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Abstract—Existing software model checkers based on predicate of our algorithm for suggesting proof templates.
abstraction and refinement typically perform poorly at verifying In the remainder of this paper, we give an algorithm for
the absence of buffer overflows, with analyses depending ohe using proof templates within an SMG (I-B), and describe

sizes of the arrays checked. We observe that many of these f | di |
analyses can be made efficient by providingroof templates for Proof templates corresponding to common array traversa

common array traversal idioms idioms, which guide the model idioms and a method for heuristically identifying when they
checker towards proofs that are independent of array size. may apply § I1I-C). We compare our implementation of this
We have integrated this technique into our software model framework, called PYASM, with other state-of-the-art SMCs,

checker, PTYASM, and have evaluated our approach on a set  «: ; ; ;
! ! X . . using testcas m 2019.
of testcases derived from the Verisec suite, demonstratinthat 9 es derived from the Verisec suite {2J1f

our technique enables verification of the safety of array acesses Il. TECHNIQUE
independently of array size. We present our technique for using proof templates in
l. INTRODUCTION SMCs; a technical report [3] gives a more thorough treatment

Software model checking based on predicate abstractibn CEGAR Software Model Checking
and counterexample-guided abstraction refinement (CEGAR)SMCs check a property on a programP, where is the
has been shown to be effective for checking correctnessrefichability of a given line ofP, labelled “ERROR”. SMCs
highly non-trivial programs and is now part of commerciatan be used to check assertions by transforming a statement
tools such as SDV [1]. The abstraction, a set of predicatessertp) into a conditional, such as the one on lines 3—-4 of
is improved dynamically, based on identification of infédsi Fig. 1(a), and checking whether the assertion’s failurenina
counterexamples, until it is sufficiently precise to probe t is unreachable, in which case the assertion is considered to
property of interest. In practice, the power of CEGAR sofeva safe We assume that the program is annotated with bounds
model checkers (henceforth referred to as SMCs) is limitethecking assertions on each array access. The related work
by their ability to choose predicates well. Perfectly seigr describes CEGAR in more detail [1], [2], [4].
predicates is impossible due to the undecidability of safav =~ SMCs often perform poorly when verifying array bounds
verification, so this process always relies on heuristics.  checks in loops, such as the one in Fig. 1(a) (for succinstnes

We want to use SMCs to verify the absence of buffghe array is not shown). A typical SMC first finds the spurious
overflows, which are a major threat to the security of @rror tracer; = (1,2, 3,4), which it can eliminate by adding
programs. Current SMCs typically perform poorly at thishe predicates < 1024 andi = M to its model of the
task due toloop unrolling [2]. Our goal is to improve this program. In the new model, the values of these predicates
common-case performance, so that analyses are independéihtoe unknown after line 5; hence, the SMC finds the path
of the sizes of the arrays being checked. Our solution is t9 = (1,2,3,5, 2, 3,4), in which ERROR is reachable imwo
defineproof templateslesigned to work when a program usegierations of the loop on lines 2-5. This new trace can be
common idioms to traverse an array, and attempt to guide @iminated by adding predicateés-1 < 1024 andi+ 1 = M,
SMC towards these proofs automatically. The templates aesulting in a model in which ERROR is reachabletlimee
modular, separating the analysis of the loop’s body from thierations. The SMC continues eliminating paths contgnin
analysis’ preconditions on loop entry. We have implementéacreasing numbers of loop iterations, finally proving ERRO
an algorithm to heuristically magloop, variable pairs in unreachable after 1024 iterations of the abstract-cheftker
a program to proof templates. When the algorithm detedt®p. Suchloop unrolling makes the analysis impractical.
that a template may app_ly, iF gu_ides our SMC tqwards t " CEGAR with Proof Templates
template proof by supplying it with a set of predicates an
assumptions. If the SMC is able to prove the original propert lteratively removing paths of increasing length from loops
using these predicates and assumptions, it then proceed§k® the one in Fig. 1(a) is an inefficient and unnatural way
discharge the assumptions (prove they hold). If any stage!8fprove safety. A more natural proof shows inductively that
the analysis fails, the SMC backtracks to an earlier stages M < 1024 is an invariant at line 2:
making the overall processound despite the unsoundness 1) Initially, i < M < 1024 holds trivially at line 2.



void example () { void example () { ; [ “ ” f
1 int io0 sz=1024: Ot o0 sz=1024: discovery of additional “support” predicates. To ensuratth

=

int M= sz—1; int M= sz—1; these support predicates are discoveresETEMPLATE also
zzzﬂmg& pu ’\4)0?24); adds explicit assumptions 8 (see Fig. 1(b)).
2: while (i !'=M) { 2: while (i !=M) { Since BJILDDB may suggest proof templates whose as-
b ”EF({!RO(éflOZ"')) b ”EF({!RO(éfloz“)) sumptions do not hold, €5AR+PT must discharge all as-
5: i+4; )} 5: i+4; )} sumptions used (line 9), and backtrack if any do not hold(lin
@ (b) 19). This is facilitated by a backtracking stasék Whenever

Fig. 1. (a) Example program, (b) Application of proof tertpla USETEMPLATE supplies a template on line 15, it adds a stack

frame to S, containing (a) the current iteration of the loop
beginning on line 6 of EGAR+PT (to enable the TMEOUT

Algorithm 1 CEGAR+PT — CEGAR with proof templates.

> p%c;dgeBiﬁgg';J’(gP' ¥) o r:;‘l’ftfg‘cczrr‘:gﬁfgs check on line 12), (b) the current values & E, and ¢
3. (E,40,S) — (0,1, empty stack > (Preds, Init. prop., Backtracking stack) (SO that the calls to BCKTRACK on lines 12 and 19 can
4: loop restore the state before the template was applied), and (c)
g: i\’f_“MAO'ESETLFaCETC(f ( Xft 5)) > M=model  the assumptions associated with the template (to enable the
7 if 7 = e then ’ > No path to ERROR  Call t0 DISCHARGENEXT on line 9). .S also keeps track of
8 if NOASSUMPTION EFT(S) then return SAFE the number of times a template has been applief’ta), to
- el‘;'je(P’ E,1) < DISCHARGENEXT(S) > Discharge assumptions o\qre that each candidate template can be applied in turn.
11: if SPURIOUS(T, P) then > Refine abstraction 1N the example program in Fig. 1(a),SHTEMPLATE adds
ig: ifITIMEOUT (S) then (P, E,v) «~BACKTRACK (S5) to £ the predicates < M, M < i, and M < 1024 and the

: ese . . . . ae

: : assumptions shown in Fig. 1(b). These are part of the definiti
14: if 3¢ - UNROLLING(¢) A HAVETEMPLATE(Y, DB, 1, S) then A X .
15: (P,E,S) <—USE%'I2MPLATE(€,DB7¢7 s() ) of the template, and are instantiated using the paramgt&fs
16: else £ — E U REFINE (1) and1024, which come from the program. With these, the SMC
1 else can prove ERROR unreachable using the inductive argument
18: if 1 = 1o then return UNSAFE d ibed at the beainni f thi ti
19: else (P, E,v) «—BACKTRACK (S) > Assumption did not hold escribed at tne beginning or this section.

HAVETEMPLATE checks whether a template can be used
for the pair(L, ¢); our implementation checks that (a) there is
proof template fo(L, i), (b) no template fofL, i) is already
in use, and (cY = 1y, the last being because we do not yet
support the use of proof templates for multiple loops.

2) If i < M <1024 at line 2 and the loop is entered, the
1< M <1024Ni # M, soi < M <1024 at line 3,
andi < M < 1024 after thei++ on line 5.

Sincei < M < 1024 is an invariant at line 2, if the loop is
entered; < M < 1024 at line 3, so the assertion is safe. C. Proof Templates for Array Traversals

We present EGAR+PT (Alg. 1), a variation on the classical We have defined four parameterized proof templates corre-
CEGAR algorithm used by SMCs, which attempts to guide aponding to common array traversals in which array indices
SMC towards proofs like the one above by introducprgof are kept in-bounds via (1) explicit numerical comparis¢2},
templates which provide outlines of correctness proofs. Theentinel null characters (as in string traversals), or (R)ates
call to BuILDDB on line 2 builds a database which mapsorrelated with a second variable kept in bounds by one of
(loop, variable pairs in the program to proof templates, bythe above two methods. We choose among these templates
examining the structure of the loop. When a loop is beingased on combinations of two conditions: whether the iterat
unrolled, BSETEMPLATE (line 15) queries this database to se@efined below) in the loop condition is the same as the iberat
if a template may be useful.BBLD DB may suggest templatesin the assertion being checked, and whether the loop conditi
which do not help, so the calls toAlBKTRACK on lines 12 and is an arithmetic comparison on an iterator or a test on aryarra
19 ensure that unhelpful templates are eventually abamdoneell. We have found that this information is often sufficiémt

We llustrate GEGAR+PT on the example program inchoose the correct template. Our template descriptionsress
Fig. 1(a), but stress that it works on more complex progransructured loops wittioop conditionsat their heads; however,
such as those shown in [5].UBLD DB records that appears our templates work equally well for common less structured
to be bounded by in the loop on lines 2-5 of the program inloops withexit branchesat their head®r within their bodies.
Fig. 1(a), and guesses that this bound can be used to proveWe outline BYAsM’s handling of such loops, and how we
safety of the assertion. WhereGAR+PT realizes that the loop derive template parameters for them, in [5].
one lines 2-5 is being unrolled, it invokessSETEMPLATE, Preliminaries. We use standard compiler concepts [6] to
which identifies and applies a corresponding proof templatescribe our proof templates. A statemeris a definition of
USETEMPLATE adds predicates tf' based on the structure ofa variablev (or s definesv) if s contains an assignment to
the loop. This alone is insufficient, as some of these préekicalf s reads the value of, we say thats usesv. For any loop
must be true before the loop is entered — for example, i, constants and variables which are used but not definéd in
Fig. 1(a), the loop invariant < M < 1024 only leads to are calledoop constantslf s; andss are statements, we say
a proof of correctness if it holds initially. Often provingat that s, is dependenbn sq, written s; ¢ so, if there exists a
these predicates are in fact true on loop entry requires thariablev such thats; usesv, so defines it, and the definition



P [} Pl P All Testcases (59)| String (14) | Two-variable (10)
o assume (M+c <= N); assert (Mtc <= N); PTYASM 49 11 7
wh'ile (i <=M { wh.ile (i <=M) { wh'ile (i <=M) { YASM 17 0 0
Cf:'ss{evr't.}(i <=N); S\'ss{e.r‘t.)((i <=Mtc) & (M+c <= N)); RS BLAST 19 0 0
Reled 3 Rited 3 R b ) SATABS 22 0 0
(a) Original (b) Assume (c) Discharge TABLE |
Predicates:i < M. M <i,i<M +e, M +¢c< N NUMBER OF TESTCASES SOLVED AT BUFFER S1z£024, 60®& TIMEOUT.
. — 3 — 3 — ) —_ .

denote the values afand; before the loop is entered; these

_ _ ) variables allow us to represent the notion of changedandj.

reaches;. We writes; 0* s if there exists a set of statement§ gt p pe the composition of statement®; i, = i; j, = j),

§1,... 5y, such thats; 6 s1 6 -+ ds), & s9. and let® = (M +c—i, < N—j,) and¥ = (j —j, < i—is).
We introduce the concept of loop iterators to define odthen, the template breaks the proof of safety down as follows

templates. Given a loofy, a variable: is aniterator of L iff 1) {true} P' {®)

there exists a statementsuch that (1)s is a definition ofi 2) {d AV} Q;R ,{q> AW, and

within L; (2) s §* s; and (3)s is not dominated by any other 3) {i < M/\(I; AT} Q (i ’< M+ cAdAT)

definition s’ in L such thats’ assigns a loop constant o - T ] ' o

Unlike induction variables [6], iterators need not changeab 1h€ template thus supplies the SMC with the predicates

fixed amount on every loop iteration. M, M <i,i < M+c, j—js < i—is, andM +c—is+js < N,
Single-Variable Explicit Template. We use the single- @nd with anassumeM + ¢ — i, + j; <= N) before the loop.

variable explicit template when a loop iteratormppears in The tgmplgte works S|m|IarIy.|f the leader Qecreases on each

a bounds check within a loop, and the loop condition is Igop iteration; for example, .|f the leader is a count of the

comparison betweehand some loop constadt, e.g., as in @mount of space remaining in a buffer. _

Fig. 1(a). Fig. 2 shows how the template is communicated toFOr 100ps over strings, we use langth abstraction[7],

an SMC. Our description assumes that the loop conditionfPlemented using program instrumentation, to conserii

i < M, but the details are similar if the loop condition is2PProximate the semantics afrler; for details, see [5].

i < M ori# M. The symbolsP, Q, and R in Fig. 2 denote String temlplates are S|m|Iar to explicit templates; form)_(a

regions of the program. The template’s parameters,aré N, ple, the single-variable §tr|ng template uses the preelicat

andc; roughly,c represents (a guess at) the maximum amouht Strlen(A4), strlen(4) <, strlen(4) < N, Ali] =*\0", and

by which i can be increased ifp. The template breaks the@ddsassume(i <= strien(A)) andassumei <= strlen(A))

proof of safety down as follows: statements before the loop. The two-variable explicit tiatep

1) {true} P {M+c< N}, generalizes to string traversals similarly.

2) {M+¢< N} QR{M+c< N}, and I1l. EVALUATION

) {i<MAM+c<N}Q{i<M+cAM+c<N}  We have compared our SMC augmented with proof tem-

Fig. 2(b) shows the effect of the changes tha&EDEM- plates, RYASM, against three other SMCsa¥M [8] (without
PLATE makes to the program'’s internal representation in ordproof templates), BAST [4], [9], and SATABS [10]. We
to guide the SMC towards this proof. The template supplieerived 59 testcases from the Verisec suite [2], selecting
the predicates < M, M +c¢ < N, andi < M +¢, since they 26 patched testcases from 18 suite entries, excludingesntri
appear in the proof outline, and the predicate< i, which which either did not contain buffer-dependent loops or Wwhic
we have often found to be useful: together with< M, it contained loop structures already represented in the sete S
allows us to describe any comparisoq, €, ...) betweeni our methodology is currently limited to analyzing loopsso-
and M. In cases where the loop conditionis# M, such lation, we constructed, by hand, single-loop testcasdating
as in our example in Fig. 1(a), eTEMPLATE also inserts each bounds checking assertion in each selected program. We
an assumé; < M) statement before the loop, and the SMdmit our evaluation to safe testcases since proof template
must additionally prove thafi < M} Q; R {¢ < M} holds, not designed to aid falsification. To pass a testcase, a @bl h
so thati is bounded on each iteration. As shown in Fig. 2(c}p verify the assertion within a 600s timeout period; crashe
the SMC must discharge all assumptions used. timeouts, and incorrect results were counted as failures. W

Extending to Strings and Two-Variable Traversals. set the buffer sizes to 1024 so that the tools could not fgasib
Loops over arrays often involve two iterators — for examplesolve testcases by loop unrolling. All tests were run on agua
when copying data using pointers. We use the two-varialdere Intel 2.66GHz machine with 16GB of RAM.
explicit template when the loop condition is a test on one Table | summarizes our results. OveralfYAsM is able to
iterator (theleadel), but the bounds check is on another. Theerify 49 of our 59 testcases — more than twice as many as
main idea is to try to prove that the change in the secotlte next best tool, &ABs. Of our 59 testcases, 14 involved
iterator on any iteration of the loop is bounded by the changiaversing strings. Of these 14 testcasesYAsM was able to
in the leader. The parameters arg, M, N, andc. Assume verify 11, whereas the other tools were able to identify none
that the loop condition i$ < M, and that the bounds checkOut of the ten of our 59 testcases which involved two-vagabl
is asser(j < N); the details are similar if the loop conditiontraversals, PYASM was able to verify 7, whereas the other
isi# M ori < M. We introduce the variables and j; to tools were able to verify none. More details are available in

Fig. 2. Structure of single-variable explicit template.



; wh,ifle I(A [il _!=M "\0") { é wh,ifle ,§A-“]_!f ”’),\0’) { approach with theirs, by using our algorithm to suggest proo
2 Tt 2 UL TG 20T templates, casting them as invariant templates, and useig t
g _+J+++}: } g _ A[il} ='\0"; } invariant synthesis to customize them.

| N 1 ++;

Outside the domain of SMCs, several tools check the
safety of array accesses using abstract interpretatioroareH

(@) (b)
Fig. 3. Programs where (a) exit branches do not yield theecotemplate

and (b) the current template is insufficiently general. style deductive verification. Bounds-checking tools basad
our technical report [3], and the complete experimentaadaf't‘bStraCt interpretation [71, [19] rely on fixed abstractavhich
and test materials are available onlinehatp:/www.cs. cannot be refined at analysis time, thus leading to falsenalar

toronto.edu/ kelvin/ase08 _ Tools based on deductive verification typically require an
PTYAsM failed to check ten testcases within the timeodfférence procedure to provide loop invariants [20]. Dgnne

period. In one of these testcases, the correct template @&l Fischer [21] have applied a pattern-based approacthwhic

supplied to RYAsM, but it was unable to converge withinis similar in spirit to ours to deductive verification, buttno
the timeout period. The remaining nine failures fall intootw for the problem of array bounds checking, and their scope is

groups: (1) four testcases in whichuRp DB did not suggest "estricted to automatically-generated programs.

the correct template, either because no template exists, or V. CONCLUSIONS ANDFUTURE WORK

because the correct template cannot be inferred from loibp ex We find that proof templates supply SMCs with the pred-
branches, and (2) five testcases in which our current teeplaicates and assumptions needed to prove the safety of array
are insufficiently general. In both groupsyT¥asm back- bounds checks in common loops. We plan to extend our
tracked to the standard refinement strategy (loop unrgllinfyamework to handle multiples loops, and to explore proof
and eventually timed out. Fig. 3(a) and (b) show simplifiettmplates for other problem domains.
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