
PTYASM: Software Model Checking with Proof Templates

Thomas E. Hart∗, Kelvin Ku†, David Lie‡, Marsha Chechik
Department of Computer Science

University of Toronto
{tomhart,kelvin,lie,chechik}@cs.toronto.edu

Arie Gurfinkel
Software Engineering Institute
Carnegie Mellon University

arie@sei.cmu.edu

Abstract

We describePTYASM, an enhanced version of theYASM

software model checker which uses proof templates. These
templates associate correctness arguments with common
programming idioms, thus enabling efficient verification.
We have appliedPTYASM to the problem of verifying the
safety of array accesses in programs derived from the
Verisec suite.PTYASM is able to verify this property in the
majority of testcases, while existing software model check-
ers fail to do so due to loop unrolling.

1. Introduction

Software model checking based on predicate abstraction
and refinement is a powerful and commercially success-
ful [1] verification technique. Tools using this paradigm it-
eratively prune infeasible paths from a model of a program,
in order to find an abstraction of the program in which the
property of interest can be proven to hold.

Since software verification is undecidable in general,
software model checkers (SMCs) are not guaranteed to find
“good” abstractions, even when the program being analyzed
uses common and well-understood idioms. In our compan-
ion paper [4], we advocate the use ofproof templatesin
these instances. A proof template associates a correctness
argument with a program fragment which uses a common
programming idiom, thus helping an SMC find an efficient
abstraction.

We have implemented PTYASM, an SMC which uses
proof templates in the domain of array bounds checking.
Existing SMCs often perform poorly in this domain, getting
stuck “unrolling” loops in order to prove safety [5]. Using
proof templates, PTYASM verifies the safety of common
loops which keep an index in-bounds using (1) numerical
comparisons, (2) sentinel null characters, or (3) by correlat-
ing updates with those of a second variable.

∗Supported by an NSERC Canada Graduate Scholarship and MITACS
†Supported by MITACS
‡Department of Electrical and Computer Engineering

Figure 1. Architecture of PTYASM.

1 vo id foo () {
2 char s r c [1024] , d e s t [1 0 2 4] ;
3 char ch ; i n t i =0 , j =0 ;
4
5 s r c [1023] = ’\0 ’ ;
6 i f (s r c [i] == ’∗ ’) i ++;
7
8 whi le (1) {
9 ch = s r c [i] ;

10 i f (ch == ’\0 ’ | | ch == ’ , ’) break ;
11 a s s e r t (j < 1024) ;
12 d e s t [j] = ch ;
13 j ++;
14 i ++; } }

Figure 2. An array bounds checking example.

2. Implementation

PTYASM associates proof templates with loops in a pro-
gram, and uses these templates to ensure that these loops
keep array indices in-bounds. Our system uses four pre-
defined templates, resulting from the combination of two
conditions: whether an array index is kept in bounds via
arithmetic comparisons or via tests on an array cell, and
whether the test is on the same index which appears in the
bounds check, or on some other variable. Each template
is parameterized, and includes a set ofassumptionswhich
must be true before loop entry, and a method to prove that a
bounds check cannot fail given that these assumptions hold.

Figure 1 shows the architecture of PTYASM, which has
two components. The first component is theloop scanner,
which scans a C file for loops in which proof templates may
apply and derives parameters for these templates, and also
instruments the program. The loop scanner consists of 2
KLOC of OCaml code, and is implemented as an exten-

1

〈function=’foo’ 〉〈loop=’VERISEC foo line10 0’ 〉〈var=’i’ 〉〈numvars=’1’ 〉〈type=’str’ 〉〈array=’src’ 〉

〈function=’foo’ 〉〈loop=’VERISEC foo line10 0’ 〉〈var=’j’ 〉〈numvars=’2’ 〉〈type=’str’ 〉〈leader=’i’ 〉〈array=’src’ 〉

Figure 3. Output of loop scanner on example program in Figure 2.

sion to CIL [7], a tool for analyzing and transforming C
code. The second component is asoftware model checker
augmented with knowledge of proof templates. Our soft-
ware model checker is an enhanced version of YASM [3],
an SMC based on multi-valued model checking. YASM is
written in Java, and uses the CUDD BDD library and the
CVC Lite theorem prover. We changed or added approxi-
mately 2.8 KLOC in YASM in order to support proof tem-
plates. Our implementation is publicly available athttp:
//www.cs.toronto.edu/˜tomhart/ptyasm . Im-
plementing PTYASM took approximately six months, in-
cluding several rewrites.

We illustrate the operation of PTYASM using the exam-
ple program in Figure 2, which copies characters from the
string src into dest, and contains a bounds check onj on
line 11. The loop scanner identifies loopiterators(roughly,
variables whose value in one iteration is dependent on their
value in a previous iteration) using standard compiler tech-
niques such as use-def chains and dominators [6], and at-
tempts to guess how an iterator may be bounded by exam-
ining the comparisons in loop exit branches. In this case,
the iterators arei andj, and, since the exit branch on line
10 contains a test onsrc[i], the loop scanner guesses thati

is kept in bounds bysrc’s sentinel null character. Since no
loop exit branch testsj, the loop scanner guesses thatj is
kept in bounds by followingi. Figure 3 shows the output of
the loop scanner, which records these two guesses.

The loop scanner also instruments the C file — for ex-
ample, by adding metadata to keep track of the lengths of
strings. YASM takes both this instrumented C file and the
output of the loop scanner as inputs. YASM does not trust
the output of the loop scanner, which may suggest inap-
plicable proof templates. If the loop scanner suggests an
inapplicable template, YASM will be unable to prove that
the bounds check cannot fail, and will backtrack, trying any
other suggested templates. The loop scanner can thus ag-
gressively use heuristic analyses without compromising the
soundness of the overall analysis.

When YASM detects that it is unrolling the loop on lines
8–14 of Figure 2, it queries the output of the loop scan-
ner for possible proof templates, finding the template sug-
gested on line 2 of Figure 3. As directed by the template,
YASM then adds a set of predicates to its abstraction of the
program, and inserts a set ofassume statements before the
loop. These predicates and assumptions guide YASM to-
wards the template proof. YASM then verifies the safety of
the bounds checking assertion, and then discharges each as-
sumption used. The details of the template appear in the
companion paper [4].

3. Evaluation and Discussion

We have tested PTYASM on a set of 59 testcases derived
from the Verisec suite [5], and compared its performance
with that of YASM (without proof templates), BLAST, and
SATABS. Within a timeout period of 10 minutes, PTYASM

was able to verify 49 testcases, YASM (without proof tem-
plates) verifies 17, BLAST 19, and SATABS 22. Because it
uses proof templates, PTYASM is able to verify many more
of our testcases than the other SMCs. The complete de-
tails of our experiments appear in the companion paper [4],
and the complete experimental data and test materials are
available online athttp://www.cs.toronto.edu/
˜kelvin/ase08 .

PTYASM demonstrates a novel way to add programmer
knowledge to SMCs, safely incorporating heuristic analyses
without compromising soundness. The closest work to ours
is that of Beyer et al. on path invariants [2], which tries to
generate an abstraction of a loop given aninvariant template
provided by the user. They do not address how to conjecture
these templates, consider strings, or separate the analysis of
a loop’s body from the assumptions about the paths leading
to the loop. We suspect that our techniques and theirs may
be usefully combined.

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
“Thorough Static Analysis of Device Drivers”. InProc. Eu-
roSys’06, pp. 73–85, 2006.

[2] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Ry-
balchenko. “Path Invariants”. InProc. PLDI’07, pp. 300–309,
2007.

[3] A. Gurfinkel, O. Wei, and M. Chechik. “YASM: A Soft-
ware Model-Checker for Verification and Refutation”. InProc.
CAV’06, LNCS 4144, pp. 170–174, 2006.

[4] T. E. Hart, K. Ku, M. Chechik, D. Lie, and A. Gurfinkel. Aug-
menting counterexample-guided abstraction refinement with
proof templates. Submitted to ASE’08.

[5] K. Ku, T. E. Hart, M. Chechik, and D. Lie. “A Buffer Overflow
Benchmark for Software Model Checkers”. InProc. ASE’07,
pp. 389–392, 2007.

[6] S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[7] G. Necula, S. McPeak, S. Rahul, and W. Weimer. “CIL: In-
termediate Language and Tools for Analsysis and Transforma-
tion of C Programs”. InProc. CC’02, LNCS 2304, pp. 213–
228, 2002.

2

Appendix

A. Availability and Maturity

We have made PTYASM available athttp://www.
cs.toronto.edu/˜tomhart/ptyasm/ . The web-
site includes installation instructions. PTYASM requires
Java, OCaml, CIL, ANTLR, and CVCL.

PTYASM is a very early research prototype. Although
YASM itself can correctly handle pointers and procedures,
our extensions to support proof templates do not. These
limitations are mostly due to the instrumentation added by
the loop scanner, and can be remedied.

B. Presentation

We plan to present PTYASM by demonstrating its opera-
tion on a small set of testcases, showing the different stages
of the analysis. We have four example testcases which
are simplified versions of some testcases from our evalua-
tion in the companion paper, for which PTYASM’s analysis
time is in the 10–90 second range. These examples are in-
cluded in the PTYASM distribution on our webpage, under
theexamples/ directory.

Figure 4 shows one of our examples; it is based on code
in libgd. The goal is to make sure thatnextstays within
bounds of the arrayin[], which is a string. Depending on
which branches within the loop are taken,nextcan be in-
cremented a variable number of times during a single loop
iteration.

Running the loop scanner on the example program
shown in Figure 4 produces the output shown in Figure 5.
We are interested in the first line, which says thatnext is
kept in bounds by the null terminator of the stringin[]. The
other line conjectures an argument as to howi is bounded
in the loop, but sincei is never used to index into a buffer,
this line is ignored by YASM.

Figure 6 shows a fragment of the instrumented version of
the program in Figure 4, which we would show during the
presentation. This excerpt shows an instance of the instru-
mentation the loop scanner adds to track string length. The
variablein nullposrepresents a conservative approximation
of the string length ofin[]. In general, the loop scanner cre-
ates a variableA nullposfor each arrayA in the program.
Lines 5–12 of the listing in Figure 6 are anassume(p) state-
ment, implemented asif (!p) while(1) {}. Thus,
the effect of the instrumentation is, after a write of a null
character toin[1024], to assume thatstrlen(in) ≤ 1024.
This instrumentation is accompanied by the invariants that
in[in nullpos] = ‘\0’ and in nullpos ≥ 0, which YASM

assumes true at every program point.
Using the instrumented C file and the proof templates

suggested by the loop scanner, YASM is able to effi-

ciently verify the safety of the assertion in this program.
When YASM detects loop unrolling, it queries the template
database, finding the suggested template on line 1 of Fig-
ure 5. The information on this line parameterizes a template
stored in YASM, telling it to use the predicatesin[next] =
‘\0’, next ≤ in nullpos, andin nullpos ≤ next to ab-
stract the loop, and to assume that before the loop is entered
in ≤ in nullpos and in nullpos ≤ 1024. YASM adds
these assumptions by addingassume statements to the pro-
gram before the loop. The parameter 1024 comes from the
bounds check assertion on line 11 of the original program.

These predicates lead to an efficient abstraction of the
loop, since they let us prove thatnext ≤ in nullpos is
a loop invariant. Each increment ofnext is guarded by
a check on whetherin[next] = ‘\0’, after which YASM

can conclude thatnext 6= in nullpos, sincein[next] 6=
‘\0’ = in[in nullpos]. Hence, ifnext ≤ in nullpos be-
fore the branch, and the branch in whichin[next] 6= ‘\0’
is taken, we know thatnext < in nullpos (represented
as¬(in nullpos ≤ next)), and incrementingnext pre-
serves the invariant thatnext ≤ in nullpos, since{next <

1 i n t main ()
2 {
3 i n t next , encod ing , i , ch , l e n ;
4 char i n [1 0 2 4] ;
5 i n [1023] = ’\0 ’ ;
6
7 encod ing = NONDET() ;
8 i f (encod ing > 2 | | encod ing < 0) re turn 0 ;
9

10 f o r (ne x t = 0 , i =0 ; i n [ne x t] != ’\0 ’ ; i ++) {
11 a s s e r t (ne x t < 1024) ;
12 ch = in [ne x t] ;
13
14 i f (ch == ’\ r ’ | | ch == ’\n ’){
15 ne x t ++;
16 cont inue ;
17 }
18
19 s wi tch (encod ing) {
20 cas e gdFTEX Unicode :
21 le n = 1 ;
22 ne x t += le n ;
23 break ;
24 cas e gdFTEX Shi f t J IS :
25 {
26 unsigned char c ;
27 c = (unsigned char) i n [ne x t] ;
28 i f (0 xA1 <= c && c <= 0xFE) {
29 ne x t ++;
30 }
31 }
32 break ;
33 cas e gdFTEX Big5 :
34 ch = (i n [ne x t]) ;
35 ne x t ++;
36 break ;
37 }
38 }
39
40 re turn 0 ;
41 }

Figure 4. An array bounds checking example
based on code from libgd.

3

〈function=’main’ 〉〈loop=’VERISEC gd line40 0’ 〉〈var=’next’ 〉〈numvars=’1’ 〉〈type=’str’ 〉〈array=’in’ 〉

〈function=’main’ 〉〈loop=’VERISEC gd line40 0’ 〉〈var=’i’ 〉〈numvars=’2’ 〉〈type=’str’ 〉〈leader=’next’ 〉〈array=’in’ 〉

Figure 5. Output of loop scanner when run on example in Figure 4.

1 {
2 in [1024] = (char) 0 ;
3 {
4 i n n u l l p o s = ”NONDET” ;
5 i f (! (i n n u l l p o s <= 1024)) {
6 VERISECASSUMPTION1 : /∗ CIL Labe l ∗ /
7 whi le (1) {
8
9 }

10 } e l s e {
11
12 }
13 }
14 }

Figure 6. Excerpt from instrumented version
of program in Figure 4, showing string instru-
mentation which the loop scanner adds au-
tomatically. A second preprocessing phase
replaces the string “NONDET” with the iden-
tifier YASMNONDET.

in nullpos} next := next + 1 {next ≤ in nullpos}.
After proving the safety of the original assertion, YASM

discharges the assumptions used by turning theassume
statements into assertions, and restarting the model check-
ing process to prove that these assertions cannot fail. Fig-
ure 7 shows the final output of PTYASM on this example, in-
cluding the predicates needed to prove each assertion. The
total analysis time is just over six seconds, making this pro-
gram a good example for a live demonstration.

The version of YASM without proof templates cannot
verify this example efficiently, as it gets stuck unrolling the
loop. In our experiments, BLAST and SATABS suffered
from the same problem. Our presentation would include
a demonstration of YASM’s failure to verify this example
without proof templates — the user can see that YASM is
getting stuck loop unrolling, because it keeps generating
predicates of the formin[next] = ‘\0’, in[next + 1] =
‘\0’, in[next+2] = ‘\0’, . . . andnext < 1024, next+1 <

1024, next + 2 < 1024,

4

Figure 7. Final output of PTYASM on example in Figure 4. in nullpos is a metadata variable which
keeps track of strlen(in).

5

