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Abstract. We propose an approach for analyzing non-termination and reacha-
bility properties of recursive programs using a combination of over- and under-
approximating abstractions. First, we define a new concreteprogram semantics,
mixed, that combines both natural and operational semantics, anduse it to de-
sign an on-the-fly symbolic algorithm. Second, we combine this algorithm with
abstraction by following classical fixpoint abstraction techniques. This makes
our approach parametrized by different approximating semantics of predicate
abstraction and enables a uniform solution for over- and under-approximating
semantics. The algorithm is implemented in YASM, and we show that it can es-
tablish non-termination of non-trivial C programs completely automatically.

1 Introduction

Automated predicate abstraction is one of the key techniques for extending finite-state
model-checking to software. It combines automated construction of a finite abstract
model with automated analysis by model-checking and iterative abstraction refinement.
Traditionally, predicate abstraction is an over-approximation of a program and thus is
biased towards establishing correctness of safety properties. To exploit the bug detec-
tion ability of model-checkers and to extend the scope of abstract model-checkers to
richer properties, recent research has proposed abstract analysis that combines both
over- and under-approximations [9, 15, 25, 26, 4, 18, 17]. Although such a combination,
which we callexact-approximation, has been shown to be effective in practice [17,
19], until now this line of research has focused exclusivelyon analyzing non-recursive
programs. In this paper, we propose a novel approach to extend such over- and under-
approximating analyses torecursiveprograms. Our approach has been implemented in
a software model-checker YASM. We illustrate it on non-termination and reachability
analysis of several C programs, including the benchmarks from BEBOP [6], V ERA [1],
and MOPED [14, 8], theAck program from [10] and a buggy version ofQuicksort
from [14]. To our knowledge, this is the first time thatnon-terminationof such C pro-
grams was established completely automatically.

As a motivation, we review an over-approximation-basedapproach for model-checking
of non-recursive programs and its limitations. Assume we want to check whether the
ERROR label is reachable in the C programEX0 shown in Figure 1(a). This safety
property is expressed in CTL asϕ : AG (pc 6= ERROR). An over-approximating
abstractionα(EX0) of EX0 using the predicatep : x > 0 is shown in Figure 1(b),
where ‘*’ is interpreted as a non-deterministic choice.α(EX0) is a finitebooleanmodel
which over-approximates the original program: it containsall feasible and some in-
feasible (or spurious) executions. For example,α(EX0) has an execution which gets



1. x=read(); y=read();
2. if(x>0){
3. while(x>0) {
4. x=x+1;
5. if(x<=0) ERROR;}
6. } else
7. while(y>0) y=y-1;
8. END;

1. p = *;
2. if(p){
3. while(p) {
4. p = p?true:*;
5. if(!p) ERROR;}
6. } else
7. while(*) p = p;
8. END;

(a) (b)

Fig. 1. (a) A programEX0, and (b) its over-approximationα(EX0) using predicatep : x > 0.

stuck in thewhile(*) loop on line 7, butEX0 does not have the corresponding exe-
cution. Thus, if a universal temporal property, i.e., in theone expressed in ACTL, holds
in α(EX0), it also holds inEX0. For example, our propertyϕ is satisfied byα(EX0),
which meansERROR is unreachable inEX0. However, when a property is falsified by
α(EX0), the result cannot be trusted since it may be caused by a spurious behavior.
For example, consider checking whetherEX0 always terminates, i.e., whether it satisfies
ψ : AF (pc = END). ψ is falsified on our abstraction, but this result cannot be trusted
due to the infeasible non-terminating execution around thewhile(*) loop on line 7.

The falsification (or refutation) ability of predicate abstraction can be dramatically
improved by using anunder-approximating abstraction, where each abstract behavior
is simulated by some concrete one. In this case, if a bug (or anexecution) is present in
the abstract model, itmustexist in the concrete program. For example, the predicatep

mustalways betrue in thewhile(p) loop at line 3 (assumingint is interpreted as
mathematical integers). Thus, an under-approximation based on predicatep is sufficient
to establish thatEX0 is non-terminating.

There has been a considerable amount of research exploring abstract analysis based
on a combination of over- and under-approximating abstractions, e.g., [9, 15, 25, 26, 4,
18, 17]. Compared with an analysis based on over-approximation alone, there are two
main differences:

1. Such a combination requires a non-boolean abstract modelthat can represent both
over- and under-approximations at the same time. Examples of such models are
Modal Transition Systems[21] (equivalently, 3-valued Kripke structures [9]) and
Mixed Transition Systems[13] (equivalently, 4-valued Kripke structures [18]). These
models use two types of transitions:may for over-approximation, andmust for
under-approximation.

2. It requires new model-checking algorithms for these models, such that a formula is
evaluated to eithertrue or false, which are trusted, or tounknown, which indicates
that the abstraction is not precise enough for a conclusive analysis.

Although both theoretical and practical combinations of exact-approximation with au-
tomated CounterExample Guided Abstraction Refinement havebeen explored, they are
all limited to analyzing non-recursive programs.

One way to extend such analysis to recursive programs is to continue to mirror
the traditional approach, i.e., (a) extend push-down systems to support combined over-
and under-approximations, and (b) develop analysis algorithms for this new modeling
formalism. While this approach seems natural, we are not aware of any existing work
along this line.

In this paper, we propose an alternative solution to this problem. Our approach
does not require the development of new specialized types ofpush-down systems, nor
new specialized analysis algorithms. The key to our approach is to separate the analy-
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sis of recursive programs from abstraction of the data domain. We accomplish this by
introducing a new concrete program semantics, which we callmixed, and using it to de-
rive efficient symbolic algorithms for the analysis of non-termination and reachability
properties of finite recursive programs. These algorithms share many insights with tech-
niques in related work [8, 6, 1], i.e., they are functional [24] in terms of interprocedural
analysis, and apply only tostack-independentproperties. The novelty of our approach
is the formalization of the algorithms as equational systems, and the parametrization of
the algorithms by data abstractions. This makes it possibleto share the same analysis
algorithms for over-, under-, and exact-approximations! In particular, we demonstrate
that in combination with exact-approximation [17], our abstract analysis supports both
verification and refutation.

The rest of this paper is organized as follows. We present preliminaries and fix our
notation in Sec. 2. We present a simple programming languagePL and its natural, and
operational semantics in Sec. 3. In Sec. 4, we introduce mixed semantics and derive
symbolic on-the-fly algorithms for analyzing recursive programs with finite data do-
main for reachability and non-termination. In Sec. 5, we parametrize the algorithms of
Sec. 4 by abstraction for handling programs with infinite data domain. Experiments are
reported in Sec. 6, and we conclude in Sec. 7. Additional illustrations are given in the
Appendix.

2 Preliminaries
Valuation and Relations.A valuationσ on a set of typed variablesV is a function that
maps each variablex in V to a valueσ(x) in its domain. We assume that valuations
extend to expressions in the obvious way. The domain ofσ is called avaluation type
and is denoted byτ(σ). For example, ifσ = {x 7→ 5, y 7→ 10} thenτ(σ) = {x, y}.
The projection ofσ on a subsetU ⊆ V is denoted byσ|U .

The set of all valuations overV is denoted byΣV , {σ | τ(σ) = V }. Note
thatΣ∅ is well-defined and consists of the unique empty valuation. Arelationr on
two sets of variablesU andV is a subset ofΣU × ΣV . The relational typeof r is
U → V , denoted byτ(r). For example, the type ofx′ = y is from y to x, that is,
τ(x′ = y) = {y} → {x}. In this paper, we use several simple relations:true is the
true relation,id is the identity relation (e.g.,id(x) , x′ = x), decl is a relation for
variable declaration, andkill — for variable elimination. Formally, they are defined as
follows, with the formatname‘,’ expression‘:’ type:

true(U → V ) , ΣU × ΣV : U → V decl(V ) , true(∅ → V ) : ∅ → V

kill(V ) , true(V → ∅) : V → ∅ id(V ) , {(σ, σ′) ∈ ΣV × ΣV | σ = σ′} : V → V

Operations on relations are defined in Table 1, where∨, ◦ and× areasynchronous,
sequentialand parallel composition, respectively,assumeis a restriction of identity
relation to a setQ of valuations,[·] is variable introduction, and(· → ·) is scope ex-
tension. Note that× combines the outputs of two relations, and[·] extends the source
of a relation with new variables. Together these operators allow constructing complex
relations from simple ones. For example,[{x, y}](x′ = y)×[{x, y}](y′ = x) is the re-
lation (x′ = y) ∧ (y′ = x) with the type{x, y} → {x, y}. Directly composingx′ = y

andy′ = x without variable introduction, i.e.,(x′ = y)×(y′ = x), is invalid because
τ(x′ = y) = {y} → {x} andτ(y′ = x) = {x} → {y} have different source types.
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Operation Assumption Definition Type
r1 ∨ r2 τ (r1) = τ (r2) λa, a′ · r1(a, a′) ∨ r2(a, a′) τ (r1)

r1 ◦ r2
τ (r1) = U → V

∧ τ (r2) = V → W
λa, a′ · ∨a′′ (r1(a, a′′) ∧ r2(a

′′, a′)) U → W

r1 × r2

τ (r1) = U → V1

∧ τ (r2) = U → V2

∧ V1 ∩ V2 = ∅
λa, a′ · r1(a, a′|V1

) ∧ r2(a, a′|V2
) U → (V1 ∪ V2)

assume(Q) λa, a′ · Q(a) ∧ id(τ (Q))(a,a′) τ (Q) → τ (Q)

[W ]r τ (r) = U → V λa, a′ · r(a|U , a′) (U ∪ W ) → V

(W → Z)r τ (r) = U → V ∧ U ⊆ W ∧ (Z \ V ) ⊆ W ([W ]r) × ([W ](id(Z \ V ))) W → Z

Table 1.Relational operations.

Scope extension extends a relation by combining it with the identity on new variables.
For example,({x, y} → {x, y})(x′ = x + 1) is (x′ = x + 1) ∧ (y′ = y). The
assumptions for scope extension ensure that any new variable introduced in the desti-
nation ofr must also be available in the source. For example, the extension ({x, y} →
{x, z})(x′ = x+ 1) is not allowed sincez is not available in the source of the relation.

For a relationr with a typeU → V , we define thepre-imageof Q ⊆ ΣV w.r.t. r,
pre[r] : 2ΣV → 2ΣU , as

pre[r](Q) , λa · ∨a′ (r(a, a′) ∧Q(a′))

Reachability and Non-termination. A Kripke structureK = 〈S,R〉 is a transition
system, whereS is a set of states andR ⊆ S × S is a transition relation.

Let p be an atomic proposition, andSp , {s ∈ S | s |= p} be the set of states
satisfyingp. A reachabilityproperty (EF p in CTL) is true in a states if there exists a
path froms to a state inSp. A non-terminationproperty (EG p in CTL) is true in a state
s if there exists an infinite path starting ats and contained inSp.

The setRS of all states satisfyingEF p is the least solution to equationreach, and
the setNT of all states satisfyingEG p is the greatest solution to equationnon-term:

RS = Sp ∪ pre[R](RS) (reach) NT = pre[R∩ Sp](NT ) (non-term)

3 Programming Language and Semantics
We use a simple imperative programming language PL which allows non-determinism
and recursive function calls. We assume that (a) functions have a set of call-by-value
formal parameters and a set of return variables; (b) each variable has a unique name
and explicit scope; (c) there are no global variables (they can be simulated by local
variables); and (d) a type expression is associated with each statement and explicitly
defines the pre- and post-variables of the statement.

Syntax.Let var denote variables,func function identifiers,e expressions, andT valua-
tion types. The syntax of PL is defined as follows:

Atomic ::= skip | var+ := e+ | assume(e) | var var+ | kill var+ | (T → T )Atomic

Stmt ::= Atomic | Stmt ; Stmt | Stmt ‖Stmt | if(e) then Stmt elseStmt

| while(e) Stmt | var+ := func(var+) | (T → T )Stmt

Fdef ::= func(var+) : var+ Stmt

Prog ::= Fdef+

We use bold lower case letters to represent vectors, e.g., a statementx:=e means an
assignmentx1, · · · , xn :=e1, · · · , en. For a functionf with declarationf(p1, · · · , pn) :
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(a)

1: f1() {
2: en1: skip;
3: var x,y;
4: x,y := 3,0;
5: x := f2(x);
6: skip;
7: while (x==2 && y<=0) {
8: y := f2(y);
9: }
10: kill x,y;
11: ex1: }

12: f2(z):z {
13: en2: skip;
14: while (z < 0) {
15: z := z+1;
16: }
17: z := z-1;
18: ex2: }

(b)

ex1

10

7 8

9

6

5

4

3

en1

ex2

17

14 15

16

en2

skip

var x,y

x,y:=3,0

skip

[x = 2 ∧ y ≤ 0]

skip[!(x = 2 ∧ y ≤ 0)]

kill x,y

skip

[z<0]

z:=z+1
skip

[z ≥ 0]

z:=z-1

func-call
x:=f2(x)

func-call
y:=f2(y)

ret
x:=z

ret
y:=z

call
z:=x

call
z:=y

Fig. 2. (a) A programEX1 and (b) its ICFG.

r1, · · · , rk, pf andrf to denote the formal parameters and the return variables off ,
respectively.var(e) denotes the variables ofe, and we assume that each program has a
“main” functionf1, not called by other functions.

Base Semantics.Let Σ denote the set of all valuations in a PL program. With each
atomicstatementS, we associatebase semanticsthat interprets the statement as a rela-
tion [[S]] ⊆ Σ ×Σ on valuations of program variables:

[[skip]] , id(∅) [[var x]] , decl[x] [[kill x]] , kill[x] [[(U → V )(S)]] , (U → V )[[S]]

[[x := e]] , {(σ, σ′) | τ (σ) = var(e) ∧ σ′ = [xi 7→ σ(ei)]}

[[assume(e)]] , {(σ, σ′) | (σ, σ′) ∈ id(var(e)) ∧ σ |= e}

Note that for the type cast statement(U → V )S, we only consider those cases where
the assumptions for the scope extension are satisfied.

Interprocedural Control Flow Graph. A PL program is represented by anInterproce-
dural Control Flow Graph(ICFG) [24]. An ICFG is a labeled graphG = 〈Loc,Edge, π〉,
whereLoc is a finite set of locations,Edge ⊆ Loc×Loc is a set of edges, andπ labels
each edge with a program statement. For example, the ICFG forthe programEX1 (see
Fig. 2(a)) is shown in Fig. 2(b). In ICFGs, (a) each function has a uniqueentry(en) and
exit (ex); (b) there is a self-loop atexof f1 to ensure existence of an infinite execution;
(c) each function call (func-call) is: acall edge, where the values of actual parameters
of the callee function are assigned to the formal parameters, a function body, and aret
edge, where the return values are assigned to the variables of the caller.

We assume thatcall andret edges are uniquely determined by each other. For acall
edge(k, en) and the correspondingret edge(ex, l), k is the call location,call(l) , k,
andl is the return location,ret(k) , l.

Operational Semanticsof a programP = 〈Loc,Edge, π〉 is a transition system
K = 〈S,R〉. Each state inS is a stack of activation records where each record is
of the form〈pc, σ〉, wherepc ∈ Loc is a program counter, corresponding to a particular
control location inP , andσ ∈ ΣV (pc) is the valuation for variables in the scope ofpc

(denoted byV (pc)). For a states = (k, σk).Γ , (k, σk) is thetop element ofs, top(s).
For a pair of statess = (k, σk).Γs andt = (l, σl).Γt, the transition relationR is defined
asR(s, t) , 〈k, l〉 ∈ Edge∧ r〈k,l〉(s, t), wherer〈k,l〉 is a deterministic (but not neces-
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Statementπ(〈k, l〉) Operational Semantics r〈k,l〉 Mixed Semanticsrm

〈k,l〉

func-call edge(U → U) x := f(a) ∅ (U → U) ([[pf := a]] ◦ [[f ]] ◦ [[x := rf ]])

call edgeS ≡ (U → x) x := e Γt = s ∧ (σk, σl) ∈ [[S]] [[S]]

ret edge(U → V ) x := r

let (c, σc).Γc = Γs in

Γt = Γc ∧ l = ret(c)
∧ σl = σc[{xi 7→ σk(ri)}]

∅

Intraprocedural : S Γt = Γs ∧ (σk, σl) ∈ [[S]] [[S]]

Table 2.The rules of operational and mixed semanics.U is the set of local variables in the scope
of the function call;[[f ]] is natural semantics,pf are the formals, andrf are the returns off .

sarily total) relation onS at the edge〈k, l〉, as defined in the 2nd column of Table 2. An
intraprocedural statement only modifies the top activationrecord, and a statement on a
call or aret edge pushes a new record or pops one, respectively. The transition relations
on func-call edges are empty, i.e., these edges are removed.

Natural Semantics[22] (a.k.a. big-step) of a block of codeS is a relation[[S]] ⊆ Σ×Σ
between the input and output ofS: i.e., (σ, σ′) ∈ [[S]] iff the execution ofS on σ
terminates and results inσ′. Natural semantics of a programP ≡ f1, · · · , fn is a set of
relations, one per function, i.e.,[[P ]] = 〈[[f1]], · · · , [[fn]]〉.

The semantic rules for PL are defined compositionally on the syntax using the func-
tion [[·]]ρ, whereρ is an environment mapping free fixpoint variables (used for loops and
functions) to relations with an appropriate type. Natural semantics for atomic statements
is the same as base semantics; the other cases are:

[[S1; S2]]ρ , [[S1]]ρ ◦ [[S2]]ρ [[µX · S(X)]]ρ , lfp
`

λZ · [[S(X)]]ρ{X 7→Z}

´

[[S1 ‖ S2]]ρ , [[S1]]ρ ∨ [[S2]]ρ [[x := f(a)]]ρ , [[pf := a; Xf ;x := rf ]]ρ

[[X]]ρ , ρ(X) [[while(e) S]]ρ , [[µXw · if(e) then (S; Xw)]]ρ

[[if(e) then S1 elseS2]]ρ , [[(assume(e); S1) ‖ (assume(¬e); S2)]]ρ

wherelfp denotes for least fixpoint,τ(ρ(Xf )) = pf → rf andτ(ρ(Xw)) = τ([[S]]ρ).
A programP ≡ f1, · · · , fn induces the system of equations

ρ(Xfi
) = [[Sfi

]]ρ (1 ≤ i ≤ n) (nat)

Natural semantics ofP is the least fixpoint solution to this system, e.g., for the program
EX1, natural semantics off2 is (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1).

Theorem 1. Let P ≡ f1, · · · , fn be a program andK = 〈S,R〉 be its operational
semantics. A pair of activation records(〈k, σk〉, 〈l, σl〉) is in [[fi]] iff there exists a path
s0, · · · , sm inK such thats0 = 〈k, σk〉.Γ0 andsm = 〈l, σl〉.Γm, such thatΓ0 = Γm, k
andl areen andex of fi, respectively, and for all othersj = 〈p, σp〉.Γj eitherΓj 6= Γ0

or p is notex of fi.

4 Reachability and Non-Termination Analysis
We now turn our attention to checking reachability and non-termination of recursive
programs. Reachability can be reduced to finding the least fixpoint solution to the equa-
tion reach w.r.t. a transition system of operational semantics of a program (see Sec. 2).
Similarly, non-termination corresponds to finding the greatest solution to the equation
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non-term. However, since operational semantics explicitly exposesa potentially un-
bounded call stack at each state, these equations must be solved over an infinite tran-
sition system (even when all program variables range over finite domains). Thus, the
exact fixpoint solution may not be computable.

However, many program properties depend only on the top of the call stack: i.e.,
they arestack-independent. Analysis of such properties can be done usingstack-free
operational semantics in which everything except for thetop activation record is ab-
stracted away. In this section, we apply this idea to the analysis ofEF p (reachability)
andEG p (non-termination) properties, wherep is a proposition that depends only on
the top activation record. Without loss of generality, we further assume thatp only de-
pends on program locations, i.e., it is of the formpc = x.

4.1 Mixed Semantics

We start by defining a stack-free operational semantics, called mixed semantics, for PL
programs which removes the call stack but preserves reachability and non-termination
properties w.r.t. operational semantics of Sec. 3.

Intuitively, mixedsemantics is a combination of operational and natural semantics,
in which a program is executed as follows: an atomic statement is executed as usual; a
function callx := foo(y) is executed as anon-deterministicchoice between (a) execut-
ingfoo, i.e., updating the top activation record according to natural semantics offoo,
and (b) entering the body offoo, andforgetting all but the top activation record. Upon
reaching the end of the main function, the execution enters aself-loop indicating the
end of the program, and blocks at all other exit locations since it does not remember the
origin of the call. For example, consider mixed execution ofthe programEX1 starting
from line 5 withx = 3 andy = 0. At this point, the execution can either (a) move to
line 6 and decreasex by one according to natural semantics off2, or (b) move toen2
(line 13), assignz to 3, and forget aboutx andy. Within f2, the execution continues
until it blocks atex2 (line 18) withz = 2.

Formally, mixed semantics of a programP = 〈Loc,Edge, π〉 is a Kripke struc-
ture Km = 〈Sm,Rm〉, where each state is asingle activation record〈pc, σ〉. For
a pair of statess = 〈k, σk〉 and t = 〈l, σl〉, the transition relation isRm(s, t) ,

(〈k, l〉 ∈ Edge) ∧ rm

〈k,l〉(σk, σl), whererm

〈k,l〉 is a relation on valuations, as defined in
the 3rd column of Table 2. Note thatrm

e for ret edges is empty, which is equivalent to
removing those edges from the ICFG.

Mixed semantics preserves reachability and non-termination properties w.r.t. oper-
ational semantics. If an execution of a functionf reaches a states under the latter, then
eithers is a location withinf , or it is inside some other function thatf calls (directly or
indirectly). The non-deterministic treatment of functioncalls in the former ensures that
both of these cases are covered. Similarly, if there exists an infinite execution starting
insidef , then either this execution lies withinf , or f calls a function that does not
return the control back tof . Again, both cases are captured by mixed semantics.
Theorem 2. LetK andKm be operational and mixed semantics of a given program,
respectively, andp be a propositional formula on control locations. Then,(K |= EF p) ⇔
(Km |= EF p) and(K |= EG p) ⇔ (Km |= EG p).

When all variables of a given programP range over finite domains, mixed semantics
of P is a finite Kripke structure. Theorem 2 implies the followinganalysis algorithm:
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Step 1: compute natural semantics ofP by solving equationnat;
Step 2: construct the structureKm following the rules of mixed semantics;
Step 3: solve equationsreach or non-term onKm for reachability or non-termination,

respectively.
While sound and complete, this algorithm is not efficient, since it relies on the (poten-
tially unnecessary) computation of “full” natural semantics of all functions (for Step
2) and the construction of “full” mixed semantics before theanalysis of the property
can even begin. As a trivial example, consider checkingEF(pc = 5) on the program
EX1. Since reachability of line 6 is irrelevant for this analysis, there is no need to con-
struct the transition relation corresponding tofunc-call edge〈5, 6〉 and thus no need to
compute natural semantics off2. Following this observation, in the rest of this section,
we show that the three steps of the above algorithm can be combined into anon-the-fly
algorithm that only computes the necessary parts of mixed and natural semantics.

4.2 On-the-fly Reachability

Intuitively, the analysis ofEF p properties only needs a part of mixed semantics that
is used for solving equationreach, and that, in turn, drives the computation of the nec-
essary parts of natural semantics. To illustrate, considercheckingEF(pc = 8) on EX1.
Natural semantics off2 is [[f2]] ≡ (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1). After a
few iterations, the reachability algorithm computes a pre-conditionQ ≡ x = 2∧ y ≤ 0
for reaching line 8 from line 6. To determine a pre-conditionforQ w.r.t. a function call
x:=f2(x) at line 5, it needs to computepre[rm

〈5,6〉](Q) = (x = 3 ∧ y ≤ 0), where
rm

〈5,6〉 ≡ (y′ = y)∧((x > 0 ∧ x′ = x− 1) ∨ (x ≤ 0 ∧ x′ = −1)) is the instantiation of
[[f2]] to the call site. However, instead of using the “full” version of [[f2]], it is sufficient to
compute a pre-condition thatassumesQ as a post-condition, i.e., to restrictrm tox′ = 2
(the relevant part ofQ) yielding r̂m ≡ y′ = y∧x = 3∧x′ = 2. r̂m is an instantiation of
z = 3∧z′ = 2 in the context of the call, obtained by (a) convertingQ to a postcondition
of f2 by taking its pre-image over theret edge (which eliminatesy and renamesx to z),
and (b) restricting[[f2]] to this post-condition:[[f2]]◦(assume(z = 2)) ≡ z = 3∧z′ = 2.

We now formalize the above intuition. Recall thatV (k) stands for the set of vari-
ables in the scope of a locationk. Let l be the return location of a function call tofi,Q ⊆
ΣV (l) be a set of valuations atl, and the correspondingret edge〈exi, l〉 be labeled with
x := rfi

. Then, functionprop(〈exi, l〉, Q) , pre[[[x := rfi
; (x → V (l))var (V (l) \ x)]]] (Q)

turnsQ into a post-condition offi. Here, the pre-image w.r.t.var undeclares (or re-
moves) all variables that are not changed by the call, and thepre-image w.r.t.ret edge
turns the post-condition onx into the one onrfi

.
Let RS : Loc → 2Σ map each locationk to a subset ofΣV (k), and, as in Sec. 3,

let ρ be the semantics environment, mapping each fixpoint variable to a relation of
an appropriate type. The on-the-fly algorithm for reachability analysis is the equation
systemreach-otf:

RS(k) =

(

ΣV (k) if k |= p (k ∈ Loc)

RS(k) ∪
S

l∈succ(k) pre[r̂m

〈k,l〉] (RS(l)) otherwise

ρ(Xfi
) = [[Sfi

]]ρ ◦ assume
“

S

l∈succ(exi)
prop(〈exi, l〉, RS(l))

”

(i ∈ [1..n])

(reach-otf)
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wheresuccare the successors of a node in the ICFG,Sfi
is the body offi, and for

S ≡ π(〈k, l〉), r̂m

〈k,l〉 is defined as:

r̂
m

〈k,l〉 =

(

(U → U) ([[pf := a]] ◦ ρ(Xfi
) ◦ [[x := rf ]]) if S ≡ (U → U) x := f(a)

[[S]] otherwise

This system is a combination ofnat andreach, whereprop is used to propagate the
reachability information to the computation of natural semantics. Since reachability and
natural semantics are both least solutions to equationsreach andnat, respectively, we
need the least solution to the above equation as well.

The following theorem shows that the analysis based on equation systemreach-otf
is sound, and computes only the necessary part of natural semantics.

Theorem 3. LetRS↓ andρ↓ be the least solutions to equation systemreach-otf. Then,
1. RS↓ is the least solution to equationreach onKm ;
2. ∀i ∈ [1..n] · ρ↓(Xfi

) ⊆ [[fi]];
3. for anyρ, if RS↓ is the least solution to theRS equations inreach-otf w.r.t. ρ, then∀i ∈

[1..n] · ρ↓(Xfi
) ⊆ ρ(Xfi

).

Part 1 of Theorem 3 shows thatRS↓ is the solution for the reachability analysis; part 2
– thatρ↓ is sound w.r.t. natural semantics offi; and part 3 – thatρ↓ only contains the
information necessary for the analysis.

Since we need the least solution for bothRS(k) andρ(Xfi
) equations, it can be ob-

tained by any chaotic iteration [11] and thus is independentof the order of computation
of RS andρ. Interestingly, the algorithm derived fromreach-otf is a pre-image-based
variant of the post-image-based reachability algorithm ofBEBOP [6], and is similar to
the formalization of backward analysis withwp described in [3].

4.3 On-the-fly Non-Termination

The derivation of the on-the-fly algorithm for the analysis of non-termination,nt-otf,
proceeds similarly, and is a combination of systemsnat andnon-term:

NT (k) =

(

∅ if k 6|= p (k ∈ Loc)
S

l∈succ(k) pre[r̂m

〈k,l〉](NT (l)) otherwise

ρ(Xfi
) = [[Sfi

]]ρ ◦ assume
“

S

l∈succ(exi)
prop(〈exi, l〉, NT (l))

”

(i ∈ [1..n])

(nt-otf)

whereNT : Loc → 2Σ maps each locationk to a subset ofΣV (k), andsucc, Sfi

and r̂m are the same as those inreach-otf. Since non-termination requires the greatest
solution tonon-term, and natural semantics – the least solution tonat, in nt-otf, we need
the greatest solution toNT (k), and the least solution toρ(Xfi

) equations, respectively.
The following theorem shows that the non-termination algorithm based onnt-otf is

sound and computes only the necessary part of natural semantics.

Theorem 4. LetNT↑ andρ↓ be the greatest solution forNT and the least solution for
ρ in systemnt-otf, respectively. Then,

1. NT↑ is the greatest solution to the equationnon-term onKm ;
2. ∀i ∈ [1..n] · ρ↓(Xfi

) ⊆ [[fi]];
3. for anyρ, if NT↑ is the greatest solution to theNT equations innt-otf w.r.t. ρ, then∀i ∈

[1..n] · ρ↓(Xfi
) ⊆ ρ(Xfi

).
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As in Theorem 3, part 1 of Theorem 4 shows soundness of non-termination, and parts
2 and 3 – soundness and necessity of computation of natural semantics, respectively.

Unlike reachability, non-termination requires differentfixpoint solutions forNT
andρ, and thus the order of computation can influence the result. For example, consider
checkingEG(pc 6= ex1) on EX1. Initially, lines 7, 8, and 9 are associated with all the
valuations onx andy, i.e.,NT(7) = NT(8) = NT(9) = Σ{x,y}, andρ(f2) is empty,
which is not the partial semantics off2 restricted toNT(9). If the computation ofNT
proceeds along the function cally:=f2(y) using the initial value ofρ(f2), NT(8) is
assigned∅. Eventually,NT(7) = NT(8) = NT(9) = ∅, i.e., the algorithm incorrectly
concludes that any execution starting at lines 7, 8 or 9 terminates.

The correct order for computing the solution is such that thepre-image of a setQ
w.r.t. a function call tof has to be delayed until the derivation ofρ(Xf ) w.r.t. Q is
finished. Nonetheless, since this order is only restricted to func-call edges, the order of
the computation elsewhere can be arbitrary. This can be usedto avoid deriving “full”
natural semantics. Going back to the previous example, one can first computeNT along
all edges except forfunc-call edges, which will assignNT (9) with x = 2∧ y ≤ 0, and
then compute natural semantics off2 restricted to the post-conditionz ≤ 0. Similarly,
although initiallyNT (6) is assignedΣ{x,y},NT (6) = (x = 2∧y ≤ 0) after the initial
computation ofNT , which means that only partial natural semantics off2 restricted to
the post-conditionz = 2 is needed.

In this section, we have presented mixed semantics – a stack-free operational seman-
tics of PL, and showed how it can be used to check reachabilityand non-termination of
programs with a finite data domain. Although the use of such semantics is not new, our
formalization provides a basis for a tight integration between abstraction and analysis,
which is described in the next section.

5 Abstract Reachability and Non-Termination Analysis

Here, we follow the framework of abstract interpretation (AI) [12] to derive an abstract
version of the concrete analysis described in Sec. 4. To do so, we require two abstract
domains: abstract setsAs whose elements approximate sets in2Σ , and abstract relations
Ar whose elements approximate relations in2Σ×Σ . These domains must be equipped
with abstract version of all of the operations used in equations reach-otf and nt-otf.
Finally, the framework of AI ensures that the solution to an abstract equation is an
approximation of the solution to the corresponding concrete equation. In what follows,
we identify the necessary abstract operations onAs andAr, and then show how to adapt
predicate abstraction for our algorithm.

Abstract Domains and Operations.The domain of abstract setsAs must be equipped
with a set union∪ (used in the reachability computation) and equality (to detect the
fixpoint convergence). The domain of abstract relationsAr must be equipped with (a)
a pre-image operator to convert abstract relations to abstract transformers overAs, (b)
asynchronous and sequential compositions of abstract relations (used in natural seman-
tics), (c) scope extension (used to instantiate a function call using natural semantics
of a function), and (d) equality (to detect the fixpoint convergence). Furthermore, we
need anassumeoperator that maps an abstract set to a corresponding abstract relation;
and, to apply the abstraction directly to the source code, a computable version of ab-
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stract base semantics[[·]]α that maps each atomic statementS to an abstract relation that
approximates[[S]] (the concrete semantics ofS).

Predicate Abstraction.In the rest of this section, we show how the domain of predicate
abstraction [16, 5, 18] can be extended with the necessary abstract operations to yield
abstract reachability and non-termination algorithms.

Predicate abstraction provides domains for abstracting elements, sets, and relations
of valuations. LetV be a set of variables, andP be a set of predicates overV . The
elementarydomain of predicate abstraction overP , denotedΘP , is the set of all con-
junctions of literals overP . For example, ifP = {x > 0, x < y}, then¬(x > 0) and
(x > 0) ∧ ¬(x < y) are inΘP . An element ofθ ∈ Θ approximates any valuation
σ ∈ ΣV that satisfies all literals inθ. For example,σ = 〈x 7→ 2, y 7→ 2〉 is approxi-
mated byx > 0, and is also approximated by(x > 0) ∧ ¬(x < y) more precisely.

The elementary domain is lifted to sets and relations in an obvious way: sets over
Θ represent concrete sets, and relations overΘ – concrete relations. This extension can
be eitherover-or under-approximating, i.e., a collection of concrete valuations corre-
sponding to an abstract set either over-approximates or under-approximates a concrete
set. The over- and under-approximating interpretations can also be combined into a
singleexact-approximation using sets and relations over Belnap logic [18].

Abstract versions of set union, set and relation equality, pre-image, and base se-
mantics for over-approximating predicate abstraction have been defined (e.g., [5]). For
example, ifX andY are twoabstractsets, their abstract union isX ∪α Y , λz ·
X(z)∨Y (z). In [18, 17], we show that these operations also naturally extend to under-
approximating and exact predicate abstractions. In the latter case, conjunctions and
disjunctions, e.g.,∨ in the definition of∪α, are interpreted in Belnap logic. We de-
fine the missing abstract relational operationsassumeα, asynchronous (∨α), and se-
quential (◦α) compositions similarly, using the corresponding definitions from Sec. 2,
e.g., ifr1 andr2 are abstract relations, then their abstract asynchronous composition is
r1 ∨α r2 , λs, t · r1(s, t) ∨ r2(s, t), where∨ is interpreted in Boolean logic for over-
and under-approximating abstraction, and in Belnap logic for exact abstraction.

In concrete semantics, scope extension is used to extend a relation to additional vari-
ables. That is, ifr is a relation of typeU → V , then(U → U)r is an extension ofr to
variables inU \V . In the abstract semantics, relations are defined over predicates; thus,
abstract scope extension must extend a relation to additional predicates. To do this, we
assume that the elementary abstract domainΘ corresponding toU can be decomposed
into two independent abstract domains: one forV and the other – forU \ V , i.e.,Θ
is defined using predicates that either range only overV , or only overU \ V . Then,
abstract scope extension(· → ·)α, defined as in Table 1, is a sound approximation of
concrete scope extension.

Theorem 5. Abstract operations assumeα, ∨α, ◦α, and(· → ·)α as defined above are
sound approximations of their concrete counterparts.

In the context of our on-the-fly algorithms, the assumption on abstract scope exten-
sion means that predicates that are used to abstract valuations at a return locationl of a
function callx :=f(a) are either defined only overx, or only over other variables in the
scope ofl. For example, predicatesx = 2 andy ≤ 0 can be used to abstract valuations
at line 6 in the programEX1, but predicatex > y cannot. This is not a severe restriction
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int g;

void main(){
level_1();
if (g<0){

ERROR: ;
}
END: ;
}

void level_i(){
int t = 0;
g = -1 * g;
if (g<=0){

t = t+1;
} else {

level_i+1();
g = -1 * g;
level_i+1();

}
g = -1 * g;}

void level_n(){
int t = 0;
g = -1 * g;
if (g<=0){

t = t+1;
} else {

<stmt>

}
g = -1 * g;}

<stmt>:=
g = -1 * g;

<stmt>:=
level_n();
g = -1 * g;
level_n();

(a)

(b)

(c)

Fig. 3. (a) The template for experiments. (b)<stmt> for templateT1(n). (c)<stmt> for T2(n).

T1(n) T2(n)
n EF (pc = ERROR) (reach) EG (pc 6= END) (non-terminate) ¬EF (pc = ERROR) (unreach)

20 6.5 4.9 4.3
50 11.7 8.9 6.3
100 20.3 20.3 11.1
200 36.7 25.2 27.6
300 47.6 34.4 42.1
400 68.1 43.2 64.5
500 105.2 60.6 86.6

Table 3.Experimental results: overall analysis time in seconds.

in practice since a function can always be extended to acceptadditional parameters and
return them without modification.

To summarize, both over- and under-approximating predicate abstractions can be
used to soundly abstract reachability and non-terminationanalysis. The choice depends
on the desired algorithm. For example, over-approximationis necessary to establish un-
reachability, whereas under-approximation – to establishnon-termination. Since exact
predicate abstraction combines them, it can be used for bothverification and refutation.

6 Experiments
The technique described in this paper has been implemented in our symbolic software
model checker YASM [19]. YASM is written in JAVA ; it uses CVC Lite [7] to approxi-
mate program statements and CUDD [27] as a decision diagram engine. We have also
extended our proof-based refinement approach [17] to handlenatural semantics of func-
tions. In the rest of this section, we report on a preliminaryevaluation of this implemen-
tation. All of the experiments have been conducted on a 2xP4Xeon-3.6GHz server and
are available athttp://www.cs.toronto.edu/fm/yasm/yasm-tests.zip. Our
experiments demonstrate YASM’s ability to analyze reachability and non-termination
of recursive programs using exact-approximation. In summary:
1. We run YASM on template programs similar to those in the BEBOP and MOPED

benchmarks. The experiment shows that the analysis time forbothreachability and
non-termination increases linearly w.r.t. the number of functions in a program.

2. We show that abstract analysis based on exact-approximation supports both verifi-
cation and refutation.

3. We compare YASM with MOPEDand VERA (BEBOPdoes not do non-termination),
and show that YASM can prove non-termination of the original buggyQuicksort
algorithm, whereas MOPEDand VERA cannot.

To evaluate the reachability algorithm, we have used the template programT1(n)
which is a variant of the one used for BEBOP in [6]. T1(n) is the result of replacing
<stmt> in the template shown in Fig. 3(a) with the statements in Fig.3(b). It consists
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void main (){
int mx, my;
ack (mx, my);
END:; }

int ack (int x, int y){
int r1, n;
if (x > 0) {
if (y > 0) {

y = y - 1;
n = ack (x, y);

} else { n = 1; }
r1 = ack (x, n);
return r1;

} else {
r1 = y + 1;
return r1;

}}

void main(){
int x;
foo(x);
while(x!=0) {
if (x<0) {

x = -1 * x;
x = x+2;

} else {
x = -1 * x;
x = x+3;

}}
END: ;}

void foo (int y){
y = -1 * y;
if (y < 0) {
foo (y);

}}

void main (){
int mleft, mright;
quicksort (mleft, mright);
END:;}

void quicksort (int left, int right){
int lo, hi;
if (left >= right) return;
lo = left; hi = right;
while (lo <= hi) {

if (nondet()) {
lo = lo+1;

} else {
if(lo!=left || hi!=right)

hi = hi-1;
}}

quicksort (left, hi);
quicksort (lo, right); }

(a) (b) (c)

Fig. 4.Non-terminating programs: (a)Ack; (b) Shift; (c) BuggyQuicksort.

of a main function andn sub-functions, wheremain callslevel 1, andlevel i
callslevel i+1 twice if the global variableg is positive. Sinceg is not initialized, its
initial value is arbitrary. Although this program has no recursion, inlining function calls
increases its size exponentially, making the analysis infeasible for a sufficiently large
n. We checked the reachability propertyEF (pc = ERROR) with values ofn ranging
between 20 and 500, and measured theoverall analysis time (including parsing, ab-
straction, model-checking, and refinement). The results are shown in the second column
of Table 3. Since our technique analyzes each function separately, the analysis time in-
creases linearly w.r.t. the number of functions (n), as expected. In all these cases, YASM

was successful in proving reachability, and discovered predicatesg < 0, g > 0 and
g ≤ 0. While the templateT1(n) is similar to the one used in [6], there is a fundamen-
tal difference: BEBOP assumes an over-approximating abstract semantics of Boolean
programs and cannotconclusively verifythat theERROR label is reachable with these
predicates. YASM uses exact-approximation which results in a conclusive analysis.

We also checked the template programT2(n), obtained by replacing<stmt> in
the template in Fig. 3(a) with statements in Fig. 3(c). Non-termination and unreacha-
bility results are presented in the third and fourth columnsof Table 3, respectively. As
expected, the analysis time increases linearly with the number of functions.

For non-termination, we have also applied YASM to several examples inspired by
[10], in particular, on programsAck andShift, shown in Fig. 4(a) and (b), respec-
tively. YASM was able to automatically prove non-termination ofAck in 2.1 seconds
and discovered predicatesy > 0, n > 0, x > 0, mx > 0 andmy > 0. Analysis
of Shift took 1.9 seconds and yielded predicatesy < 0, x < 0, x > 3, x = 0
andx = 3. Finally, we have compared YASM to MOPED [14] and VERA [1] on the
buggyQuicksort example from [14] in Fig. 4(c), wherenondet() represents non-
deterministic choice. YASM has established non-termination ofQuicksort in 10 sec-
onds, finding 7 predicates. Note that both MOPED and VERA only apply to programs
with finite data domain, and the analysis in [1] and [14] had torestrict the number of
bits used by each variable, while YASM did not need any such restriction.

7 Conclusion and Related Work
This paper presented a model-checking technique for analysis of reachability and non-
termination properties of recursive programs. The technique is based on a stack-free
mixed operational semantics of programs that uses natural semantics and non-determinism
to eliminate the call stack while preserving stack-independent properties. We show

13



how to compute only the necessary part of natural semantics during the analysis, lead-
ing to on-the-fly algorithms for analysis of reachability and non-termination of pro-
grams with finite data domains. We then use the framework of abstract interpreta-
tion [12] to combine our algorithms with data abstractions,making them applicable
to programs with infinite data domains as well. Although we specialize our approach
to predicate abstraction, we believe that it can be extendedto other abstract domains
as well. We have implemented a combination of this approach with exact predicate ab-
straction in YASM [19] which supports both verification and refutation of properties.
Our experiments indicate that YASM scales to programs with a large number of func-
tions and is able to establish non-termination of non-trivial (although small) examples.
In particular, we were able to automatically prove non-termination of Ack [10] and
Quicksort [14] without any restrictions on the data domain.

In the terminology of interprocedural program analysis [24], our approach isfunc-
tionalsince it uses natural semantics to handle function calls. Most other model-checking
approaches for recursive programs (e.g., [23, 6, 1]) are functional as well, and only com-
pute the necessary part of natural semantics. Our reachability algorithm can be seen as
a pre-image-based variant of the RHS algorithm [23], as implemented in BEBOP [6].

Both MOPED[14] and VERA [1] can check non-termination of programs with finite
data domains. Their algorithms are comparable with our non-termination algorithm.
However, it is unclear how to combine their techniques with an arbitrary abstraction,
whereas it is quite natural in our approach. Note that an ability to detect non-termination
of over-approximating Boolean programs is of limited utility since over-approximation
often introducesspuriousnon-terminating computations. Thus, non-termination of an
over-approximation says nothing about non-termination ofthe concrete program.

Jeannet and Serwe [20] apply abstract interpretation to derive abstract analysis of
recursive programs by different abstractions of the call stack. Their approach is also pa-
rameterized by an arbitrary data abstraction. However, theauthors restrict their attention
to reachability (i.e., invariance) properties, and do not report on an implementation.

Our interest in non-termination is motivated by the work ontermination(e.g., [10]).
We view our approach as complementary to that. As illustrated by our experiments,
YASM can prove non-termination of non-trivial programs. However, its ability to prove
termination is limited to cases where termination can be established by a constant rank-
ing function. In the future, we plan to investigate how the strengths of the two ap-
proaches can be combined in a single algorithm.

In this paper, we have restricted our attention to stack-independent properties. We
hope to extend our approach to a more general class of properties, e.g., the ones express-
ible in CARET [2]. Finally, the refinement strategies that are currently implemented in
YASM were originally developed for reachability analysis only.While they were suf-
ficient for our non-termination experiments, we believe that strategies specifically tai-
lored to the non-termination analysis are essential for scaling the tool to large programs.
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