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Abstract

For a system of distributed processes, correctness
can be ensured by (statically) checking whether
their composition satisfies properties of interest. In
contrast, Web services are being designed so that
each partner discovers properties of others dynam-
ically, through a published interface. Since the
overall system may not be available statically and
since each business process is supposed to be rela-
tively simple, we propose to use runtime monitor-
ing of conversations between partners as a means of
checking behavioural correctness of the entire web
service system. Specifically, we identify a subset of
UML 2.0 Sequence Diagrams as a property specifi-
cation language and show that it is sufficiently ex-
pressive for capturing safety and liveness proper-
ties. By transforming these diagrams to automata,
we enable conformance checking of finite execu-
tion traces against the specification. We describe
an implementation of our approach as part of an
industrial system and report on preliminary experi-
ence.

1 Introduction

Recent years have seen an emergence of the field of
web services, which use Service-Oriented Archi-
tectures (SOA) to dynamically discover and bind
to services in order to increase the flexibility of
business interactions. Each service consist of com-
ponents and can discover other components using
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Figure 1: The Activity Diagram of TBS.

published interfaces. An SOA component can be
written in a traditional compiled language such as
Java ��� , or in an XML-centric language such as
BPEL [6]. An SOA module is made up of multiple
SOA components.

For example, consider a Web-based travel book-
ing system (TBS) that acts as a broker offering
its customers the ability to book all aspects of a
trip. The workflow of TBS includes credit vali-
dation, flight/hotel/car reservation, and communi-
cation with the client. Customers can submit data
about their desired travel plans and receive either a
confirmation number or a failure message depend-
ing on whether the travel arrangements have been
made successfully.

The activity diagram in Figure 1 shows high-
level steps that are executed during the travel book-
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Figure 2: Interaction between Web Services.

ing process. To fulfill its business goal, TBS needs
to interact with several partners: CreditCardCheck-
ingService, which validates the customer’s credit
card data, FlightReservationService, which books
a flight, HotelReservationService, which reserves
a hotel room, and CarReservationService, which
makes a car reservation. In a typical scenario, an
Internet customer begins an interaction with TBS
by entering data for his/her travel arrangements.
The system then invokes CreditCardCheckingSer-
vice, and if the credit card is valid, then up to three
reservations, for the car, hotel and flight, are made.
If all of the reservations are completed successfully,
a confirmation number is generated and returned to
the customer.

Since the TBS system, like other web services, is
a composition of several distributed business pro-
cesses, its success depends on the correctness of its
partners, and the interoperability between them is
a major quality concern. For example, the system
needs to guarantee that it processes travel reserva-
tions only for customers with valid credit, or that
every request is acknowledged and none are lost or
blocked indefinitely. Since each web service is a
relatively simple process, analysis can concentrate
on the message exchange between partners – their
conversations.

For a classical system of distributed processes,
correctness can be ensured by statically check-
ing their composition against properties of inter-
est. The same approach has been taken by sev-
eral researchers in the context of web services as
well, e.g., [12, 13, 26, 4, 11]. While static analy-

sis is very appealing – errors are discovered ahead
of time and without the need to exercise the sys-
tem, this approach has several major limitations.
First of all, web services typically communicate via
infinite-length channels, so the problem is decid-
able only under certain conditions. Further, realis-
tic web services exchange many types of messages:
some synchronous, some asynchronous, and some
with acknowledgements and priorities. Finally,
web services are typically heterogeneous. In our
example, the TBS process is implemented using
BPEL while other partners are written in Java and
are invoked synchronously (see Figure 2). Static
analysis approaches do not handle such features
well.

Since web services are designed to discover
properties of other partners dynamically (and thus
the overall system may not even be available stati-
cally), we instead choose dynamic analysis via run-
time monitoring. This approach has been explored
by others as well [5, 32, 30]. Yet the goal of our
work is to create a monitoring framework that is
non-intrusive, allows the dynamic discovery of web
services, and supports a variety of types of mes-
sage exchange and partners implemented in differ-
ent languages. In this paper, we describe the expe-
rience of implementing such a system, concentrat-
ing on a specification language for dynamic analy-
sis of web services.

We aim to create an industrial-strength language
for specifying temporal behaviour that captures the
distributed, interactive, and message-driven nature
of business processes. Our language should enable
specifying a variety of properties and be amenable
to efficient runtime monitoring. We believe that
such a language should have the following char-
acteristics: (1) its notation should be visual; (2) it
should allow specification of sequences of events;
(3) it should have explicit emphasis on components
and enable dealing with different types of message
exchange; and (4) it should be able to specify pos-
itive and negative scenarios of interaction as well
as global properties. These characteristics are nec-
essary for the resulting language to be usable by
practitioners.

Having considered a few graphical languages,
such as GIL [9], Time Line Editor [34], Message
Sequence Charts (MSCs) [24] and Live Sequence
Charts (LSCs) [7], we have chosen a subset of
UML 2.0 Sequence Diagrams (SDs) [36] as our
specification language. SDs, used to capture in-
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���
TBS should not reserve hotel room without checking customer credit first.

���
A customer should be eventually notified about the status of his/her travel booking
request, whether the reservation succeeds or not.

Table 1: Some properties of TBS.

teractions in the form of message passing between
objects, have been widely adopted by industry as a
suitable language for describing and documenting
scenario-based requirements specifications.

SDs are a feature-rich language without a for-
mal semantics. In this paper, we identify a subset
of SDs that is sufficiently expressive for capturing
safety (nothing bad will ever happen) and liveness
(something good will eventually happen) proper-
ties. For example, for the TBS system described
earlier, possible safety and liveness properties are���

and
� �

, respectively (see Table 1). Liveness
properties are not monitorable in general. How-
ever, since our work concentrates on web services
with finitely terminating behaviours, we can moni-
tor such properties in our framework, e.g., we can
check whether the TBS process terminates without
giving feedback to the customer.

To enable monitoring, we formalize our sub-
set of SDs using finite-state automata. Similar
approaches to formalizing sequence diagram vari-
ants have been previously proposed by other re-
searchers, e.g., [2, 16, 15]. Since automata and
logic are intimately related, an automata-based
characterization allows us to investigate connec-
tions between SDs and temporal logics, and trans-
late SDs to automata to enable conformance check-
ing of finite execution traces against their specifica-
tions expressed in SDs.

The rest of this paper is organized as follows.
After surveying related work in Section 2 and re-
viewing SDs in Section 3, we describe the seman-
tics of our chosen subset of SDs in Section 4. In
Section 5, we show how to selectively apply SD op-
erations negate and assert in order to specify safety
and liveness properties. We give semantics of the
resulting subset of SDs using Safety and Liveness
automata. We describe the implementation of this
framework and report on preliminary experience in
Section 6, and conclude the paper in Section 7 with
a summary and an outline of future research.

2 Related Work

Monitoring systems at run time to ensure correct-
ness has received a lot of attention, and many such
systems have been developed. In this section, we

survey the research of runtime monitoring in the
context of web services. We also summarize some
work studying UML 2.0 Sequence Diagrams as a
specification language.

Runtime monitoring of web services. Existing
approaches to monitoring of web services differ
in a number of aspects, including the specifica-
tion language for expressing monitoring require-
ments/properties, the monitoring mechanisms of
determining faults in service execution, the level of
intrusiveness imposed on the monitored system, the
system aspects being monitored, and the method of
reporting results.

The approaches described in [5, 27] use instru-
mentation to check that web services correctly im-
plement their interfaces. These approaches require
access to the source code of web services. Other
approaches [30, 29, 32], like ours, are comple-
mentary to [5, 27] and instead monitor correctness
of conversations between partners. However, they
use different specification languages and monitor
different kinds of properties. Both Mahbub and
Spanoudakis [30], and Robinson [32] concentrate
on checking invariant and request/response proper-
ties, using, respectively, Event Calculus [33] and
KAOS [8] for expressing properties. In our work,
we translate properties to finite automata and can
handle a variety of temporal properties checkable
on finite traces. The work of Li et al. [29] is the
closest to ours. Like us, they take an automata-
based approach for monitoring communications
between partners and enable graphical display of
violations. However, they specify correct interac-
tions using Interaction Constraints [28] – a lan-
guage based on Dwyer’s Specification Pattern Sys-
tem [10]. Our specification language, SD, is ex-
pressive enough for a variety of safety and liveness
properties and yet significantly more intuitive and
thus more usable in an industrial context.

Sequence Diagrams as a Specification Lan-
guage. Like other partial-order scenario-based for-
malisms such as MSCs [24] and LSCs [7], UML
2.0 Sequence Diagrams are enjoying an increas-
ing usage as specification languages. Inverardi et
al. [3] propose a Property Sequence Chart (PSC)
language, which is an extended notation of a subset
of UML 2.0 SDs. PSC enables expressing safety
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and liveness properties by assigning attributes fail
and required to messages. This is equivalent to ap-
plying operators negate and assert to individual SD
message, respectively. The semantics of PSC is
given using Büchi Automata, designed to operate
on infinite execution traces. Since we consider only
finite executions of web services, automata over fi-
nite words are sufficient and significantly easier to
implement.

STAIRS [17] is a trace-based requirement speci-
fication methodology that also uses extended UML
2.0 SDs. Trace scenarios are classified into positive
(mandatory and potential), negative, and inconclu-
sive. Negative traces are captured using the negate
operator. STAIRS does not use assert and instead
defines a new mandatory choice operator, xalt, to
express the requirement that both alternatives be
present in a choice. In our work, we enable expres-
sion of mandatory and forbidden properties with-
out extending the language and also explore con-
nections between our language and temporal logic.

Grosu and Smolka [15] interpret positive and
negative UML 2.0 Sequence Diagrams as safety
and liveness properties and give formal semantics
for such diagrams using Safety and Liveness au-
tomata, respectively. Their approach does not use
the assert operator and defines automata over infi-
nite traces.

3 Sequence Diagrams

Sequence Diagrams (SDs) [36] is a popular formal-
ism for modeling behavioural scenarios by describ-
ing sequences of messages communicated between
different objects over time. An example SD de-
scribing a scenario of the TBS system is shown
in Figure 3(a). SDs have two dimensions: verti-
cal, representing time, and horizontal, representing
objects. Each object is illustrated by a rectangle
with a vertical dashed line, called a lifeline. Life-
lines are connected by horizontal arrows denoting
messages that are sent from one object to another,
synchronously or asynchronously. We refer to SDs
with these features as basic. Basic SDs can be aug-
mented by a number of operators to capture more
sophisticated scenarios. Three classes of these op-
erators included in UML 2.0 are described below:

Compositional operators: Operators parallel
(par), alternatives (alt), strict sequencing
(strict seq), and weak sequencing (weak
seq) are used to put together two SDs via

various standard semantics of composition.
The operator loop is used for repeating the
scenario described by an SD multiple times.

Alphabet changing operators: Operators con-
sider and ignore are used for modifying the
communicating alphabet of SDs.

Assertion and negation operators: Operators
assert and negate allow users to express
mandatory and forbidden system scenarios,
respectively.

The grammar for generating composite SDs is
obtained by repeated application of compositional
and alphabet changing operators, using Basic SDs
as the building blocks:

��� ��� � ���
	���������������
����������������� ��!���
�������"������#�
������� ��� � �$%�&	���')(*�,+-���/.
�#$%��( + �,0�$1$*� ��!�#�
������� ��� � ���
�2�)��0 34��	�35�*���36	�(879��:;(8�=<>	?(87
where @9A,B1CED1F#G , HIA)J , A�K�L , B1LMJ1CED=LNB%O�P , QNO�A�RSB=O?P ,
KUT
T?H , D?T)VIB1CEW�O%J , and C/X�V�T)J*O are terminal symbols,
and Y is a set of Sequence Diagram messages.

Since operators consider and ignore change the
communicating alphabet of Sequence Diagrams,
they need to take a set Y of messages as an input
argument. In what follows, we denote by SDs Se-
quence Diagrams generated by the above grammar.
We discuss the negate and assert operators in Sec-
tion 5.

4 Formalizing Sequence Dia-
grams

In this section, we provide a formal description of
semantics of Basic SDs as well as their composi-
tional and alphabet changing operators by adopting
the automata-theoretic approach of [2].

Nondeterministic Finite Automata. Let Z be a
set of alphabets. We define a trace [ over Z to be
a finite sequence []\�[ �;^%^
^ [I_ , where `�acb�dfegaheicj [IkmlnZ . We denote by Zpo the set of all finite
traces over Z .

Definition 1 (Projection “ q ”) Let Zsr2tuZ be an
alphabet, and [wvx[ \ ^%^%^ [ _ be a trace over Z .
The projection of [ to Zsr , denoted [yq&z]{ , is defined
as:

[mq zI{ vn|E[I\pq z]{~} |~[ � q zI{M} ^U^�^ |E[]_"q zI{M}
where [ k q z { = [ k if [ k lfZ r , and � otherwise.
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Definition 2 (NFA [18]) A Non-deterministic
Finite Automaton (NFA) � is a tuple
|MZ j�� j���j�� \ j�� } , where Z is a set of input alpha-
bets, � is a finite set of states, � t ��� Z
	����� ���
is a transition relation, � \ t � is a set of initial
states, and � t � is a set of accepting states.

A trace [xv [ \ [ � ^�^U^ [ _ is accepted by � iff
there is a sequence � \ � � ^U^�^ � _�� � of states s.t. � \ l� \ , �%_�� � l � , and for every d e aue i ,
|�� k j [ k j � k � � } l � . The language of � , �2|�� } , is
the set of all traces accepted by � .

An NFA � receives a trace [ lnZpo as input and
changes its current state according to its transition
relation. A trace [ is considered accepting if after
consuming it, � is in an accepting state. An exam-
ple NFA over the alphabet � ! ��� , ? ��� , ! ��� , ? ���� is
shown in Figure 3(b). In cases where states do not
have outgoing transitions for some symbols in Z ,
like state � � on ? ��� in Figure 3(b), it is assumed that
this symbol causes a transition to a (non-accepting)
dead-end state, which is usually not shown.

States in NFAs may have several outgoing transi-
tions on the same input symbol, or may have transi-
tions labeled � , indicating a silent move. Determin-
istic finite automata (DFAs) are NFAs where each
state has a unique outgoing transition on each sym-
bol. Every NFA can be converted into a DFA using
the subset construction algorithm [18].

Basic SDs. We define basic SDs as follows.

Definition 3 (Basic SDs [2]) A Basic SD � is a tu-
ple (� , Y , � , � , � ), where

 � is a finite set of objects.

 Y is a finite set of event occurrences that is
partitioned into send events, denoted by ! Y ,
and receive events, denoted by ? Y . The set
of events associated with an object aml!� is
denoted by Y2k .

 � : Y#" Y is a bijective mapping that asso-
ciates each send event $ with a unique receive
event � |�$ } , and each receive event $)r with a
unique send event �&%

�
|�$,r } .

 � is a set of total order relations � k defined
over the events Y k for every object a . It cor-
responds to the order in which the events are
physically displayed along the lifeline of an
object a .

 � is a partial order relation defined over Y :
� = 	 k�')( � k 	*�&|,+ j � |-+ }*}/. +>l ! Y0 .

A Basic SD is shown in Figure 3(a). Here, the set
� of objects is � Agt, Htl, Flt  , the set Y of events is
� ! ��� , ? ��� , ! ��� , ? ���1 , the total order � Agt for object
Agt is ! ���2� Agt ! ��� , and the partial order � asso-
ciated with the whole diagram is ! ���*� ! ��� , ! ���
� ? ��� , and ! ���3� ? ��� . This partial order assumes
that messages are communicated asynchronously.
Partial order for synchronous communication is a
subset of the above because of synchronization.

We define the semantics of Basic SDs by trans-
lating them into their equivalent NFAs. Intuitively,
an NFA �54 is equivalent to a Basic SD � iff ��4 ac-
cepts exactly the set of traces that can be generated
by � , i.e., those traces that respect the partial or-
der of � . Therefore, translation of � to � 4 reduces
to the translation of the underlying partial order of
� to � 4 . The algorithm for translating partial or-
ders to NFAs, proposed by [2], is as follows. Given
a partial order � over Y , let cut 6 be a subset of
Y that is closed with respect to � , i.e., if $ l76
and $,r8�9$ , then $,r l:6 . The set of all possible
cuts associated with the partial order of a Basic SD
generates the state space of its corresponding NFA.
The empty cut is the initial state, and cuts with all
the events is the final state. If a cut ; equals the
cut 6 plus a single event $ , then there is a transition
labeled $ from 6 to ; .
Theorem 1 [2] A Basic SD � = (� , Y , < , � , � )
is semantically equivalent to an NFA � 4 = ( Z , � ,� , � \ , � ), where Z is equal to Y , � is the set of
all cuts, � \ is the empty cut, � is the maximal cut
including all of the events, and � allows a transition
from a cut ; to a cut 6 on an event $ l Y iff ; is
equal to 6 plus a single event $ .
Since both the empty and the maximal cuts are
unique, � \ and � consist of only one state each.
The set of cuts obtained by unwinding the under-
lying partial order in the Basic SD in Figure 3(a)
is �)= , � ! ���1 , � ! ��� , ? ���1 , � ! ��� , ! ���1 , � ! ��� , ? ��� ,
! ���� , � ! ��� , ! ��� , ? ���� , � ! ��� , ! ��� , ? ���1 , � ! ��� , ? ��� ,
! ��� , ? ���1� . Note that the number of states of the
corresponding automaton in Figure 3(b) is less than
the number of the above cuts, because we reduced
the states with the identical outgoing transitions to
one state.

Compositional operators. The semantics of the
compositional operators can be given in terms of
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(a)

sd Basic

Agt Htl Flt

reserveHtl(rH)

reserveFlt(rF)

(b)

��� ���

���

��� �	�

��


���!rH

?rH

!rF

!rF

?rH
?rF

?rF ?rH

Figure 3: (a) a basic SD describing a scenario of the TBS example; and (b) its corresponding NFA.

the standard operations defined on NFAs (e.g., see
[18]). In particular,
 par corresponds to the parallel composition

operator;

 alt corresponds to the union operator;

 strict seq corresponds to the sequential com-
position operator;

 weak seq is a combination of parallel and se-
quential composition in which events associ-
ated with one particular object appear in the
order indicated by the lifeline of this object,
and other events are interleaved according to
the semantics of parallel composition; and

 loop corresponds to the Kleene star operator.

The theorem below shows that the set of NFAs
associated with SDs is closed under the composi-
tional operators.

Theorem 2 [18] Let � , � � and � � be SDs, and let
� v7� � T?H � � , where T?H is a compositional opera-
tor. Then � 4 v � 4� T?H � 4�� .
Alphabet changing operators. Operators con-
sider and its dual ignore are used to change the
set of communicating alphabets of an SD. Both
of them receive an SD � and a set of events Y
as input, but consider adds the elements in Y to
the set of events of � , whereas ignore removes the
elements in Y from the set of events of � . For-
mally, let � and �cr be SDs, Y be a set of events,
and let � 4 v |MZ j�� j���j � \ j�� } be the automaton as-
sociated with � . For � rhv D�T�V B1CEW�O%J��/� , � 4&{ v
|MZ7	 Y j�� j��)j �=\ j�� } , and for � r v C/X�V T�J*O � � ,
� 4&{ v |MZ � Y j�� j��)j �=\ j�� } . It is easy to see that
the set of NFAs associated with SDs is closed un-
der the operators consider and ignore as well.

Recall that any missing transition at a state leads
to an error state. Increasing the input alphabet Z
of � 4 without changing the transition relation �

means that more execution traces end up in the er-
ror state, while shrinking the input alphabet without
changing the transition relation means that more
execution traces are accepted.

5 Monitoring Properties

While quite expressive, the fragment of SDs pre-
sented in Section 4 cannot capture safety proper-
ties, e.g.,

� �
in Table 1, because it does not have

a mechanism for specifying undesirable scenarios.
Neither can it be used for liveness properties, e.g.,� �

, because it cannot specify that a desirable sce-
nario is mandatory for every behaviour of the sys-
tem. In this section, we extend the SD fragment
to enable expressing such properties, using negate
and assert operators.

Various formal treatments of the semantics of
these operators are given in the literature, e.g.,
[16, 15, 35]. These operators have a rich expressive
power, and yet their arbitrary combinations are not
well understood (e.g., does negating of an asserted
trace mean that this trace is not required to occur
or that a negation of the trace has to occur?), which
is perhaps the reason why they have not found sig-
nificant use in practice. We propose a simple frag-
ment of SDs in which these operators can be used
only once and cannot be intermixed. We show that
this fragment is expressive enough to describe most
safety and liveness properties. The simplicity of
this fragment further reduces the complexity of our
monitoring framework from both a conceptual and
a computational perspective.

To describe a safety property, we enclose an SD
� within a negate operator to indicate that the sce-
nario represented by � is a forbidden one, and
therefore, a safe system should never produce this
scenario [15]. We call the resulting SDs Safe. For
example, the property

� �
in Table 1 is captured by

a Safe SD in Figure 4(a). Similarly, we describe a
liveness property by enclosing an SD � within an
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(a)

sd Safety
consider � travelReq(tR), checkCrd(cC), reserveHtl(rH) �

Usr Agt Htl

negate
tR

rH

(b)

���
���

���
���

��	!tR ?tR

!rH

?rH
 


(c) �� ��� ��� �� ��

�����

!tR

�
!rH,?rH,!cC,?cC �

?tR

�
?tR,?rH,!cC,?cC �

!tR

!rH

�
?tR,!rH,!cC,?cC �

!tR

?rH

!cC

!tR
!cC ?tR

!cC

!rH

?cC

!tR

�
?tR,!rH,?rH,!cC,?cC �

�
?tR,!rH,?rH,!cC,?cC � !tR �

(d) ��� ��� �� ��� ���

����

!tR

�
!rH,?rH,!cC,?cC �

?tR

�
?tR,?rH,!cC,?cC �

!tR

!rH

�
?tR,!rH,!cC,?cC �

!tR

?rH

!cC

!tR
!cC ?tR

!cC

!rH

?cC

!tR

�
?tR,!rH,?rH,!cC,?cC �

��� � �������
?tR,!rH,?rH,!cC,?cC ���� � ����� �

�
!tR � ��� � ����� ��� � ����� � � � �

� � � � ���� � � � ���

Figure 4: (a) A Safe SD describing the TBS property
� �

and its corresponding NFAs: (b) before applying
negate; (c) safety automaton after applying negate; (d) the resulting safety monitor.

assert operator to indicate that the scenario repre-
sented by � is the only valid continuation of any
system behaviour [36]. We call such SDs Live. For
example, the property

� �
in Table 1 is expressed by

a Live SD in Figure 5(a).
The grammar of SDs introduced in Section 3 is

extended with two new rules:

F�A"!=O1F#G #�# v V O X&A)L8O9F�G$ C&%)O1F#G #�# v A,B?B%O%J1L F�G
We discuss the semantics of Safe and Live SDs in
Sections 5.1 and 5.2, respectively.

5.1 Monitoring Safety Properties

In this section, we show that Safe SDs can be trans-
lated into a particular class of NFAs called Safety
Automata [1].

Definition 4 (Safety Automaton [1]) An NFA �
is a Safety Automaton iff every state of � is ac-
cepting.

For example, the automaton shown in Figure 4(c)
is a safety automaton, since the state �(' is dead-end
and thus can be removed. This automaton can de-
tect all sequences satisfying the TBS safety prop-
erty

� �
. For example, it accepts the safe trace

! )+* .? ) * .! ,.- .? ,.- .

! ��� .? ��� (“a travel request is followed by a check
credit card, followed by a hotel reservation”), and
rejects the unsafe trace ! ) * .? ) * .! ��� .? ��� (“a travel
request is immediately followed by a hotel reser-
vation”). Note that the consider operator used in
Figure 4(a) changes the underlying alphabet of this
SD to �()+* , ,.- , ���1 . Thus, symbols ! ,/- and 01,.- are
included in the alphabet of the automata in Fig-
ures 4(b)-(c) even though they do not explicitly ap-
pear in the SD.

We begin by making a slight modification to the
NFA derived from an SD � , adding a self-loop tran-
sition labeled Z , i.e., the underlying alphabet of this
automaton, to its initial state in order to enable it to
guess when a satisfying run begins. For example,
Figure 4(b) illustrates the automaton correspond-
ing to the Safe SD in Figure 4(a) before apply-
ing the negate operator. This automaton has a Z -
labeled self-loop in its initial state and thus accepts
all traces containing the sequence ! ) * .? ) * .! ��� .? ���
and starting with any arbitrary prefix in Zpo .

We are now ready to describe our translation of a
Safe SD to a safety automaton. Let � 4 be an NFA
associated to an SD � and obtained by the above
construction, and let �32"46587 be a Safe SD obtained
by enclosing � with a negate. The automaton cor-
responding to � 2946597 is the complement of � 4 [15]
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Figure 5: (a) A Live SD describing the TBS property
���

, and its corresponding NFAs: (b) before applying
assert; (c) liveness automaton after applying assert; (d) the resulting liveness monitor.

and is denoted by � 29465874 . Note that � 4 is an NFA,
and hence it needs to be converted to a DFA before
being complemented.

Theorem 3 Let � 4yvg|MZ j�� j���j�� \ j�� } be an NFA
associated to an SD � , and let �����

���
4 be the com-

plement of � 4 . Then �����
���

4 is a safety automaton.

The proof of this theorem follows from noting that
�54 has exactly one accepting state (see Theorem 1)
and is available in [14].

The underlying alphabet of �����
���

4 is equal to that
of � . To be able to use �����

���
4 for runtime mon-

itoring, we need to extend the language of � ���
���

4
to handle system traces over alphabets larger than
� . We do so by adding stuttering self-loops to
the automaton’s states. Semantically, this means
that � �!�

���
4 does not change its state when the input

symbol is outside the alphabet of � .

Definition 5 (Stuttering) Let Z 2#"�2 be the set of
system events, and let � = ( Z , � , � , � \ , � ) be
an NFA s.t. Z t Z 2#"�2 . The automaton �9r v
|MZ 2#"�2 j�� j�� r j�� \ j�� } is the stutter-closed form of �
w.r.t. Z 2�"�2 , where � r = � 	 �&|-� j Z 2#"�2

� Z j � } . ` � l�  .
The transformation of Definition 5 is language-
preserving:

Theorem 4 Let � = ( Z , � , � , � \ , � ) be an NFA,
and let Z 2#"�2 s.t. Z t Z 2�"�2 be given. Let � r be

the stutter-closed form of � w.r.t. Z 2#"�2 (see Defini-
tion 5). Then for every trace [ l Z 2#"�2 , [fl �2|��9r }
iff [yq z l �2|-� } .
We refer to the stutter-closed form of � 2"465874 as a
Safety Monitor and denote it by $ T�VIC5L8T)J |-� 2"465874 } .
Since � 2"465874 is a safety automaton, and further since
the transformation in Definition 5 is language-
preserving, $ T�VIC5L8T)J |-� 29465874 } is also a safety au-
tomaton. For example, the safety monitor corre-
sponding to the Safe SD in Figure 4(a) is shown
in Figure 4(d). This monitor rejects any fi-
nite trace in “ |MZ ��%&�

' �)( )+*� } o .! ) * . | Z ��%&�
' Z } o .? ) * .

| Z ��%&�
' Z } o .! ��� . |MZ ��%&�

' Z } o .? ��� ”.

5.2 Monitoring Liveness Properties

Liveness properties constrain infinite traces of sys-
tems, and their standard characterization is given
in terms of infinite automata [1]. In our work, how-
ever, we monitor web services that generate only
finite traces. In this setting, a finite trace satisfies
a liveness property if it can completely exhibit the
liveness behaviour before being terminated. Using
this insight, we define a notion of (finitary) liveness
automata to characterize liveness properties over
finite traces. We then show that Live SDs can be
translated into this class of automata.

Definition 6 (Liveness Automata) Let *,+ -�. 7 be a
set of finite traces [/+ -�. 7 v [ \�[ �c^%^%^ [I_ represent-
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ing liveness properties, and let Z + -�. 7 be the union
of the underlying alphabets of traces [ + -�. 7 l * + -�. 7 .
An NFA ��v |MZ j�� j���j�� \ j�� } is a liveness automa-
ton w.r.t. *,+ -�. 7 iff for every [ l!�2|-� } , and every
[ + -�. 7 l * + -�. 7 , [mq z � � ��� includes [ + -�. 7 .
Intuitively, � is a liveness automaton, if every trace
recognized by it includes the live part completely.

Definition 7 Let � 4 v | Z j�� j��)j�� \ j�� } be an
NFA associated with an SD � , and let � + - . 7 be a
Live SD obtained by enclosing � with an assert op-
erator. The automaton corresponding to � + - . 7 is
� + -�. 74 v |MZ j�� j�� r j�� \ j�� } , where

� r v �&|-� \ j Z � [ \ j � \ } . � [ l2�2|�� 4 } b
[ \ is the first symbol of [&)	
�&|-��� j Z j ��� } . � v0� ���  /	 �

Theorem 5 Let � 4yvg|MZ j�� j���j�� \ j�� } be an NFA
associated with an SD � , and let � + -�. 74 be an au-
tomaton obtained by the translation in Definition 7.
Then � + - . 74 is a liveness automaton w.r.t. �2|-� 4]} .

Figure 5(b) shows the NFA corresponding to the
Live SD in Figure 5(a) before applying the assert
operator, and Figure 5(c) shows the corresponding
liveness automaton. As shown in the figure, this
automaton requires that the trace ! )+* ? ) * .! �
	 .? �
	
occur at least once.

Like Safe SDs discussed in Section 5.1, an au-
tomaton � + -�. 74 is not immediately applicable to
our runtime monitoring framework because its
underlying alphabet does not include all system
events. We modify � + -�. 74 using the transformation
in Definition 5 to obtain its stutter-closed coun-
terpart, referring to it as Live Monitor and de-
noting it by $ T�VIC5L8T)J |-� + -�. 74 } . Since the trans-
formation in Definition 5 is language-preserving
(see Theorem 4), $fT�VIC5L8T)J |�� + -�. 74 } remains to be a
liveness automaton. The liveness monitor corre-
sponding to the Live SD in Figure 5(a) is shown
in Figure 5(d). This monitor rejects any trace in
which a travel request is not followed by a re-
turn information event. Formally, this automa-
ton rejects the language “ Zpo2#"�2 .[ � . ( ) * . |MZ ��% �

' Z } o .
( )+* . | Z ��%&�

' Z } o . 0 ) * . | Z ��%&�
' Z } o . ( ) * . |MZ ��%&�

' Z } o .
0 ) * . |MZ ��%&�

' Z } o . ( �
	 . | Z ��%&�
' Z } o ] ”.

Note that assert is a universal operator: it re-
quires a given sequence to occur in all executions
of a system [16]. Without assert, the sequence is
allowed to occur on some traces. Our monitors,

on the other hand, are just word automata that are
unable to differentiate between universal and exis-
tential acceptance. Rather than using more com-
plex monitors, we give semantics to the notion of
acceptance: a liveness monitor checks all system
traces, and if one is not accepted, a failure is re-
ported. Monitors based on sequences without as-
sert yield success if a given trace satisfies the se-
quence, but can never yield failure.

6 Architecture and Implemen-
tation

We have implemented our runtime framework
within the IBM R

�
WebSphere R

�
business integra-

tion products [19]. In what follows, we describe
the architecture of our solution and discuss some
of the more challenging parts of the implementa-
tion. We also report on preliminary experience of
using this framework to check correctness of web
services. For more information, see [14].

6.1 Architecture

Our solution uses the WebSphere Process
Server [21] and the WebSphere Integration Devel-
oper [20]. The former provides a BPEL-compliant
process engine for executing BPEL processes and
a built-in Service Component Architecture (SCA),
which is a particular instantiation of SOA. The
latter provides a development environment for
building web service applications and a graphical
package for creating UML Sequence Diagrams.

Our framework is shown in Figure 6. With the
help of the Property Manager (PM), users create
UML SD specifications for their web service ap-
plications. If monitoring is enabled, the Monitor-
ing Manager (MonM) translates them into mon-
itor automata using the techniques in Section 5.
During the execution of the web service, Message
Manager (MM) obtains interaction events from the
SCA Message Handler (MH) and directs the rele-
vant events to MonM, which, in turn, updates the
state of every active monitor automaton, until an
error has been found or all partners terminate. We
describe these components below.

The Property Manager consists of a graphical
tool for specifying interaction properties as UML
SDs. Once users create a diagram and enable mon-
itoring, PM loads the XML model of the specifi-
cation diagram, checks that it uses the language
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Figure 6: Architecture of the Framework.

subset described in Section 4, unwinds the partial
order of the diagram into an NFA using the algo-
rithm introduced in Section 4, and passes the NFA
to MonM. In the case of a property failure, PM is
also responsible for displaying errors to the user.

The SCA Message Handler sits in the process
server and establishes a bridge through which our
runtime monitoring framework communicates with
the server to obtain information about the web ser-
vice execution. In the process server, SCA is re-
sponsible for the invocation of native SCA ser-
vice components and for the binding and interac-
tion with external services. The SCA message han-
dler monitors interactions within the SCA applica-
tion server runtime environment and is responsible
for observing and routing these invocation requests
and responses to the correct components.

The Message Manager is responsible for obtain-
ing service request/response messages exchanged
between business components from the SCA layer.
MM, registered as a listener to the SCA message
handler, intercepts events for operation invocation
and filters out irrelevant messages such as locat-
ing a service. For the “interesting” events, MM
extracts key information related to the operation
invocation: what are the sender and receiver of
the given message, whether the invocation is syn-
chronous or asynchronous, what type of message is
being exchanged, whether priorities are being used,
etc. MM then packs all this information together
with the timestamp of when the events were inter-
cepted, and sends them to the message queue as-
sociated with MonM via a TCP/IP communication
channel.

The Monitoring Manager is the central part of
the framework, dealing with constructing monitor
automata, processing events and keeping track of

the acceptance status of all monitors. Upon receiv-
ing a monitoring request together with the NFA
representation of an SD from PM, MonM con-
verts the NFA to a DFA and further to a monitor
using the algorithms described in Section 4 and
5. To facilitate checking multiple properties for
a single web service system, MonM can manage
a number of monitors simultaneously. Upon re-
ceiving an event from its message queue, MonM
identifies those monitors that include this event as
part of their communicating alphabets, and changes
their states according to their transition functions.
All other monitors do not receive this event at
all, which corresponds to taking the silent transi-
tion. When updating the state of a monitor, MonM
checks whether it is in a valid state; otherwise, it
marks the corresponding property as being violated
and records the erroneous event so that the PM is
able to replay the error to the user.

6.2 Implementation

Since the WebSphere business integration tools are
based on Eclipse, the functional components of
our framework have been implemented as Eclipse
plug-ins as well.

Based on the architecture design described in
Section 6.1, we implemented four plug-ins. Fig-
ure 7 depicts the interactions and dependences be-
tween these, using double-arrowed lines.

The MoinitoringCorePlugin is the component
corresponding to the MonitoringManager in the ar-
chitecture. It consists of a MonitorCore package,
which acts as an entry point to MonitorCorePlugin,
a Monitor package that is responsible for receiving
unfolded SD specifications and translating them
into monitor automata, an EventListener package,
which handles getting events from MessageMan-
agerPlugin and forwards events to relevant mon-
itors, and a Utilities package where automata-
related manipulation is provided.

The MessageManagerPlugin implements the
Message Manager in the architecture. It contains
two packages: EventAdaptor and EventForwarder.
The EventAdaptor package registers itself as a lis-
tener to the SCA Message Handler built into the
WebSphere Process Server infrastructure, observ-
ing all invocation events flowing in the server SCA
layer. To be effective, the EventAdaptor needs to
be deployed into the server. Thus, when the server
runs, the change made by the package is picked up
by the WebSphere Process Server. The EventFor-
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Figure 7: The Overview of Framework Plug-ins.

warder package simply acts as a bridge between
the EventAdaptor package and the MonitorCore
package to transfer events from the former to the
latter. Since the EventAdaptor and the EventFor-
warder run in the different address spaces, the com-
munication between them is established through a
TCP/IP socket. Specifically, the EventForwarder
acts as the server role in a socket while the Even-
tAdaptor takes the client side. Whenever it ob-
serves an event in the SCA layer, the EventAdaptor
sends it to the socket port.

The PropertyManagerPlugin corresponds to the
Property Manager in the architecture. It con-
tains all Sequence Diagram-related functionalities,
which are grouped into two packages. The SDCre-
ation package adopts an existing graphical UML
package provided by WebSphere as the Sequence
Diagram editor. This existing graphical UML
package, which acts as the front-end of the SD-
Creation, stores SDs in XML format and further
provides the data structure along with APIs to ma-
nipulate SDs in memory. The back-end of the SD-
Creation is responsible for checking whether spec-
ified objects and messages are valid in a web ser-
vice composition when users use them to create a

property for monitoring. The SDAnalysis package
is where user-specified SD properties get translated
into NFAs. It recursively traverses the data struc-
ture passed in from the front-end to extract all SD
constructs and unfold the partial order. The cur-
rent implementation supports translations of Safe
SDs, Live SDs, and all operations introduced in
Section 3 except weak sequencing. In our frame-
work, we adopted the implementation of composi-
tional operations over automata from the Charmy
project [23].

The MonitoringUIPlugin serves as an extension
point to the framework and provides various graph-
ical interfaces that users need to interact with the
runtime monitoring tool. For example, CreateS-
DAction and EnableMonitorAction provide action
icons in Eclipse for users to create a Sequence Di-
agram specification and then to enable it for moni-
toring. ActiveMonitorsView and EventHistoryView
provide user windows to examine the satisfaction
of monitored properties and the system execution
history. Figure 8 shows the screenshot of the user
interface of our runtime monitoring framework. In
the Business Integration view in the top-left of the
window, it lists the content of the implementation
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Figure 8: The Screenshot of the Framework User Interface.

Property Web Service Type Involved Partners Monitored Events Num of States Num of Transitions
� � TBS Safety 3 6 6 23
� � TBS Liveness 2 4 5 10
� � OSS Safety 3 8 7 30
� � OSS Safety 3 6 6 23
���

OSS Liveness 3 4 5 15

Table 2: Properties and Sizes of Their Automata Representations.

of the TBS system. The panel in the middle of
the window is the editor for creating Sequence Di-
agrams and viewing the monitoring results. The
bottom two panels are GUIs that belong to the run-
time monitoring framework. The left one is the Ac-
tive Monitors view, which lists all monitor-enabled
properties. The view also shows the acceptance sta-
tus of the monitored properties. The right bottom
panel is the Monitor History view from which users
can trace the execution of web services.

6.3 Other Issues in Implementation

As mentioned in Section 5, in order to construct
safety monitors, NFAs should be determinized.

However, the determinization algorithm may result
in an exponential blow-up of the number of states.
To keep the size of the automata small, we have
used several optimization techniques such as re-
duction and minimization [18], adopting the imple-
mentation of these techniques available in [31].

Although all generated automata are stored in
memory and users do not need to use them directly,
it is helpful to have an interface to allow viewing
and debugging these automata. In our framework,
we can store the generated automata in XML, and
thus enable displaying them in graphical automata-
editing tools such as JFLAP [25].

While web services are terminating processes,
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they are meant to be repeatedly executed by dif-
ferent customers. In order to reuse the monitor for
checking subsequent executions of the same web
service, we have implemented a resetting mecha-
nism: as one execution terminates, an additional
transition labeled terminate, added to all accepting
states of the monitor, brings it back to the initial
state.

Because web services are distributed and allow
asynchronous message communication, messages
may get delivered and received out of order. To
handle out-of-order events, we associate each event
with a timestamp at the time of its invocation in
the SCA layer. When events arrive at the message
queue of MonM, they are reordered and processed
according to their timestamps.

To report the results of monitoring to the users,
we display the cause of violations in the SD edi-
tor. The violations of safety properties are reported
by highlighting the unexpected event in the corre-
sponding SD, and the violation of a liveness prop-
erty – by marking the termination location indicat-
ing an incomplete sequence.

6.4 Experience

We have applied our framework to several web ser-
vices and report on results of monitoring two of
them by running our tool on the WebSphere Pro-
cess Server V6.0 and WebSphere Integration De-
veloper V6.0.1. The first is the TBS system intro-
duced in Section 1 and consisting of five partners
and seven invocation-type activities. Table 2 lists
sizes of monitoring automata constructed from the
TBS properties in Table 1. For example,

� �
in-

cludes 6 events between 3 partners and is repre-
sented by an automaton with 6 states and 23 transi-
tions.

The second system is an Online Shopping Sys-
tem (OSS) that implements a typical online shop-
ping service and consists of four partners and 20
invocation-type activities. These activities are in-
voked via asynchronous or synchronous message
passing. Two safety properties of OSS,

���
and

� '
in Table 2, correspond to “A premium customer al-
ways gets a discount on his/her purchase” and “An
order cannot be billed before being marked com-
plete by the customer”, respectively. The liveness
property of OSS,

���
, is “A completed order will

be eventually billed”. Our initial experience in-
dicates that safety and liveness properties can be
expressed in our language, and the generated au-

tomata are quite small (e.g., 6 states and 23 tran-
sitions for property

� ' ). Obviously, it remains to
be seen whether the approach remains feasible for
larger web service systems and for more complex
properties.

We did not detect errors in running the systems
against these properties (although our initial runs
discovered errors in properties themselves!), but in
order to exercise the monitoring framework, we
manually introduced several errors into the web
service implementation. For example, we modi-
fied the TBS system to remove the fault handler
for dealing with invalid credit cards. The monitor-
ing framework was able to detect a violation of the
liveness property

���
when the user submits a travel

request with an invalid card, and reported this vio-
lation by showing that the event returnInfo is miss-
ing. We believe that this feedback would have been
useful for debugging the TBS implementation. In
all cases, the overhead of using the monitoring sys-
tem was negligible.

7 Conclusion and Future Work

In this paper, we described our framework for run-
time monitoring of web service conversations de-
veloped as part of an industrial-strength system.
The framework is an aggregation of existing run-
time verification techniques. It is non-intrusive,
running in parallel with the monitored system and
intercepting interaction events during run time.
Thus, it does not require any code instrumentation,
does not significantly affect the performance of
the monitored system, and enables reasoning about
partners expressed in different languages. Further-
more, the use of a subset of UML 2.0 SDs as a spec-
ification language ensures that the framework is us-
able by practitioners to specify safety and liveness
properties. Liveness becomes finitary, where user-
specified time limits or the process termination act
as the stopping conditions.

While the initial experience using the framework
has been positive, we need to address a number of
issues before it becomes fully usable. The first set
of issues deals with increasing the range of prop-
erties that can be specified and monitored. In the
examples presented here, all objects were unique,
whereas in practice, users may be interested in
verifying interactions between multiple processes
of the same type. For example, two hotels may
want to communicate to share overflow customer
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requests. We feel that the problem can be easily
solved by encoding process IDs into the specifi-
cation, the automata transition relation, and inter-
action events. We also plan to handle specifica-
tion and monitoring of timing constraints and deal
with checking correctness of message data being
exchanged, although the latter may require a sig-
nificant modification to the monitoring framework.

Our work so far has been built on a basis that
all partners operate within the same process server
and thus a centralized monitor is a viable option.
In practice, most web services are distributed, re-
quiring a distributed monitoring framework. We
plan to investigate techniques used in the DESERT
project [22] to turn a centralized monitor into a
set of distributed ones, running in different process
servers.

While we had little trouble expressing correct-
ness criteria in the two systems we checked, cre-
ating templates for a variety of properties will sig-
nificantly improve the usability of our framework
and enable effective specification of more complex
conversations. To this end, we intend to use the
Specification Pattern System (SPS) [10] to build a
library of sequence diagram templates. While our
subset of SDs is less expressive than temporal log-
ics, we believe that a variety of properties from SPS
can be encoded in it. We also intend to conduct fur-
ther case studies to assess the usability and effec-
tiveness of our framework for checking web service
compositions.
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