377, June 1996.
23. O. Kupferman and M. Vardi. “Robust Satisfaction”. In Proceedings of CONCUR’99, volume

1664 of LNCS, pages 383–398, 1999.
24. O. Kupferman and M. Vardi. “Vacuity Detection in Temporal Model Checking”. STTT,

4(2):224–233, February 2003.
25. O. Kupferman, M.Y. Vardi, and P. Wolper. “Module Checking”. Information and Computa-

tion, 164(2):322–344, January 2001.
26. N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. “Requirements Specification

for Process-Control Systems”. IEEE TSE, 20(9):684–707, September 1994.
27. J. Lygeros and N. Lynch. “On the Formal Verification of the TCAS Conflict Resolution

Algorithms”. In Proceedings of Conf. on Decision and Control, December 1997.
28. K. Namjoshi. “An Efficiently Checkable, Proof-Based Formulation of Vacuity in Model

Checking”. In Proceedings of CAV’04, volume 3114 of LNCS, pages 57–69, 2004.
29. M. Purandare and F. Somenzi. “Vacuum Cleaning CTL Formulae”. In Proceedings of

CAV’02, volume 2404 of LNCS, pages 485–499, July 2002.
30. I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. “Debugging Overcon-

strained Declarative Models Using Unsatisfiable Cores”. In Proceedings of ASE’03, 2003.
31. F. Somenzi. “CUDD: CU Decision Diagram Package Release”, 2001.
32. US Dept. of Transportation. “Introduction to TCAS II”. FAA, March 1990.

16

