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Abstract. We propose an approach for analyzing non-termination aachee
bility properties of recursive programs using a combinatd over- and under-
approximating abstractions. First, we define a new congnetgram semantics,
mixed that combines both natural and operational semanticsuaedt to de-
sign an on-the-fly symbolic algorithm. Second, we combing atgorithm with
abstraction by following classical fixpoint abstractioheiques. This makes
our approach parametrized by different approximating seics of predicate
abstraction and enables a uniform solution for over- anceragproximating
semantics. The algorithm is implemented ins¥1, and we show that it can es-
tablish non-termination of non-trivial C programs complgtautomatically.

1 Introduction

Automated predicate abstraction is one of the key techsifpreextending finite-state
model-checking to software. It combines automated cootitnu of a finite abstract
model with automated analysis by model-checking and iteratbstraction refinement.
Traditionally, predicate abstraction is an over-appraion of a program and thus is
biased towards establishing correctness of safety priepefiio exploit the bug detec-
tion ability of model-checkers and to extend the scope ofrabsmodel-checkers to
richer properties, recent research has proposed abstralytss that combines both
over- and under-approximations|[9, 15, 25, 26, 4, 18, 1thdugh such a combination,
which we callexact-approximationhas been shown to be effective in practice [17,
19], until now this line of research has focused exclusieglyanalyzing non-recursive
programs. In this paper, we propose a novel approach to@stech over- and under-
approximating analyses tecursiveprograms. Our approach has been implemented in
a software model-checkeragm. We illustrate it on non-termination and reachability
analysis of several C programs, including the benchmadis BEBOP [6], VERA [1],
and MopPED[14, 8], theAck program from [10] and a buggy version @fli cksor t
from [14]. To our knowledge, this is the first time thain-terminatiorof such C pro-
grams was established completely automatically.

As a motivation, we review an over-approximation-basedaggh for model-checking
of non-recursive programs and its limitations. Assume watwa check whether the
ERROR label is reachable in the C prograiX, shown in Figure 1(a). This safety
property is expressed in CTL as : AG (pc # ERROR). An over-approximating
abstractiona(EX,) of EX, using the predicate : = > 0 is shown in Figure 1(b),
where %’ is interpreted as a non-deterministic choia€EX, ) is a finiteboolearmodel
which over-approximates the original program: it contadtisfeasible and some in-
feasible (or spurious) executions. For examplé&X,) has an execution which gets



1. x=read(); y=read(); 1. p = *;
2. if(x>0){ 2. if(p){
3 whi | e(x>0) { 3. while(p) {
4. X=x+1; 4. p = p?true:*;
@ 5 i f(x<=0) ERROR } 0 5 if(!p) ERROR }
6. } else 6. } else
7. whi | e(y>0) y=y-1; 7. while(*) p = p;
8. END; 8. END;

Fig. 1. (a) A programEX,, and (b) its over-approximatiom(EX, ) using predicate : = > 0.

stuck in thewhi | e(*) loop on line 7, buEX, does not have the corresponding exe-
cution. Thus, if a universal temporal property, i.e., in time expressed in ACTL, holds
in a(EXy), it also holds inEX,. For example, our property is satisfied byx(EX,),
which mean€£RROR is unreachable imX,. However, when a property is falsified by
a(EX,), the result cannot be trusted since it may be caused by aosisubiehavior.
For example, consider checking whetB#g always terminates, i.e., whether it satisfies
Y : AF (pc = END). ¢ is falsified on our abstraction, but this result cannot betad
due to the infeasible non-terminating execution aroundhtiie e( *) loop on line 7.

The falsification (or refutation) ability of predicate atasition can be dramatically
improved by using amnderapproximating abstraction, where each abstract behavior
is simulated by some concrete one. In this case, if a bug (exaaution) is present in
the abstract model, inustexist in the concrete program. For example, the prediecate
mustalways betrue in thewhi | e( p) loop at line 3 (assumingnt is interpreted as
mathematical integers). Thus, an under-approximatioadan predicatg is sufficient
to establish thatX, is non-terminating.

There has been a considerable amount of research explistrget analysis based
on a combination of over- and under-approximating abstast e.g., [9, 15, 25, 26, 4,
18, 17]. Compared with an analysis based on over-approimatone, there are two
main differences:

1. Such a combination requires a hon-boolean abstract niwatstan represent both
over- and under-approximations at the same time. Examgleaah models are
Modal Transition System21] (equivalently, 3-valued Kripke structures [9]) and
Mixed Transition Systenii$3] (equivalently, 4-valued Kripke structures [18]). Hee
models use two types of transitionsiay for over-approximation, andhustfor
under-approximation.

2. It requires new model-checking algorithms for these ngdeich that a formula is
evaluated to eithetrue or false which are trusted, or tanknown which indicates
that the abstraction is not precise enough for a conclusiatyais.

Although both theoretical and practical combinations caxapproximation with au-
tomated CounterExample Guided Abstraction Refinementbege explored, they are
all limited to analyzing non-recursive programs.

One way to extend such analysis to recursive programs is itint@ to mirror
the traditional approach, i.e., (a) extend push-down syst® support combined over-
and under-approximations, and (b) develop analysis dlguos for this new modeling
formalism. While this approach seems natural, we are notexaBany existing work
along this line.

In this paper, we propose an alternative solution to thislem. Our approach
does not require the development of new specialized typpsigti-down systems, nor
new specialized analysis algorithms. The key to our appréato separate the analy-



sis of recursive programs from abstraction of the data domde accomplish this by
introducing a new concrete program semantics, which wewiakd and using it to de-
rive efficient symbolic algorithms for the analysis of namrhination and reachability
properties of finite recursive programs. These algorithmsesmany insights with tech-
niques in related work [8, 6, 1], i.e., they are functiond][ih terms of interprocedural
analysis, and apply only tstack-independemtroperties. The novelty of our approach
is the formalization of the algorithms as equational systeand the parametrization of
the algorithms by data abstractions. This makes it possib#are the same analysis
algorithms for over-, under-, and exact-approximationsparticular, we demonstrate
that in combination with exact-approximation [17], our st analysis supports both
verification and refutation.

The rest of this paper is organized as follows. We presefitgiraries and fix our
notation in Sec. 2. We present a simple programming langBagand its natural, and
operational semantics in Sec. 3. In Sec. 4, we introducedrseenantics and derive
symbolic on-the-fly algorithms for analyzing recursive gnams with finite data do-
main for reachability and non-termination. In Sec. 5, weapzgtrize the algorithms of
Sec. 4 by abstraction for handling programs with infiniteadddmain. Experiments are
reported in Sec. 6, and we conclude in Sec. 7. Additionadtithtions are given in the
Appendix.

2 Preliminaries

Valuation and Relations.A valuationos on a set of typed variablés is a function that
maps each variable in V' to a values(z) in its domain. We assume that valuations
extend to expressions in the obvious way. The domain f called avaluation type
and is denoted by (o). For example, it = {z — 5,y — 10} thent(o) = {z,y}.
The projection ob on a subselV C V is denoted byr|;.

The set of all valuations over is denoted by>y = {0 | 7(c) = V}. Note
that Xy is well-defined and consists of the unique empty valuatiomelationr on
two sets of variable$’ andV is a subset oy x X'y. Therelational typeof r is
U — V, denoted byr(r). For example, the type of = y is from y to z, that is,
(' = y) = {y} — {«}. In this paper, we use several simple relatiomsce is the
true relation,id is the identity relation (e.gid(z) £ ' = z), decl is a relation for
variable declaration, arklll — for variable elimination. Formally, they are defined as

follows, with the formaname' £’ expression:’ type

trueU = V)2 Xy x Xy :U -V declV) £ true(®@ - V): 0 —V
kill (V) Ltrue(V—-0):V =0 idV) 2{(6,0)eXyxZy|o=0}:V =V
Operations on relations are defined in Table 1, whereand x areasynchronous
sequentialand parallel composition, respectivelgssumes a restriction of identity
relation to a set) of valuations,[-| is variable introduction and(- — -) is scope ex-
tension Note thatx combines the outputs of two relations, gAdextends the source
of a relation with new variables. Together these operatioe/a&onstructing complex
relations from simple ones. For exampler, y}](z' = y) x[{z,y}](y' = z) is the re-
lation (2’ = y) A (v = z) with the type{z,y} — {z,y}. Directly composing’ = y
andy’ = z without variable introduction, i.e(z’ = y) x(y' = x), is invalid because
(' =y) = {y} — {«} andr(y’ = z) = {z} — {y} have different source types.



Operation Assumption Definition Type
riVra 7(r1) = 7(r2) Aa,a’ - ri(a,a’) Vra(a,a’) 7(r1)
r107T2 A :E:;; _ ‘U/ : ‘I//V Aa,a’ Vo (ri(a,a”) Ara(a”,a’))| U—-W

T(r)=U—-Wi
1 X T2 AT(r2)=U — Va Aa,a’ - ri(a,a’vy) Ara(a,a’|vy) (U — (ViU V2)
AVINVa =0
assumeéq) Aa,a” - Qa) Nid(7(Q))(a,a’) | 7(Q) — 7(Q)
Wir T(r)=U—>V Aa,a’ - r(alu,a’) Uuw) -V
W —=2)yrlr(r)=U >V AUCWA(Z\V)CW| (W]r) x (W]@Ed(Z\V))) W —Z

Table 1. Relational operations.

Scope extension extends a relation by combining it with deaiity on new variables.
For example({z,y} — {z,y})(@’ = z+1)is (2’ = 2+ 1) A (¥ = y). The
assumptions for scope extension ensure that any new aii@bbduced in the desti-
nation ofr must also be available in the source. For example, the ertefse, y} —
{z,z})(¢’ = x + 1) is not allowed since is not available in the source of the relation.

For a relatiornr with a typeU — V, we define there-imageof Q C Xy w.rt.r,
pre[r] : 2%V — 2%V, as

prefr)(Q) = Aa - Vo (r(a,a) A Q(a'))

Reachability and Non-termination. A Kripke structureK = (S,R) is a transition
system, wheré is a set of states arfd C S x S is a transition relation.

Let p be an atomic proposition, an§}, = {s € S | s = p} be the set of states
satisfyingp. A reachabilityproperty EF p in CTL) is true in a state if there exists a
path froms to a state irS,,. A non-terminatiorproperty EG p in CTL) is true in a state
s if there exists an infinite path startingaand contained i,,.

The setRS of all states satisfyingF p is the least solution to equatiosach, and
the setN'T of all states satisfyin§G p is the greatest solution to equatioon-term:

RS = S, Upreg[R](RS) (reach) NT = prefR N S,|(NT') (non-term)

3 Programming Language and Semantics

We use a simple imperative programming language PL whichivalhon-determinism
and recursive function calls. We assume that (a) functi@ve la set of call-by-value
formal parameters and a set of return variables; (b) eadhblarhas a unique name
and explicit scope; (c) there are no global variables (thay loe simulated by local
variables); and (d) a type expression is associated with sitement and explicitly
defines the pre- and post-variables of the statement.

Syntax. Let var denote variablesuncfunction identifiersg expressions, and valua-
tion types. The syntax of PL is defined as follows:

Atomic = skip | vart :=e™ | assumée) | var var™ | kill var™ | (T — T)Atomic
Stmt = Atomic | Stmt; Stmt | Stmt|| Stmt | if (e) then Stmt elseStmt
| while(e) Stmt | var™ := func(var™) | (T — T)Stmt
Fdef == func(var®):vart Stmt
Prog == Fdef"

We use bold lower case letters to represent vectors, e igtesrenik :=e means an
assignmenty, - - - ,z,:=e1, - - , e,. Forafunctionf with declarationf (p1,- - ,pn) :



D)
f1() { siip

1:
2:  enl: skip; ®
3: var x,y; var x,y can
4: X,y = 3,0; @ ... L eeeeeeseereeean, >
5. x 1= f2(x); xy:=3,0] e =7
6: skip; cal .t skip
7: while (x==2 && y<=0) { func-call zizy o m [2<0] @
8: y = f2(y); x: =f 2(x) skip |
9: } o -Fé.t [z>0 ' -
10: kill x,y; i \\\-:x:z
(@ 11: exl: } (b) A O .
12: f2(z):z { [(x =2Ay <0) func-call A \Z.\:Z !
13: en2: skip; y:=f2(y) o~
14: while (z < 0) { )
15: z := z+1; kil xy A
16: } =
170z = z-1; v
18: ex2: }
Fig. 2. (a) A progranEX; and (b) its ICFG.
r,---, Tk Py andry to denote the formal parameters and the return variablgfs of

respectivelyvar(e) denotes the variables ef and we assume that each program has a
“main” function f1, not called by other functions.

Base SemanticsLet X denote the set of all valuations in a PL program. With each
atomicstatemenstS, we associatbase semantiahat interprets the statement as a rela-
tion [S] C X x X on valuations of program variables:

[skip] £ id(®) [var x] £ decl[x] [kill x] £ kill[x] [(U — V)(S)] = (U — V)[95]
[x:=e] = {(0,0") | T(c) = var(e) Ao’ = [x; — o(e;)]}
[assume(e)] £ {(o,0") | (0,0") € id(var(e)) Ao |= e}

Note that for the type cast stateméit — V').S, we only consider those cases where
the assumptions for the scope extension are satisfied.

Interprocedural Control Flow Graph. A PL program s represented by brierproce-
dural Control Flow GraphICFG) [24]. An ICFG is alabeled graghl = (Loc, Edge, ),
whereLoc is a finite set of locationdzdge C Loc x Loc is a set of edges, andlabels
each edge with a program statement. For example, the ICFtBdgrrograntX; (see
Fig. 2(a)) is shown in Fig. 2(b). In ICFGs, (a) each functias la uniquentry(en) and
exit (ex); (b) there is a self-loop ax of f; to ensure existence of an infinite execution;
(c) each function callfgnc-call) is: acall edge, where the values of actual parameters
of the callee function are assigned to the formal parametdimction body, and eet
edge, where the return values are assigned to the varidtiles caller.

We assume thatall andret edges are uniquely determined by each other. aila
edge(k, en) and the correspondingt edge(ex, 1), k is the call locationgall(l) £ k,
and! is the return locatiorret(k) = [.

Operational Semanticsof a programP = (Loc, Edge, ) iS a transition system
K = (S§,R). Each state irS is a stack of activation records where each record is
of the form(pc, o), wherepc € Loc is a program counter, corresponding to a particular
control location inP, ando € Xy, is the valuation for variables in the scopepef
(denoted by (pc)). For a states = (k, 0y).I, (k, o1) is thetop element ofs, top(s).

For a pair of states = (k, 0y, ).Is andt = (I, 0;).I%, the transition relatiofR is defined
asR(s,t) = (k1) € Edge Nrg.y(s,t), wherer;, ;y is a deterministic (but not neces-



Statementr ((k, 1)) Operational Semantics 7 (1,1 Mixed Semanticsry, ;

func-call edge(U — U) x := f(a) 0 (U—-U) (lpy=a]o[f]elx:=rf])
calledgeS = (U — x) x:=e It =sA(ok,01) € [S] [S1

let (¢,0c).l- = Isin

retedge(U — V) x:=r Ii=T.Nl=ret(c) 0
A o1 = oc[{xi — op(r:i)}]
Intraprocedural : S I =TI A (ok,00) € [S] [S]

Table 2. The rules of operational and mixed semani¢ss the set of local variables in the scope
of the function call;] /] is natural semanticg s are the formals, and; are the returns of.

sarily total) relation orS at the edgék, 1), as defined in the 2nd column of Table 2. An
intraprocedural statement only modifies the top activatémord, and a statement on a
call or aret edge pushes a new record or pops one, respectively. Théivamslations
onfunc-call edges are empty, i.e., these edges are removed.

Natural Semantics[22] (a.k.a. big-step) of a block of codgis a relation]S] C X' x X
between the input and output 6f i.e., (c,0’) € [S5] iff the execution ofS on o
terminates and results irf. Natural semantics of a prograbh= f1,--- , f,, is a set of
relations, one per function, i.d.P] = ([f1], -, [/=])-

The semantic rules for PL are defined compositionally onyhngex using the func-
tion [-],, wherep is an environment mapping free fixpoint variables (useddops and
functions) to relations with an appropriate type. Natueahantics for atomic statements
is the same as base semantics; the other cases are:

[S1;82], = [S1], 0 [S:2]s [nX - S(X)]p = 1ip (AZ - [S(X)]p(x—2})
51 1l Sel, & [Su, v [S:], [x = f(@)], 2 [ps = a Xyix = 1],
[X], 2 p(X)  [while(e) ST, 2 [uX., - if(e) then (S; X.,)],
[if (e) then S; elseSs], = [(assume(e); S1) || (assume(—e); S2)],

wherelfp denotes for least fixpoint,(p(Xy)) = py — ry andr(p(X.)) = 7([S],).
A programP = fy,--- , f,, induces the system of equations

—_

p(Xfi) = IISfi]]P (1 <i< TL) (nat)

Natural semantics aP is the least fixpoint solution to this system, e.g., for thegram
EX, natural semantics gh is (z >0A 2 =2 —-1)V (2 <0AZ = —1).

Theorem 1. LetP = fy,---, f, be a program andk’ = (S, R) be its operational
semantics. A pair of activation recordé, o), (I, 07)) is in [ f;] iff there exists a path
80, ,8m IN K suchthatsy = (k, o%).1p ands,, = (I, 07).I,, suchthatly = I, k
and! areen andex of f;, respectively, and for all othes; = (p, 0,,).I'; eitherl’; # I
or p is notex of f;.

4 Reachability and Non-Termination Analysis

We now turn our attention to checking reachability and nemmwination of recursive
programs. Reachability can be reduced to finding the legsbifit solution to the equa-
tion reach w.r.t. a transition system of operational semantics of gram (see Sec. 2).
Similarly, non-termination corresponds to finding the gestisolution to the equation



non-term. However, since operational semantics explicitly expasgmtentially un-

bounded call stack at each state, these equations mustueel snler an infinite tran-
sition system (even when all program variables range ovée fitomains). Thus, the
exact fixpoint solution may not be computable.

However, many program properties depend only on the topet#il stack: i.e.,
they arestack-independenfnalysis of such properties can be done usstark-free
operational semantics in which everything except forttiigactivation record is ab-
stracted away. In this section, we apply this idea to theyaisbfEF p (reachability)
andEG p (non-termination) properties, whepes a proposition that depends only on
the top activation record. Without loss of generality, welier assume that only de-
pends on program locations, i.e., it is of the fopm= .

4.1 Mixed Semantics

We start by defining a stack-free operational semanticledalixed semantics, for PL
programs which removes the call stack but preserves redithabd non-termination
properties w.r.t. operational semantics of Sec. 3.

Intuitively, mixedsemantics is a combination of operational and natural séesan
in which a program is executed as follows: an atomic statétisesxecuted as usual; a
function callx := f 00(y) is executed as@on-deterministichoice between (a) execut-
ingf 00, i.e., updating the top activation record according to redtsemantics of oo,
and (b) entering the body 6foo, andforgetting all but the top activation record. Upon
reaching the end of the main function, the execution entesaifdoop indicating the
end of the program, and blocks at all other exit locationsesindoes not remember the
origin of the call. For example, consider mixed executiothaf prograntX; starting
from line 5 withz = 3 andy = 0. At this point, the execution can either (a) move to
line 6 and decreaseby one according to natural semanticsfef or (b) move toen2
(line 13), assigre to 3, and forget about: andy. Within f5, the execution continues
until it blocks atex2 (line 18) withz = 2.

Formally, mixed semantics of a prografh = (Loc, Edge, ) is a Kripke struc-
ture K™ = (S™,R™), where each state is single activation record(pc, o). For
a pair of statess = (k,o;) andt = (I,0;), the transition relation iR™(s,t) =
((k,1) € Edge) A1y, (ok, 01), Wherery, |, is a relation on valuations, as defined in
the 3rd column of Table 2. Note thaf' for ret edges is empty, which is equivalent to
removing those edges from the ICFG.

Mixed semantics preserves reachability and non-terntingiroperties w.r.t. oper-
ational semantics. If an execution of a functibneaches a stateunder the latter, then
eithers is a location withinf, or it is inside some other function thatcalls (directly or
indirectly). The non-deterministic treatment of functicadls in the former ensures that
both of these cases are covered. Similarly, if there existigfinite execution starting
inside f, then either this execution lies withify or f calls a function that does not
return the control back t@. Again, both cases are captured by mixed semantics.
Theorem 2. Let K and K™ be operational and mixed semantics of a given program,
respectively, angd be a propositional formula on control locations. ThéR, = EF p) &
(K™ EEFp)and(K E EGp) & (K™ = EGp).

When all variables of a given prograbfhrange over finite domains, mixed semantics
of P is afinite Kripke structure. Theorem 2 implies the followisgalysis algorithm:



Step 1: compute natural semanticsfoby solving equatiomat;

Step 2: construct the structufé™ following the rules of mixed semantics;

Step 3: solve equatiomsach or non-term on K™ for reachability or non-termination,
respectively.

While sound and complete, this algorithm is not efficienigcsiit relies on the (poten-

tially unnecessary) computation of “full” natural semastof all functions (for Step

2) and the construction of “full” mixed semantics before #malysis of the property

can even begin. As a trivial example, consider checlEfgpc = 5) on the program

EX;. Since reachability of line 6 is irrelevant for this anagghere is no need to con-

struct the transition relation correspondindtac-call edge(5, 6) and thus no need to

compute natural semantics 6f. Following this observation, in the rest of this section,

we show that the three steps of the above algorithm can beinethinto anon-the-fly

algorithm that only computes the necessary parts of mixeddhatural semantics.

4.2 On-the-fly Reachability

Intuitively, the analysis oEF p properties only needs a part of mixed semantics that
is used for solving equatiaeach, and that, in turn, drives the computation of the nec-
essary parts of natural semantics. To illustrate, consideckingEF(pc = 8) onEX;.
Natural semantics ofz is[f2] = (z >0A 2 =2—-1)V (2 <0AZ = —1). Aftera
few iterations, the reachability algorithm computes agoaditionQ =2 =2Ay <0

for reaching line 8 from line 6. To determine a pre-condifion@ w.r.t. a function call

x: =f 2(x) atline 5, it needs to compume[r?})ﬁ)](Q) = (r = 3 Ay < 0), where
e =W =y)A(z>0A2" =z —1)V(z <0A2" = —1))isthe instantiation of
[f=] to the call site. However, instead of using the “full” vensiaf [ f>], it is sufficient to
compute a pre-condition thassumes) as a post-condition, i.e., to restrict toz’ = 2
(the relevant part of)) yielding#™ = ¢y’ = y Az = 3Ax’ = 2. 7™ is an instantiation of

z = 3Nz’ = 2inthe context of the call, obtained by (a) convertipgo a postcondition

of f, by taking its pre-image over thret edge (which eliminateg and renames to z),
and (b) restricting /-] to this post-condition] fo] o (assuméz = 2)) = z = 3A2" = 2.

We now formalize the above intuition. Recall tHatk) stands for the set of vari-
ables in the scope of a locatiénLet! be the return location of a function call fo, Q C
Yy be a set of valuations atand the correspondingt edge(ex;, [) be labeled with
x = ry,. Then, functiomprop({ex;, ), Q) £ pre[[x :=ry,; (x — V(I))var (V1) \ x)]] (Q)
turns @ into a post-condition off;. Here, the pre-image w.r¥ar undeclares (or re-
moves) all variables that are not changed by the call, angriémage w.r.tret edge
turns the post-condition ax into the one omry,.

Let RS : Loc — 2% map each locatiok to a subset oy (x), and, as in Sec. 3,
let p be the semantics environment, mapping each fixpoint varithla relation of
an appropriate type. The on-the-fly algorithm for reachigtéinalysis is the equation
systenreach-otf:

RS(H) = {EVW if k = p (k € Loc)
RS(k)U UlGSMC(k) pre[it. ;] (RS(1))  otherwise (reach-otf)
p(Xy,) =15%1p 0 assume(UlESucc(exi) prop((emlLRS(Z))) (i€ [1..n])



wheresuccare the successors of a node in the ICEG, is the body off;, and for
S =n({k,1)), i1y 1 defined as:

- (U—-U) ([pf=a)op(Xg)o[x:=rf]) ifS=(U—-U)x:=f(a)
07 181 otherwise

This system is a combination o&t andreach, wherepropis used to propagate the
reachability information to the computation of natural sertics. Since reachability and
natural semantics are both least solutions to equatertd andnat, respectively, we
need the least solution to the above equation as well.

The following theorem shows that the analysis based on egusystenreach-otf
is sound, and computes only the necessary part of naturalrgas.

Theorem 3. Let RS| andp, be the least solutions to equation systeach-otf. Then,
1. RS, is the least solution to equatiaeach on K™;
2. Vi€ [L.n]-p (Xyg,) C [fi];
3. for anyp, if RS| is the least solution to th&S equations irreach-otf w.r.t. p, thenVi €
(L.n] - p(Xy,) C p(X7,)-

Part 1 of Theorem 3 shows thAtS is the solution for the reachability analysis; part 2
—thatp, is sound w.r.t. natural semantics ff and part 3 — thap, only contains the
information necessary for the analysis.

Since we need the least solution for b&l (k) andp(X,) equations, it can be ob-
tained by any chaotic iteration [11] and thus is independétite order of computation
of RS andp. Interestingly, the algorithm derived froraach-otf is a pre-image-based
variant of the post-image-based reachability algorithrBegoPr [6], and is similar to
the formalization of backward analysis withp described in [3].

4.3 On-the-fly Non-Termination

The derivation of the on-the-fly algorithm for the analysishon-terminationpt-otf,
proceeds similarly, and is a combination of systertsandnon-term:

0 if k= p (k€ Loc)
Ui sucerny PTG, nJ(NT(1)) - otherwise (nt-otf)

p(X1,) = [S1.1, © assumg Uy, ec(ex) POP (€0, 1), NT(1)) (i € [1..n])

where NT : Loc — 2% maps each locatioh to a subset oy (1), andsucg Sy,

andr™ are the same as thoseri#mch-otf. Since non-termination requires the greatest

solution tonon-term, and natural semantics — the least solutiondn in nt-otf, we need

the greatest solution t97'(k), and the least solution {9 X s, ) equations, respectively.
The following theorem shows that the non-termination atpor based omt-otf is

sound and computes only the necessary part of natural sesant

NT(k) = {

Theorem 4. Let NT3 andp, be the greatest solution fdv7" and the least solution for
p in systemt-otf, respectively. Then,
1. NT; is the greatest solution to the equatinan-term on K™;
2. Vi€ [L.n]-p (Xyg,) € [fi];
3. for anyp, if NT; is the greatest solution to th¥T" equations imt-otf w.r.t. p, thenVi €
(L.n] - p(Xy,) € p(X7,)



As in Theorem 3, part 1 of Theorem 4 shows soundness of namiftation, and parts
2 and 3 — soundness and necessity of computation of natunalrgies, respectively.

Unlike reachability, non-termination requires differdixpoint solutions forNT'
andp, and thus the order of computation can influence the resaie¥ample, consider
checkingEG(pc # ex;) onEX;. Initially, lines 7, 8, and 9 are associated with all the
valuations onz andy, i.e.,NT(7) = NT(8) = NT(9) = Y, .3, andp(f2) is empty,
which is not the partial semantics ¢f restricted toNT(9). If the computation ofN T
proceeds along the function call =f 2(y) using the initial value op(f2), NT(8) is
assigned). EventuallyNT(7) = NT(8) = NT(9) = 0, i.e., the algorithm incorrectly
concludes that any execution starting at lines 7, 8 or 9 teates.

The correct order for computing the solution is such thatteeimage of a sef)
w.r.t. a function call tof has to be delayed until the derivation ofX ;) w.r.t. Q is
finished. Nonetheless, since this order is only restriatddric-call edges, the order of
the computation elsewhere can be arbitrary. This can be tasadbid deriving “full”
natural semantics. Going back to the previous example,amérst computéVT along
all edges except fdunc-call edges, which will assigiVT'(9) with x = 2 Ay < 0, and
then compute natural semanticsfafrestricted to the post-condition< 0. Similarly,
although initially NT'(6) is assigned”y, ,;, NT'(6) = (z = 2Ay < 0) after the initial
computation ofNT', which means that only partial natural semanticg-ofestricted to
the post-conditionr = 2 is needed.

In this section, we have presented mixed semantics — a ftaekperational seman-
tics of PL, and showed how it can be used to check reachaaiiitinon-termination of
programs with a finite data domain. Although the use of suatesgics is not new, our
formalization provides a basis for a tight integration betw abstraction and analysis,
which is described in the next section.

5 Abstract Reachability and Non-Termination Analysis

Here, we follow the framework of abstract interpretatiom)(jA2] to derive an abstract
version of the concrete analysis described in Sec. 4. To deseequire two abstract
domains: abstract sets, whose elements approximate set@1n and abstract relations
A, whose elements approximate relation2f*. These domains must be equipped
with abstract version of all of the operations used in equatieach-otf and nt-otf.
Finally, the framework of Al ensures that the solution to dsteact equation is an
approximation of the solution to the corresponding corecegfuation. In what follows,
we identify the necessary abstract operationdgandA,., and then show how to adapt
predicate abstraction for our algorithm.

Abstract Domains and Operations.The domain of abstract sets, must be equipped
with a set unioruU (used in the reachability computation) and equality (tcediethe
fixpoint convergence). The domain of abstract relatidnsmust be equipped with (a)
a pre-image operator to convert abstract relations to atidransformers ovet;, (b)
asynchronous and sequential compositions of abstratiore$gused in natural seman-
tics), (c) scope extension (used to instantiate a functahusing natural semantics
of a function), and (d) equality (to detect the fixpoint comence). Furthermore, we
need arassumeperator that maps an abstract set to a corresponding etirstiation;
and, to apply the abstraction directly to the source cod@napaitable version of ab-
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stract base semantig,, that maps each atomic statem#&ftb an abstract relation that
approximate$S] (the concrete semantics 6J.

Predicate Abstraction.In the rest of this section, we show how the domain of predicat
abstraction [16, 5, 18] can be extended with the necessaityaab operations to yield
abstract reachability and non-termination algorithms.

Predicate abstraction provides domains for abstractemehts, sets, and relations
of valuations. Letl be a set of variables, arl be a set of predicates ovér. The
elementarydomain of predicate abstraction ovr denoted9p, is the set of all con-
junctions of literals ove. For example, ifP = {z > 0,z < y}, then—(z > 0) and
(x > 0) A =(z < y) are inOp. An element ofY € © approximates any valuation
o € Xy that satisfies all literals ifi. For exampleg = (x — 2,y — 2) is approxi-
mated byx > 0, and is also approximated ify > 0) A —(z < y) more precisely.

The elementary domain is lifted to sets and relations in aroals way: sets over
© represent concrete sets, and relations éverconcrete relations. This extension can
be eitherover- or under-approximatingi.e., a collection of concrete valuations corre-
sponding to an abstract set either over-approximates agreaqgproximates a concrete
set. The over- and under-approximating interpretatiomsalao be combined into a
singleexactapproximation using sets and relations over Belnap |atfi¢. |

Abstract versions of set union, set and relation equality;image, and base se-
mantics for over-approximating predicate abstractiorelasen defined (e.g., [5]). For
example, ifX andY are twoabstractsets, their abstract union ¥ U, Y £ \z -
X(z) VY (z).In[18,17], we show that these operations also naturaligrekto under-
approximating and exact predicate abstractions. In therlaase, conjunctions and
disjunctions, e.g.y in the definition ofU,,, are interpreted in Belnap logic. We de-
fine the missing abstract relational operati@ssumg, asynchronous\{,), and se-
guential ¢,) compositions similarly, using the corresponding defims from Sec. 2,
e.g., ifr; andr, are abstract relations, then their abstract asynchrormupasition is
71 Vo T2 2 Xs,t-r1(s,t) V ra(s, t), whereV is interpreted in Boolean logic for over-
and under-approximating abstraction, and in Belnap logi@kact abstraction.

In concrete semantics, scope extension is used to extetatiame¢o additional vari-
ables. That s, if- is a relation of typd/ — V, then(U — U)r is an extension of to
variables inU \ V. In the abstract semantics, relations are defined overgatss; thus,
abstract scope extension must extend a relation to additwadicates. To do this, we
assume that the elementary abstract doréagorresponding té/ can be decomposed
into two independent abstract domains: oneWoand the other — fot/ \ V, i.e.,©
is defined using predicates that either range only &veor only overU \ V. Then,
abstract scope extension— -),, defined as in Table 1, is a sound approximation of
concrete scope extension.

Theorem 5. Abstract operations assumgV,, o, and(- — -), as defined above are
sound approximations of their concrete counterparts.

In the context of our on-the-fly algorithms, the assumptinrabstract scope exten-
sion means that predicates that are used to abstract alsati a return locatiohof a
function callx:= f(a) are either defined only over, or only over other variables in the
scope ofl. For example, predicatas= 2 andy < 0 can be used to abstract valuations
at line 6 in the progrargX,, but predicater > y cannot. This is not a severe restriction
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int g; void level _i(){ : void level _n(){ E(b)

int t =0; : int t =0;
void min(){ : g =-1% g g =-1%*g; ©osstmt>r=
level _1(); : if (g<=0){ St (g<=0){ : g=-1+g
if (g<0){ t o= t+1; : t o= t+1; :
(a) ERROR. ; : } else { "} else { O]
} : level _i +1(); ©o<stmt>i=
END: ; : g=-1+*g9 <stnt> : level _n();
} : level _i+1(); : g=-1+g;
C} ol : level n();
g=-1x*g} g =-1x*g;} '
Fig. 3.(a) The template for experiments. @9t nt > for templateT1(n). (c) <st nt > for T2(n).
T1(n) T2(n)
n || EF (pc = ERROR) (reach)|| EG (pc # END) (non-terminatej -EF (pc = ERROR) (unreach)
20 6.5 4.9 4.3
50 11.7 8.9 6.3
100 20.3 20.3 111
200 36.7 25.2 27.6
300 47.6 34.4 42.1
400 68.1 43.2 64.5
500 105.2 60.6 86.6

Table 3. Experimental results: overall analysis time in seconds.

in practice since a function can always be extended to aeckgfitional parameters and
return them without modification.

To summarize, both over- and under-approximating preeliaastractions can be
used to soundly abstract reachability and non-terminaiaysis. The choice depends
on the desired algorithm. For example, over-approximasioecessary to establish un-
reachability, whereas under-approximation — to estali@mtermination. Since exact
predicate abstraction combines them, it can be used fondeoification and refutation.

6 Experiments

The technique described in this paper has been implememtaat isymbolic software
model checker Xsm [19]. YASM is written in JvA; it uses CVC Lite [7] to approxi-
mate program statements and CUDD [27] as a decision diagngine We have also
extended our proof-based refinement approach [17] to hawadileal semantics of func-
tions. In the rest of this section, we report on a prelimirergluation of this implemen-
tation. All of the experiments have been conducted on a 2x@@4X3.6GHz server and
are available ahttp://ww. cs. toronto. edu/ f m yasm yasm t ests. zi p. Our
experiments demonstratea¥M’s ability to analyze reachability and non-termination
of recursive programs using exact-approximation. In sumgma
1. We run YAsm on template programs similar to those in thee®pP and MoPED
benchmarks. The experiment shows that the analysis tinmsotbreachability and
non-termination increases linearly w.r.t. the number ofctions in a program.
2. We show that abstract analysis based on exact-appraimsatpports both verifi-
cation and refutation.
3. We compare Xsm with MopeDand VERA (BEBOPdoes not do non-termination),
and show that Xsm can prove non-termination of the original bugQyi cksor t
algorithm, whereas MPeEDand VERA cannot.

To evaluate the reachability algorithm, we have used thelgte progranT 1(n)
which is a variant of the one used foeBoP in [6]. T1(n) is the result of replacing
<st nt > in the template shown in Fig. 3(a) with the statements in &{h). It consists
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void main (){ voi d nain(){ void main (){

int nx, ny; int x; int meft, nright;
ack (mx, ny); foo(x); qui cksort (meft, nright);
END: ; } whi | e(x!=0) { END: ; }
if (x<0) {
(@ int ack (int x, int y){ () x = -1+ x; () void quicksort (int left, int right){
int rl, n; X = X+2; int 1o, hi;
if (x >0) { } else { if (left >=right) return;
if (y >0 { X =-1+* x; lo =left; hi =right;
y =y -1 X = X+3; while (1o <= hi) {
n = ack (x, y); 1} if (nondet()) {
} else { n=1; } END: ;} lo = | o+1;
rl = ack (x, n); } else {
return ril; void foo (int y){ if(lol=left || hi!=right)
} else { y =-1+*y; hi = hi-1;
rt=y+ 1 it (y<0) { 1}
return ril; foo (y); qui cksort (left, hi);
1} 1} qui cksort (lo, right); }

Fig. 4. Non-terminating programs: (&ck; (b) Shi ft ; (c) BuggyQui cksort .
of amai n function andn sub-functions, whereai n calls| evel _1, andl evel _i
callsl evel _i +1 twice if the global variablg is positive. Since is not initialized, its
initial value is arbitrary. Although this program has nouesion, inlining function calls
increases its size exponentially, making the analysisasifde for a sufficiently large
n. We checked the reachability prope&§ (pc = ERROR) with values ofn ranging
between 20 and 500, and measured dkerall analysis time (including parsing, ab-
straction, model-checking, and refinement). The resudtslown in the second column
of Table 3. Since our technique analyzes each function aggrthe analysis time in-
creases linearly w.r.t. the number of function$, @s expected. In all these casesswi
was successful in proving reachability, and discoveredipatesgy < 0, g > 0 and
g < 0. While the templat& 1(n) is similar to the one used in [6], there is a fundamen-
tal difference: EEBOP assumes an over-approximating abstract semantics of &wole
programs and cannabnclusively verifithat theERROR label is reachable with these
predicates. XsMm uses exact-approximation which results in a conclusivéyaisa

We also checked the template progra(n), obtained by replacingst nt > in
the template in Fig. 3(a) with statements in Fig. 3(c). Nenrtination and unreacha-
bility results are presented in the third and fourth columh$able 3, respectively. As
expected, the analysis time increases linearly with theberraf functions.

For non-termination, we have also appliedsw to several examples inspired by
[10], in particular, on program&ck andShi f t, shown in Fig. 4(a) and (b), respec-
tively. YAsSM was able to automatically prove non-terminationfafk in 2.1 seconds
and discovered predicatgs> 0,n > 0, z > 0, mz > 0 andmy > 0. Analysis
of Shi ft took 1.9 seconds and yielded predicates 0, z < 0,z > 3,2z = 0
andz = 3. Finally, we have comparedAém to MOPED [14] and VERA [1] on the
buggyQui cksort example from [14] in Fig. 4(c), whemondet () represents non-
deterministic choice. Xsm has established non-termination@fi cksort in 10 sec-
onds, finding 7 predicates. Note that bottoMeD and VERA only apply to programs
with finite data domain, and the analysis in [1] and [14] hadetstrict the number of
bits used by each variable, whilea¥™m did not need any such restriction.

7 Conclusion and Related Work

This paper presented a model-checking technique for asalf/seachability and non-
termination properties of recursive programs. The teamig based on a stack-free
mixed operational semantics of programs that uses naemastics and non-determinism
to eliminate the call stack while preserving stack-indejgsm properties. We show
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how to compute only the necessary part of natural semantiésgithe analysis, lead-
ing to on-the-fly algorithms for analysis of reachabilitydanon-termination of pro-
grams with finite data domains. We then use the framework sfratt interpreta-
tion [12] to combine our algorithms with data abstractiomsking them applicable
to programs with infinite data domains as well. Although wedsglize our approach
to predicate abstraction, we believe that it can be extetnl@ther abstract domains
as well. We have implemented a combination of this approatthexact predicate ab-
straction in Yasm [19] which supports both verification and refutation of pedes.
Our experiments indicate thata¥m scales to programs with a large number of func-
tions and is able to establish non-termination of non-tfi(@lthough small) examples.
In particular, we were able to automatically prove non-teation of Ack [10] and
Qui cksort [14] without any restrictions on the data domain.

In the terminology of interprocedural program analysis|{24ir approach isunc-
tional since it uses natural semantics to handle function callstigher model-checking
approaches for recursive programs (e.g., [23, 6, 1]) aretimmal as well, and only com-
pute the necessary part of natural semantics. Our reaihabgorithm can be seen as
a pre-image-based variant of the RHS algorithm [23], aseémginted in BBOP[6].

Both MopPED[14] and VERA [1] can check non-termination of programs with finite
data domains. Their algorithms are comparable with our teomination algorithm.
However, it is unclear how to combine their techniques withagbitrary abstraction,
whereas it is quite natural in our approach. Note that aiitabil detect non-termination
of over-approximating Boolean programs is of limited tjikince over-approximation
often introducespuriousnon-terminating computations. Thus, non-terminationrof a
over-approximation says nothing about non-terminatiothefconcrete program.

Jeannet and Serwe [20] apply abstract interpretation twalabstract analysis of
recursive programs by different abstractions of the calllstTheir approach is also pa-
rameterized by an arbitrary data abstraction. Howevegtigors restrict their attention
to reachability (i.e., invariance) properties, and do egtort on an implementation.

Our interest in non-termination is motivated by the worke@mination(e.g., [10]).
We view our approach as complementary to that. As illustrdte our experiments,
YASM can prove non-termination of non-trivial programs. Howeite ability to prove
termination is limited to cases where termination can batdished by a constant rank-
ing function. In the future, we plan to investigate how theesgths of the two ap-
proaches can be combined in a single algorithm.

In this paper, we have restricted our attention to stackjiethdent properties. We
hope to extend our approach to a more general class of pregferty., the ones express-
ible in CARET [2]. Finally, the refinement strategies that aurrently implemented in
YAsM were originally developed for reachability analysis orwhile they were suf-
ficient for our non-termination experiments, we believe steategies specifically tai-
lored to the non-termination analysis are essential fdirsgthe tool to large programs.
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