
Abstract Analysis of Symbolic Executions

Aws Albarghouthi1, Arie Gurfinkel2, Ou Wei1,3, and Marsha Chechik1

1Department of Computer Science, University of Toronto, Canada
2Software Engineering Institute, Carnegie Mellon University, USA

3Nanjing University of Aeronautics and Astronautics, China

Abstract. Multicore technology has moved concurrent programming to
the forefront of computer science. In this paper, we look at the problem
of reasoning about concurrent systems with infinite data domains and
non-deterministic input, and develop a method for verification and falsi-
fication of safety properties of such systems. Novel characteristics of this
method are (a) constructing under-approximating models via symbolic
execution with abstract matching and (b) proving safety using under-
approximating models.

1 Introduction

Concurrency has moved to the forefront of computer science due to the fact that
future speedups of software rely on exploiting concurrent executions on multi-
ple processor cores. Thus, the problem of creating correct concurrent programs
is now paramount. Reasoning about such programs, i.e., determining whether
properties of interest hold or fail in them, has always been difficult, especially
if we consider “realistic” programs with infinite data domains (i.e., integer vari-
ables) and non-deterministic input. An example of such a program is the simple
two-process mutual exclusion protocol shown in Fig. 1, where integer variables
x and y are set non-deterministically (see Section 2 for more detail).

Approaches to reason about concurrent systems can be split into four cat-
egories. (1) “Classical” model-checking techniques, e.g., [19], were created to
enumerate all reachable states of the program. Such techniques provide both
verification and falsification information and are very effective when the state-
space of the program is finite. However, they do not scale well for programs
with large state-spaces and do not apply to those with infinite state-spaces. (2)
Techniques like [3, 17, 8] build an over-approximation of program behaviours,
via static analysis. These techniques can handle large/infinite state-spaces, are
effective for verification purposes, but are not particularly well suited for finding
bugs. (3) Techniques like [25, 24, 4, 22] explore an under-approximation of feasible
program behaviours. These techniques are often inexpensive and very effective
for finding bugs; they are, however, often unable to prove correctness of pro-
grams. (4) Recently, researchers have been exploring the combination of under-
and over-approximation by combining dynamic and static analysis techniques,
respectively. Examples of this approach include [24] and the Yogi project [23].
These techniques are effective both for verification and for falsification of safety

Process 1
t1 : pc1 = 1 −→ b := b+ 1, pc1 := 2
t2 : pc1 = 2 ∧ x ≤ y ∧ b = 2 −→ pc1 := 3
t3 : pc1 = 3 −→ x := nondet, pc1 := 2

Process 2
t4 : pc2 = 1 −→ b := b+ 1, pc2 := 2
t5 : pc2 = 2 ∧ x > y ∧ b = 2 −→ pc2 := 3
t6 : pc2 = 3 −→ y := nondet, pc2 := 2

Fig. 1. A simple two-process mutual exclusion protocol with inputs x and y.

properties but, with the exception of [24], have been limited to sequential pro-
grams [27, 16, 20, 14]. Our work fits into this category.

In this paper, we propose a novel approach for automatically checking safety
properties of reactive concurrent programs (over a finite number of threads)
with non-deterministic input and infinite data domains. Handling these features
allows us to target programs with infinite state-spaces, uninitialized variables,
and communication with an external environment (e.g., user interaction). Our
approach combines symbolic execution (to deal with non-deterministic input)
and predicate abstraction (to deal with infinite data domains) in an abstraction-
refinement cycle. Symbolic exploration proceeds along a path until it discovers
two symbolic states that match to the same abstract state – the process is called
abstract matching [18]. It produces an under-approximating abstract model that
is more precise, in terms of feasible program behaviours it captures, than under-
approximation techniques based on must transitions [25], concrete model check-
ing and abstract matching [24], and weak reachability [4]. Since we only explore
feasible program behaviours, all errors we encounter are real. We then analyse
the abstract model to determine if it is also an over-approximation of the reach-
able concrete program states. If so, we conclude safety; otherwise, we refine the
abstraction, adding predicates not to remove spurious counterexamples (as in
the CEGAR framework [9]) but to enable us to explore more feasible program
behaviours. To our knowledge, this is the first software verification algorithm
combining symbolic execution with predicate abstraction and refinement. Our
contributions are thus as follows: (i) a novel method for improving precision of
under-approximating models by constructing them via a combination of sym-
bolic execution and abstract matching; (ii) a novel technique for proving safety
using under-approximating models; (iii) an implementation based on [24] and
an empirical evaluation comparing the two approaches.

The rest of this paper is organized as follows. In Section 2, we give a general
overview of the approach, illustrating it on the example in Fig. 1. We define the
notation and provide background for the remainder of the paper in Section 3.
Section 4 presents our approach in more detail, and Section 5 describes our
implementation and experimental results. Section 6 compares our approach with
related work. We conclude in Section 7 with the summary of our contributions
and suggestions for future work.

2 Overview

In this section, we illustrate our approach on a simple two-process mutex protocol
shown in Fig. 1. The protocol is written in a simple guarded command language.
Initially, variables x and y are undefined (i.e., they can have an arbitrary value),

Fig. 2. Abstract analysis of symbolic executions.

b is 0, pc1 is 1, and pc2 is 1. Process 1 starts at pc1 = 1, increments b, and moves
to pc1 = 2 (transition t1). At pc1 = 2, it waits until b becomes 2 and x is less
than or equal to y and proceeds to its critical section at pc1 = 3 (transition
t2). At pc1 = 3, it sets x non-deterministically (modelling input) and returns to
pc1 = 2 (transition t3). Process 2 behaves analogously but uses process counter
pc2 and resets variable y in its critical section. We aim to show that this protocol
satisfies the mutual exclusion property: a state where pc1 = 3 ∧ pc2 = 3 is not
reachable.

The high-level overview of our approach is shown in Fig. 2. To determine
whether a safety property ψ holds in a program P , we compute an abstract
transition system, Ma, of P w.r.t. some initial set of predicates Φ0 using sym-
bolic execution with abstract matching. The state-space of Ma is an under-
approximation of reachable abstract states of P . If an error is found during
the symbolic execution step, we report P as unsafe and terminate. Otherwise,
Ma |= ψ, and Ma is passed to the analysis phase which checks, via two separate
steps, whether the state-space of Ma is also an over-approximation of P . If so,
we are able to conclude that P is safe. Otherwise, we refine the set of predicates
and repeat the entire process.

Our approach follows an abstraction-refinement loop, but differs from the
standard CEGAR framework [9] in two ways: (1) we compute an under-approximating
abstraction of P (using symbolic execution); (2) we do not rely on counterexam-
ples to perform the refinement. In the rest of this section, we discuss each step
of our approach in turn.

Symbolic Execution with Abstract Matching. Fig. 3(a) shows a symbolic
execution tree of the program in Fig. 1. The initial set of predicates, Φ0 =
{x ≤ y, b = 2}, consists of all the predicates from the guards of the program. A
symbolic state consists of the current values of variables conjoined with the path
condition that has to be satisfied in order to reach this state. In Fig. 3(a), each
state is represented as a box, with values of variables in the order (pc1, pc2, x, y, b)
appearing in the top and the path condition – in the bottom. For example, state
s1 is (pc1 = 1, pc2 = 1, x = x0, y = y0, b = 0) ∧ (x0 ≤ y0), where x0 and y0 are
symbolic constants representing the initial value of x and y, respectively.

We use traditional symbolic execution with one additional constraint: in each
symbolic state, each predicate from Φ0 must be either satisfied or refuted. If
necessary, we split a symbolic state by strengthening its path condition. For
example, the initial state of the program in Fig. 1, s0 = (pc1 = 1, pc2 = 1, x =
x0, y = y0, b = 0), neither satisfies nor refutes the predicate x ≤ y. Thus, it
is split into states s1 and s2 that satisfy and refute x ≤ y, respectively. They
become the new initial states. Similarly, states s5 and s6 are obtained by splitting
a symbolic successor of s4. Our constraint may increase the number of symbolic
states, but it ensures that each symbolic state corresponds to (or matches with)
a unique valuation of all of the predicates in Φ0. We call such a valuation an
abstract state, and define a function α(s) mapping a symbolic state s into an
abstract state.

The symbolic execution proceeds along a path until it discovers two states
s and s′ that match the same abstract state a, i.e., α(s) = α(s′) = a. For
example, the symbolic path starting at s1 and passing through s3 is stopped at
s5. Following [24], we call this process abstract matching. Since the range of α
is finite, symbolic execution with abstract matching is guaranteed to terminate.
Of course, execution also aborts whenever it encounters an error state.

An abstract transition system Ma is obtained from the symbolic execution
tree by adding a transition between two abstract states a and a′ iff there is
a transition between two states s and s′ in the symbolic execution tree, and
α(s) = a and α(s′) = a′. The abstract transition system Ma for the execution
tree in Fig. 3(a) is shown in Fig. 3(b). In the figure, each state is a valuation to
(pc1, pc2, x ≤ y, b = 2). For example, α(s1) = a1 and α(s2) = a2. An error state
is unreachable in Ma, so it is passed to the analysis phase.

Analysis: safe-fragment. This check is based on a notion of an exact transition.
A transition between two abstract states a and b is exact iff every concrete state
corresponding to a can transition to a concrete state corresponding to b. For
example, transition a4 → a5 in Ma is exact (denoted by a solid line) whereas
transition a1 → a3 in Ma is inexact (denoted by a dotted line).

We say that a set of states Q, called a fragment, of an abstract transition
system Ma is exact iff (a) there is no outgoing transition from Q to other states in
Ma, and (b) all internal transitions within Q are exact. Intuitively, all executions
from concrete states corresponding to an exact fragment Q are trapped in it.
We say that an exact fragment Q is safe iff it does not contain error states, i.e,
it approximates a part of the state-space of P that cannot reach an error.

safe-fragment determines whether all paths in Ma are eventually trapped in
a safe exact fragment. This is reduced to checking whether the transitions inside
and between all nontrivial strongly connected components of Ma are exact. If
so, Ma is an over-approximation of P (see Section 4.2); therefore, none of the
executions of P can reach error and thus P is safe.

The check succeeds in our example. This is easily verified by looking at
Fig. 3(b), where all paths are trapped in the safe exact fragment consisting of
the states a4, a5, a6, and a7. Thus, the program in Fig. 1 satisfies the mutual
exclusion property.

(a)

11TF

21TF 12TF

22TT

32TT

22FT

23FT

11FF

21FF 12FF

(b)

11TFFT

21TFTT 12TFTT

22TTTT

32TTTT

22FTTT

23FTTT

11FFFT

21FFTT 12FFTT

(c)

Fig. 3. (a) Symbolic execution of the program in Fig. 1; (b) its corresponding abstract
transition system Ma; (c) a modified abstract transition system M ′

a.

Analysis: inductive-invariant. This check determines whether the state-space of
Ma is an inductive invariant: i.e., it is closed under applying transitions of P . If
so, the state-space of Ma over-approximates that of P , and thus P is safe. This
check is complimentary to safe-fragment described above (see Section 4.2). If it
fails, we move to the refinement phase.

Refinement. In this phase, we generate new predicates to refine inexact tran-
sitions of Ma. The refinement is based on computing preimage and is similar to
the commonly used weakest precondition-based refinement. Although not needed
in our running example, we illustrate refinement using the inexact transition

a1
t1−→ a3 of Ma in Fig. 3(b). First, we compute the preimage of a3 w.r.t. transi-

tion t1, resulting in (pc2 = 2∧x ≤ y∧ b 6= 1). Second, we add only the predicate
b 6= 1 to Φ0 since program counter pc2 is represented explicitly, and we already
have x ≤ y.

In the remainder of the paper, we formalize the above notions and evaluate
the efficiency of our approach.

3 Preliminaries

This section outlines the definitions and notation used in this paper.

Program. We use a guarded command language to specify programs. A program
P is a tuple (V, I, T), where V is a finite set of integer variables, I(V) is an
initial condition, and T is a finite set of transitions. Each transition t ∈ T is of
the form gt −→ et, where gt is a Boolean expression over the variables V , and et
is a set of concurrent assignments. Each assignment is of the form x := linExp
or x := nondet, where x is a variable in V , linExp is an expression from linear
arithmetic over variables in V , and nondet is a special expression used to denote
non-deterministic input.

Transition System. A transition system over a finite set of atomic proposi-
tions AP and a set of transition labels T is a tuple (S,R, S0, L), where S is a
(possibly infinite) set of states, R ⊆ S × T ×S is the transition relation, S0 ⊆ S
is the set of initial states, and L : S → 2AP is a labelling function, mapping
each state to the set of atomic propositions that hold in it. For clarity, we write

s
t−→ s′ to denote R(s, t, s′).

The concrete semantics of a program P = (V, I, T) is a transition system
C(P) = (S,R, S0, L) over some atomic propositions AP and the set of program

transitions T , where S = 2V→Z, S0 = {s ∈ S | s |= I}, and s
t−→ s′ for some t ∈ T

iff s |= gt and s′ ∈ et(s). By s |= gt, we mean that the valuation of variables in
s satisfies the Boolean expression gt, and et : (V → Z) → 2(V→Z) is a function
which computes all possible states resulting from applying the assignments to
some state. Finally, L(s) = {φ ∈ AP | s |= φ}.

Preimage and Strongest Postcondition. Let φ be a formula over program

variables. The preimage of φ w.r.t. a transition t, pre(φ, t) = ∃s′ · (s t−→ s′ ∧ s′ |=
φ), is a formula describing the set of all states which can reach a state satisfying

φ via t. The strongest postcondition of φ w.r.t. a transition t, sp(φ, t) = ∃s′ ·(s′ t−→
s ∧ s′ |= φ), is a formula describing the set of all states that are reachable via t
from a state satisfying φ.

Predicate Abstraction. Let Φ = {φ1, · · · , φn} be a set of predicates over pro-
gram variables. The predicate abstraction αΦ is a function from concrete states to
Boolean formulae (abstract states) over predicates in Φ. Given a concrete state
s, αΦ(s) =

∧
φ∈Φs

φ ∧
∧
φ∈Φs

¬φ, where Φs = {φ ∈ Φ | s |= φ} and Φs = Φ \ Φs.
A concretization function γΦ takes a Boolean formula over Φ and returns the
set of concrete states satisfying the formula. Given a Boolean formula ψ over
Φ, γΦ(ψ) = {s ∈ S | s |= ψ}. For a set of states X, we write αΦ(X) to mean∨
{αΦ(s) | s ∈ X}.

A transition a1
t−→ a2, where a1 and a2 are abstract states is a must transition

iff ∀s ∈ γΦ(a1) · ∃s′ ∈ γΦ(a2) s.t. s
t−→ s′. A transition is a may transition iff

∃s ∈ γΦ(a1) · ∃s′ ∈ γΦ(a2) s.t. s
t−→ s′. In this paper, we call must transitions

exact, and transitions that are may but not must – inexact. A transition a1
t−→ a2

is exact iff a1 ⇒ pre(a2, t).

1: function Refine(P,ψ)
2: Φ← predicates from guards in P and ψ
3: while true do
4: inductive← true
5: (fin, inf, A0)← symbolicExec(P,Φ) . symbolic execution
6: if a state in (fin, inf,A0) satisfies ¬ψ then return false

7: if safeFragment(fin, inf) then return true . safe-fragment

8: A← all states in (inf,fin, A0)
9: for all (a1, t, a2) ∈ (fin ∪ inf) do . inductive-invariant

10: if ¬(a1 ⇒ pre(a2, t)) then
11: add predicates in pre(a2, t) to Φ . refinement
12: if ¬(sp(a1, t)⇒

∨
A) then inductive← false

13: if inductive then return true

Fig. 4. Refinement loop (main function).

4 Abstract Analysis of Symbolic Executions

In this section, we describe our algorithm in detail and discuss its properties.

4.1 Algorithm

Our abstraction-refinement based verification algorithm is implemented by the
function Refine (Fig. 4) which does symbolic execution followed by safe-fragment
and inductive-invariant checks and refinement (see Fig. 2). It uses two helper func-
tions: symbolicExec (Fig. 5), to do symbolic execution with abstract matching
and to compute the explored abstract transition system, and safeFragment
(Fig. 6), to prove safety of the abstract transition system.

Refine initializes the set Φ with all the predicates in the program’s guards
and in the safety property ψ (line 2), and enters the execute-analyse-refine loop
(lines 3–13). It uses symbolicExec (line 5) to compute the abstract transition
system. It terminates with false if an error state is found (line 6); otherwise, it
performs the safe-fragment check (line 7) followed, if needed, by the inductive-
invariant check (lines 9–13). The Boolean variable inductive holds the result of
inductive-invariant. If it is false after inductive-invariant (line 13), then Refine
repeats symbolic execution with new predicates added to Φ; otherwise, it returns
true.

symbolicExec performs depth-first symbolic execution with abstract match-
ing. It uses the stack symbStack of sets of symbolic states to keep track of the
current path. A symbolic state s over a set of variables V is a tuple (f, PC),
where f is a function mapping each program variable to an integer or sym-
bolic constant, and a path condition PC is a set of constraints over symbolic
and integer constants. A concrete state c is represented by a symbolic state
s = (f, PC) iff c |= ∃Vs ·

∧
y∈V y = f(y) ∧

∧
p∈PC p, where Vs = {z | ∃y · f(y) =

z ∧ z is a symbolic constant}. For example, the state ({x 7→ x0, y 7→ y0}, {y0 >
0, x0 > y0}) denotes the set of concrete states where y is strictly greater than 0
and x is strictly greater than y.

Let x be a variable in V and s = (f, PC) a symbolic state. The symbolic
execution is done by the function Exec (line 14 of Fig. 5) using the following
rules: if et is x := nondet then the result is the state s′ = (f [x → z], PC),

1: function symbolicExec(P,Φ)
2: symbStack ← empty stack . Each item on the stack is a set of states
3: push splitState(s0, Φ) on symbStack
4: A0 ← {αΦ(s) | s ∈ splitState(s0, Φ)}
5: (fin,inf,trans)← (∅, ∅, ∅)
6: while symbStack is not empty do
7: S ← top of symbStack
8: choose s ∈ S s.t. for some t, s |= gt
9: if no such transition exists or transitions exhausted then

10: fin← fin ∪ allPaths(S, trans)
11: trans← tail of trans
12: pop symbStack
13: continue
14: result← Exec(s, et)
15: S′ ← splitState(result, Φ)
16: for all {s′ ∈ S′ | αΦ(s′) = αΦ(s) or ∃t · (αΦ(s′), t′) ∈ trans} do
17: fin← fin ∪ stem((αΦ(s), t, αΦ(s′)), trans)
18: inf← inf ∪ loop((αΦ(s), t, αΦ(s′)), trans)
19: S′ ← S′ \ {s′}
20: if S′ 6= ∅ then
21: push S′ on symbStack
22: trans← prepend (αΦ(s), t) to trans

23: return (fin, inf, A0)

Fig. 5. Symbolic execution with abstract matching.

1: function safeFragment(fin,inf)
2: worklist← inf
3: while worklist 6= ∅ do
4: (a, t, b)← remove element from worklist
5: if ¬(a⇒ pre(b, t)) then return false

6: T ← {(a′, t′, b′) ∈ fin | a′ ∈ {a, b}}
7: fin← fin \ T
8: worklist← worklist ∪ T
9: return true

function splitState(s)
S ← ∅, X ← αΦ(s)
for all minterms x ∈ X do

S ← S ∪ (f, PC ∪ x[f(v1)/v1, · · · , f(vn)/vn])

return S

Fig. 6. Algorithms for safe-fragment check and splitting symbolic states.

where z is fresh symbolic constant (i.e., is not used in any symbolic state so
far) and f [x → z](a) is z if x = a and f(a) otherwise; if et is x := u for
some expression u, then the result is the state s′ = (f [x → z], PC ′), where z
is fresh and PC ′ = PC ∪ (z = u[f(v1)/v1, · · · , f(vn)/vn]); if et is a concurrent
assignment, the result is obtained by the obvious generalization of the base rules.

Recall that we require that a symbolic state satisfies or refutes each predicate
in Φ. We enforce this using splitState that takes a symbolic state as input and
returns a set of states that satisfy our constraint. The näıve implementation is
to recursively split a state s by taking a predicate from p ∈ Φ that is neither
satisfied nor refuted by s and creating two new states by adding p and ¬p to the
path constraint of s, respectively. This is highly inefficient.

Instead, we reduce the problem to predicate abstraction as shown in Fig. 6.
Basically, we compute a predicate abstraction of a symbolic state s and then
split s using all the minterms in the result1. For example, consider the symbolic
state s = ({x 7→ x0, y 7→ y0}, {y0 = 0}) over V = {x, y}, and let Φ = {x >

1 A minterm is a conjunction of literals containing all predicates in Φ.

0, y > 0}. Predicate abstraction of s over Φ has two minterms: {x > 0 ∧ y ≤
0, x < 0∧ y ≤ 0}. This leads to two new symbolic states {(f ′, PC ′), (f ′′, PC ′′)},
where f ′′ = f ′ = {x 7→ x0, y 7→ y0}, PC ′ = {y0 = 0, x0 > 0, 0 ≤ 0}, and
PC ′′ = {y0 = 0, x0 ≤ 0, 0 ≤ 0}. Of course, tautologies like 0 ≤ 0 are discarded
when the expression is simplified. This has the same worst-case complexity as
the näıve approach, but allows us to use recent advances in predicate abstraction
(such an AllSAT SMT solver).

In symbolicExec, the variable trans keeps an abstraction of the path from
the initial state to states at the top of symbStack as a list of tuples (a, t), where
a is an abstract state and t a transition. Whenever symbolicExec reaches a
state whose abstraction has been seen before on the current path (i.e., either
it is the same as a predecessor or it appears in trans – line 16), it stops cur-
rent exploration and backtracks. At this point, trans is a lasso-shaped abstract
path. Functions stem and loop are used to extract the transitions that oc-
cur on the stem of the path, stored in set fin and the loop of the path, stored
in inf. For example, consider the symbolic execution tree shown in Fig. 3(a).

When symbolicExec takes the transition s4
t3−→ s5 (corresponding to the

abstract transition a5
t3−→ a4 in the abstract model in Fig. 3(b)) it discov-

ers a loop. Then, trans = [(a4, t2), (a3, t4), (a1, t1)], stem(trans, (a5, t3, a4)) =
{(a1, t1, a3), (a3, t4, a4)}, and loop(trans, (a5, t3, a4)) = {(a4, t2, a5), (a5, t3, a4)}.
Note that transitions in the list trans are stored in reverse order from which they
appear on the abstract path.

When symbolicExec reaches a set of symbolic states where no transition
can be taken (line 9), the transitions leading to that set of states are added to fin
using the allPaths function. For example, assume trans = [(a2, t2), (a1, t1)] and
S = {a3, a4}. Then, allPaths(S, trans) = {(a1, t1, a2), (a2, t2, a3), (a2, t2, a4)}.

safeFragment works by locating the fragment of the abstract model that
is reached by all execution paths. This is done by finding all transitions in or
reachable from inf. If all of these transitions are exact, then we conclude safety.
Otherwise, we proceed to inductive-invariant.

In inductive-invariant (lines 9–13 of Refine), for every state which is the
source of an inexact transition t, we check if its strongest postcondition w.r.t.
t is a subset of the set of abstract states explored (line 12). If so, the explored
abstract states over-approximate the set of reachable concrete states, and thus we
can conclude safety. Otherwise, we go back to the symbolic execution stage, but
now with new predicates added from preimages of destination states of inexact
transitions (line 11 of Refine).

4.2 Soundness and Monotonicity

Our algorithm only reports real errors. This is ensured by restricting symbolic
execution to explore only symbolic states with satisfiable path constraints. The-
orem 1 states that the algorithm is also sound for safety properties2. Of course,
since property checking is undecidable, the algorithm is incomplete.

2 Proofs of all theorems can be found in [1].

In the rest of this section, we represent the abstract state-space explored by
symbolicExec by a transition system Ma = (Sa, Ra, Sa0 , L

a), where AP = Φ,
Sa is the set of all states appearing in (fin,inf, A0), Ra is the set of all transitions
appearing in fin ∪ inf, Sa0 = A0, and for x ∈ Sa, La(x) = {φ ∈ Φ | x |= φ}.
Theorem 1 (Soundness). Let ψ be a safety property, P be a program satis-
fying ψ, and Mc = (S,R, S0, L) be a transition system of P . W.l.o.g., assume
that every state in S is reachable from S0. Let Ma = (Sa, Ra, Sa0 , L

a) be the
abstract transition system constructed by symbolicExec in the last iteration of
Refine. Then, (i) if Refine terminates after safe-fragment (line 7), then Ma

simulates Mc; (ii) if Refine terminates after inductive-invariant (line 13), then
Sa over-approximates S (i.e., ∀s ∈ S · αΦ(s) ∈ Sa).

As in Synergy (see Sec. 4 in [16]), when our algorithm terminates with
safe-fragment, the current abstraction simulates, but is not necessarily bisimular
to, the concrete program. Moreover, if it terminates with inductive-invariant then
the abstraction may not even simulate the concrete program.

In contrast with other under-approximating approaches, e.g., [24, 4], our al-
gorithm explores more states in each successive iteration than in a previous one.
That is, the exploration is monotonically increasing. This ensures steady progress
towards an error state (if one exists). Intuitively, we get this by keeping an ab-
stract visited table per each path, as opposed to a unique global table as in [24].

Theorem 2 (Monotonicity). Let Φ and Φ′ be two sets of predicates s.t. Φ ⊆
Φ′. Let P be a program, and C and C ′ be the concrete states of P explored by
symbolicExec under Φ and Φ′, respectively. Then, C ⊆ C ′.

In contrast, our approach is not monotonic for proving safety: adding new
predicates may cause an exact transition used by safe-region check to become
inexact [13, 24, 4]. In the future, we hope to solve this problem by using an
abstract domain of tri-vectors.

As discussed in Section 2, the two checks, safe-fragment and inductive-invariant,
are incomparable. We prove this below.

Theorem 3. There is an abstract model Ma constructed by symbolicExec
that passes exactly one of safe-fragment and inductive-invariant checks.

Proof. First, we give an example where safe-fragment holds but inductive-invariant
fails. Consider Ma in Fig. 3(b). Recall that it passes safe-fragment check. It fails
inductive-invariant since it is not closed under strongest postcondition: sp(a1, t1) =
(pc1 = 2 ∧ pc2 = 1 ∧ x ≤ y ∧ b 6= 2) ∨ (pc1 = 2 ∧ pc2 = 1 ∧ x ≤ y ∧ b = 2); the
second disjunct is not covered by an explored abstract state.

Second, we give an example where inductive-invariant holds but safe-fragment
fails. Consider M ′

a shown in Fig. 3(c). It is obtained from symbolically executing
a program obtained by replacing transition t3 by t3 : pc1 = 3 −→ pc1 := 2, x :=
x + 1 in the protocol in Fig. 1, and assuming that Φ includes predicates b = 0,
b = 1, and predicates from the guards. All transitions of M ′

a, with the exceptions
of the two transitions from a5, are exact. safe-fragment fails on M ′

a. inductive-
invariant does not: the only interesting case is that sp(a5, t

′
3) = (pc1 = 2∧ pc2 =

2 ∧ b = 2) is covered by explored abstract states. �

Iter Prvr. Qurs. Preds. Time(s) Con/Abs States Check

Program ψ ASE UR ASE UR ASE UR ASE UR ASE UR ASE

bakery2 t 3 4 141 367 8 10 0.347 0.452 52/33 49/36 II

RAX t 1 - 6 - 2 - 0.261 - 81/44 - SF

elev4 t 1 4 418 5789 13 19 1.013 8.146 468/378 468/456 SF

elev5 t 1 5 1169 26252 15 23 3.459 44 1256/910 1253/1204 SF

elev6 t 1 6 3156 105830 17 27 12.275 220.633 3248/2126 3224/3060 SF

elev7 t 1 - 7116 - 19 - 40.867 - 8160/4862 - SF

elev8 t 1 - 15036 - 21 - 185.717 - 15200/9422 - SF

ticket2 t 4 4 135 120 8 8 0.609 0.404 22/9 12 / 9 SF

ticket3 t 5 5 672 661 14 14 1.413 0.923 182/31 41/31 SF

ticket4 t 6 6 4088 4061 23 23 33.51 5.143 5011/129 170/129 SF

mesi t 16 16 6893 12172 47 47 36.61 49.627 18/18 18/18 SF

berkley t 11 11 3113 4623 38 38 15.729 17.605 13/12 13/12 SF

b bakery2-e f 1 2 0 74 2 5 0.178 1.188 80/80 193/193 -

ticket2-e f 1 2 0 11 2 5 0.073 0.155 12 / 9 26 / 17 -

ticket3-5 t 1 3 0 145 3 14 0.058 0.341 14/12 93/81 -

ticket3-10 t 3 8 152 1218 14 21 0.525 2.229 30/27 302/240 -

ticket3-15 t 8 13 1225 2090 21 26 3.107 5.15 47/44 507/395 -

ticket3-20 t 13 18 2500 3918 26 31 6.869 9.501 62/59 712/550 -

ticket3-25 t 18 23 3925 5493 31 36 13.038 15.821 77/74 917/705 -

ticket3-30 t 23 28 5500 7219 36 41 20.762 34.701 92/89 1112/860 -

ticket3-35 t 28 33 7225 9093 41 46 46.379 51.579 107/104 1327/1015 -

ticket3-40 t 33 38 9100 11118 46 51 71.462 82.974 122/119 1532/1170 -

RAX-5 t 5 5 46 123 12 20 0.373 0.363 50/49 170/170 -

RAX-10 t 10 10 146 483 17 35 0.988 1.528 90/89 350/350 -

RAX-15 t 15 15 296 1068 22 50 2.031 4.341 130/129 530/530 -

RAX-20 t 20 20 496 1878 27 65 3.675 9.934 170/169 710/710 -

RAX-25 t 25 25 746 2913 32 80 6.442 19.578 210/209 890/890 -

RAX-30 t 30 30 1046 4173 37 95 9.94 35.03 250/249 1070/1070 -

RAX-35 t 35 35 1396 5658 42 110 15.155 57.315 290/289 1250/1250 -

RAX-40 t 40 40 1796 7368 47 125 22.104 89.332 320/319 1430/1430 -

RAX-45 t 45 45 2246 9303 52 140 30.821 133.063 370/369 1610/1610 -

Fig. 7. Experimental results: ASE vs. UR [24].

We have shown that our algorithm is sound and explores the concrete state-
space monotonically. We have also shown that the two safety checks, safe-fragment
and inductive-invariant, are incomparable. Hence, both are useful.

5 Implementation and Experimental Results

We have implemented our algorithm in OCaml on top of the implementation of
Pasareanu et al. [24]. We used GiNaC [5] for symbolic execution, MathSAT4 [7]
for computing predicate abstraction, Simplify [11] for checking exactness of
transitions and computing inductive invariants, and Bradley’s implementation of
Cooper’s method for quantifier elimination3. In all of our experiments, we added
predicates only from those inexact transitions that are in the set inf (returned
by symbolicExec) or reachable from it.

In Fig. 7, we compare effectiveness of our abstract analysis of symbolic ex-
ecutions approach (referred to as ASE) with that of the under-approximation
refinement algorithm of [24] (referred to as UR). We indicate whether the safety
property of interest (ψ) is true (t) or false (f) and report the number of iterations
(Iter.), the number of theorem prover queries (Prvr. Qurs.), the total number

3 Available at http://theory.stanford.edu/~arbrad/sware.html.

of predicates used (Preds.), the total amount of time needed, the number of
concrete and abstract states explored in the final iteration, and the check with
which ASE concluded safety (II for inductive-invariant, SF for safe-fragment, and
“–” when a counterexample is returned). In cases where the experiment did not
finish after 15 minutes, the table entries are “–”.

Since UR can only handle a single concrete initial state and no non-deterministic
input, these are the characteristics of all programs in Fig. 7. We began by
checking the mutual exclusion property of the bakery protocol with two pro-
cessors, where our performance is a bit better than UR. On the other hand,
ASE can prove that the Remote Agent Experiment (RAX), as presented in [24],
is deadlock-free in a single iteration, while UR refines indefinitely. We then ver-
ified the elevator program, elevi, increasing the number of floors i, against the
property that the elevator cannot be on two separate floors at the same time.
We checked mutual exclusion of the ticketi protocol, increasing the number of
processes i, as well as correctness cache coherence protocols mesi and berkley

(these, along with their correctness properties, are taken from [10], restricting
the number of initial states to one). Our results show that ASE generally outper-
forms UR in terms of the number of iterations and time it takes to prove safety.
In the case of ticketi where ASE requires the same number of iterations and
predicates, ASE takes more time as it explores more concrete states per iteration.

To illustrate the power of our approach at finding errors, we analysed de-
fective versions, i.e., not satisfying mutual exclusion, of the bounded bakery
(b bakery2-e) and ticket (ticket2-e) protocols. We also checked whether a
given ticket number X in the ticketi protocol (ticketi-X) and a given counter
value X in the RAX example (RAX-X) are reachable. ASE terminates in fewer
iterations than UR in the former case and in the same number of iterations but
significantly fewer predicates in the latter.

In Fig. 8, we report on the results of ASE for checking properties of programs
with unspecified initial states and/or non-deterministic input. Specifically, we
verified mutual exclusion of ticket, where the initial ticket number is set non-
deterministically, and bakery and peterson protocols, where each process stays
in the critical section for a non-deterministic amount of time. We also verified
correctness of cache coherence protocols, mesi and synapse, with undefined
initial states.

In summary, ASE can analyse a wide range of programs that manipulate
arbitrary integers and use non-deterministic input. And it can do so in less time,
and considerably fewer iterations or with significantly fewer predicates than UR.

6 Related Work

The work by Pasareanu et al. [24] is the closest to ours. However, there are sev-
eral key differences. First, our approach explores the state-space monotonically.
Second, we use symbolic execution to deal with programs with arbitrary ini-
tial states and non-deterministic input. Third, we use over-approximation much

Program ψ Iter. Prvr. Qurs. Preds. Symb/Abs States Time(s) Check

ticket2 t 4 523 12 5516/62 281.134 II

peterson2 t 1 24 4 700/38 424 II

bakery2 t 3 301 11 807/50 73.965 II

mesi t 2 260 13 112/14 3.56 II

synapse t 2 62 7 34/9 0.88 II

ticket2-e f 1 0 2 12/10 0.104 -

ticket3-e f 1 0 3 10/10 0.112 -

Fig. 8. Experimental results: programs with unspecified initial states and non-
deterministic input.

more aggressively leading to a much faster convergence with fewer predicates.
Comparison with other work is given below.

Over-approximation based techniques (e.g., [3, 17, 8]) build an abstraction
that has more behaviours than the concrete system and prune infeasible com-
putations via refinement. In contrast, our refinement is based on extending the
frontier of feasible program behaviours. Most of such techniques, with the ex-
ception of [8], deal with sequential programs only.

Under-approximation based techniques [24, 4, 21, 25] build an abstraction that
has fewer program behaviours than the concrete system. Our approach includes
both reachable must and may transitions making the abstract models more pre-
cise than those that have just must transitions (e.g., [25]) and must and reverse
must transitions (e.g., [4]4). The algorithm in [21] builds a finite bisimiluation
quotient of the program under analysis, but unlike the global refinement em-
ployed by us and [24], uses a local refinement instead. We leave a comparison of
the efficiency of local and global refinements for future work.

Most recent automated software verification techniques that combine dy-
namic analysis for detecting bugs and static analysis for proving correctness
(e.g., [27, 16, 14, 20]) concentrate on analysis of sequential programs, and unlike
our approach which bounds program executions, assume terminating program
executions. For example, [27] uses tests cases to explore an under-approximating
abstract state-space with the hope of exploring all reachable abstract states but
has no notion of refinement and thus the analysis may return false positives. Like
our work, [2] uses abstraction to bound symbolic execution of programs. While
this approach can handle programs with recursive data structures and arrays,
its goal is debugging rather than verification, and it does not involve refinement.

[20] improves error detection capabilities of the CEGAR framework [9] by
using program execution to drive abstraction-refinement. However, it does so by
refining an over-approximation and is restricted to sequential programs.

Directed automated random testing (DART) [15] and its successors, [26, 12],
run the program with random input, using path constraints to discover input
that would exercise alternative program paths. The Synergy algorithm [16]
combines DART-like testing with over-approximating abstractions, using results
of tests to refine the abstract model and using the abstract model to drive test
case generation. The end result is either a test case that reaches an error state, or
an abstract model that simulates the program. Whereas DART-like approaches

4 see [1] for a detailed comparison with [4].

attempt to cover all program paths, our approach and [24, 27] attempt to cover all
reachable abstract states. [14] presents a compositional algorithm that combines
DART and over-approximating techniques. DART-like testing is used to create
under-approximating (must) summaries of functions, and techniques based on [3]
are used to create over-approximating (may) summaries. The authors show that
alternating must and may summaries yields better results than must only or may
only summaries. However, these techniques are restricted to sequential programs.

7 Conclusion and Future Work

We presented a novel verification algorithm that combines symbolic execution
and predicate abstraction in an abstraction-refinement cycle. Our approach ap-
plies to concurrent programs with infinite data domain and non-deterministic
input. Given a program and a safety property, our algorithm executes the pro-
gram symbolically, while building an under-approximating abstract model. If an
error is reached by symbolic execution, we terminate and report it. Otherwise,
we check whether the state-space of the abstract model over-approximates all
concretely reachable states. If the analysis fails, we refine with new predicates
and repeat the process. Not only do we handle a much wider range of programs
than related approaches, we also improve on the number of iterations and the
number of predicates used, whether the property of interest is true or false.

Our current implementation is a proof of concept – more work is needed to
turn it into robust verification tool that is applicable to a real programming
language (such as C) with complex features (e.g., structured and recursive data
types, pointers, recursion, etc.). It is also interesting to see whether the ap-
proach extends to termination (and non-termination) properties. A promising
direction is to use the under-approximation to derive either a ranking function
or a counterexample to termination. We leave exploring these for future work.

Acknowledgements. We would like to thank Corina Pasareanu and Radek
Pelanek for giving us access to their code, the anonymous referees for their
helpful comments, and the formal methods group at the University of Toronto
for the fuitful discussions.

References

1. Albarghouthi, A.: Abstract Analysis via Symbolic Executions. Master’s thesis,
Univ. of Toronto, Dept. of Comp. Sci. (February 2010), (in preparation)

2. Anand, S., Pasareanu, C.S., Visser, W.: Symbolic Execution with Abstraction.
STTT 11(1), 53–67 (2009)

3. Ball, T., Rajamani, S.: The SLAM Toolkit. In: Proc. of CAV’01. LNCS, vol. 2102,
pp. 260–264 (July 2001)

4. Ball, T., Kupferman, O., Yorsh, G.: Abstraction for Falsification. In: Proc. of
CAV’05. pp. 67–81 (2005)

5. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC Framework for Sym-
bolic Computation with the C++ Programming Language. J. Symbolic Computa-
tion 33, 1–12 (2002)

6. Beyer, D., Henzinger, T., Théoduloz, G.: Program Analysis with Dynamic Preci-
sion Adjustment. In: Proc. of ASE’08. pp. 29–38 (2008)

7. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT 4 SMT Solver. In: Proc. of CAV’08. pp. 299–303 (2008)

8. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular Verification of Software
Components in C. IEEE Tran. on Soft. Eng. 30(6), 388–402 (June 2004)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Ab-
straction Refinement. In: Proc. of CAV’00. LNCS, vol. 1855, pp. 154–169 (2000)

10. Delzanno, G.: Automatic Verification of Parameterized Cache Coherence Protocols.
In: Proc. of CAV’00. pp. 53–68 (2000)

11. Detlefs, D., Nelson, G., Saxe, J.: Simplify: a Theorem Prover for Program Checking.
J. of the ACM 52(3), 365–473 (2005)

12. Godefroid, P.: Compositional Dynamic Test Generation. In: Proc. of POPL’07. pp.
47–54 (2007)

13. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based Model Checking using
Modal Transition Systems. In: Proc. of CONCUR’01. LNCS, vol. 2154 (2001)

14. Godefroid, P., Nori, A., Rajamani, S., Tetali, S.: Compositional May-Must Program
Analysis: Unleashing the Power of Alternation. In: Proc. of POPL’10 (2010)

15. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing.
In: Proc. of PLDI’05. pp. 213–223 (2005)

16. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajamani, S.: SYNERGY: a
New Algorithm for Property Checking. In: Proc. of FSE’06. pp. 117–127 (2006)

17. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: Proc. of
POPL’02. pp. 58–70 (January 2002)

18. Holzmann, G., Joshi, R.: Model-Driven Software Verification. In: Proc. of SPIN’04.
LNCS, vol. 2989, pp. 76–91 (2004)

19. Holzmann, G.: The Model Checker SPIN. IEEE Tran. on Soft. Eng. 23(5) (1997)
20. Kroening, D., Groce, A., Clarke, E.: Counterexample Guided Abstraction Refine-

ment via Program Execution. In: Proc. of ICFEM’04. pp. 224–238 (2004)
21. Lee, D., Yannakakis, M.: Online Minimization of Transition Systems. In: Proc. of

STOC’92. pp. 264–274 (1992)
22. Musuvathi, M., Qadeer, S.: CHESS: Systematic Stress Testing of Concurrent Soft-

ware. In: Proc. of LOPSTR’06. LNCS, vol. 4407, pp. 15–16 (July 2006)
23. Nori, A., Rajamani, S., Tetali, S., Thakur, A.: The Yogi Project: Software Prop-

erty Checking via Static Analysis and Testing. In: Proc. of TACAS’09. LNCS, vol.
5505, pp. 178–181 (2009)

24. Pasareanu, C., Pelanek, R., Visser, W.: Concrete Model Checking with Abstract
Matching and Refinement. In: Proc. of CAV’05. LNCS, vol. 3576, pp. 52–66 (2005)

25. Pasareanu, C., Dwyer, M., Visser, W.: Finding Feasible Counter-examples when
Model Checking Abstracted Java Programs. In: Proc. of TACAS’01. LNCS, vol.
2031, pp. 284–298 (April 2001)

26. Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Testing Engine for C. In:
Proc. of ESEC/FSE’05. pp. 263–272 (2005)

27. Yorsh, G., Ball, T., Sagiv, M.: Testing, Abstraction, Theorem Proving: Better
Together! In: Proc. of ISSTA’06. pp. 145–156 (2006)

