
Augmenting Counterexample-Guided Abstraction
Refinement with Proof Templates

Thomas E. Hart∗, Kelvin Ku∗, Arie Gurfinkel†, Marsha Chechik∗, David Lie‡
∗Department of Computer Science, University of Toronto,{tomhart,kelvin,chechik}@cs.utoronto.ca

†Software Engineering Institute, Carnegie Mellon University, arie@sei.cmu.edu
‡Department of Electrical and Computer Engineering, University of Toronto, lie@eecg.utoronto.ca

Abstract—Existing software model checkers based on predicate
abstraction and refinement typically perform poorly at veri fying
the absence of buffer overflows, with analyses depending on the
sizes of the arrays checked. We observe that many of these
analyses can be made efficient by providingproof templates for
common array traversal idioms idioms, which guide the model
checker towards proofs that are independent of array size.

We have integrated this technique into our software model
checker, PTYASM, and have evaluated our approach on a set
of testcases derived from the Verisec suite, demonstratingthat
our technique enables verification of the safety of array accesses
independently of array size.

I. I NTRODUCTION

Software model checking based on predicate abstraction
and counterexample-guided abstraction refinement (CEGAR)
has been shown to be effective for checking correctness of
highly non-trivial programs and is now part of commercial
tools such as SDV [1]. The abstraction, a set of predicates,
is improved dynamically, based on identification of infeasible
counterexamples, until it is sufficiently precise to prove the
property of interest. In practice, the power of CEGAR software
model checkers (henceforth referred to as SMCs) is limited
by their ability to choose predicates well. Perfectly selecting
predicates is impossible due to the undecidability of software
verification, so this process always relies on heuristics.

We want to use SMCs to verify the absence of buffer
overflows, which are a major threat to the security of C
programs. Current SMCs typically perform poorly at this
task due toloop unrolling [2]. Our goal is to improve this
common-case performance, so that analyses are independent
of the sizes of the arrays being checked. Our solution is to
defineproof templatesdesigned to work when a program uses
common idioms to traverse an array, and attempt to guide an
SMC towards these proofs automatically. The templates are
modular, separating the analysis of the loop’s body from the
analysis’ preconditions on loop entry. We have implemented
an algorithm to heuristically map〈loop, variable〉 pairs in
a program to proof templates. When the algorithm detects
that a template may apply, it guides our SMC towards the
template proof by supplying it with a set of predicates and
assumptions. If the SMC is able to prove the original property
using these predicates and assumptions, it then proceeds to
discharge the assumptions (prove they hold). If any stage of
the analysis fails, the SMC backtracks to an earlier stage,
making the overall processsound, despite the unsoundness

of our algorithm for suggesting proof templates.
In the remainder of this paper, we give an algorithm for

using proof templates within an SMC (§ II-B), and describe
proof templates corresponding to common array traversal
idioms and a method for heuristically identifying when they
may apply (§ II-C). We compare our implementation of this
framework, called PTYASM, with other state-of-the-art SMCs,
using testcases derived from the Verisec suite [2] (§ III).

II. T ECHNIQUE

We present our technique for using proof templates in
SMCs; a technical report [3] gives a more thorough treatment.

A. CEGAR Software Model Checking
SMCs check a propertyψ on a programP , whereψ is the

reachability of a given line ofP , labelled “ERROR”. SMCs
can be used to check assertions by transforming a statement
assert(p) into a conditional, such as the one on lines 3–4 of
Fig. 1(a), and checking whether the assertion’s failure branch
is unreachable, in which case the assertion is considered tobe
safe. We assume that the program is annotated with bounds
checking assertions on each array access. The related work
describes CEGAR in more detail [1], [2], [4].

SMCs often perform poorly when verifying array bounds
checks in loops, such as the one in Fig. 1(a) (for succinctness,
the array is not shown). A typical SMC first finds the spurious
error traceτ1 = 〈1, 2, 3, 4〉, which it can eliminate by adding
the predicatesi < 1024 and i = M to its model of the
program. In the new model, the values of these predicates
will be unknown after line 5; hence, the SMC finds the path
τ2 = 〈1, 2, 3, 5, 2, 3, 4〉, in which ERROR is reachable intwo
iterations of the loop on lines 2–5. This new trace can be
eliminated by adding predicatesi+1 < 1024 andi+1 = M ,
resulting in a model in which ERROR is reachable inthree
iterations. The SMC continues eliminating paths containing
increasing numbers of loop iterations, finally proving ERROR
unreachable after 1024 iterations of the abstract-check-refine
loop. Suchloop unrolling makes the analysis impractical.

B. CEGAR with Proof Templates

Iteratively removing paths of increasing length from loops
like the one in Fig. 1(a) is an inefficient and unnatural way
to prove safety. A more natural proof shows inductively that
i ≤M ≤ 1024 is an invariant at line 2:

1) Initially, i ≤M ≤ 1024 holds trivially at line 2.



vo id example ( ) {
1 : i n t i =0 , sz =1024;

i n t M = sz−1;

2 : whi le ( i != M) {
3 : i f ( ! ( i <1024))
4 : ERROR: ;
5 : i ++; } }

vo id example ( ) {
1 : i n t i =0 , sz =1024;

i n t M = sz−1;
assume( i <= M) ;
assume(M <= 1024 ) ;

2 : whi le ( i != M) {
3 : i f ( ! ( i <1024))
4 : ERROR : ;
5 : i ++; } }

(a) (b)
Fig. 1. (a) Example program, (b) Application of proof template.

Algorithm 1 CEGAR+PT — CEGAR with proof templates.
1: procedure CEGAR+PT(P , ψ) ⊲ Program, Property
2: DB ← BUILD DB (P ) ⊲ Template occurrences
3: (E,ψ0, S)← (∅, ψ, empty stack) ⊲ (Preds, Init. prop., Backtracking stack)
4: loop
5: M← ABSTRACT (P , ψ, E) ⊲ M = model
6: τ ← MODELCHECK (M, ψ)
7: if τ = ǫ then ⊲ No path to ERROR
8: if NOASSUMPTIONSLEFT(S) then return SAFE
9: else(P,E,ψ)← DISCHARGENEXT(S) ⊲ Discharge assumptions

10: else
11: if SPURIOUS(τ,P ) then ⊲ Refine abstraction
12: if TIMEOUT (S) then (P,E,ψ)←BACKTRACK (S)
13: else
14: if ∃ℓ · UNROLLING(ℓ) ∧ HAVETEMPLATE(ℓ, DB,ψ, S) then
15: (P,E, S)←USETEMPLATE(ℓ,DB,ψ, S)
16: elseE ← E ∪ REFINE (τ )
17: else
18: if ψ = ψ0 then return UNSAFE
19: else(P,E,ψ)←BACKTRACK (S) ⊲ Assumption did not hold

2) If i ≤M ≤ 1024 at line 2 and the loop is entered, then
i ≤ M ≤ 1024 ∧ i 6= M , so i < M ≤ 1024 at line 3,
and i ≤M ≤ 1024 after thei++ on line 5.

Since i ≤ M ≤ 1024 is an invariant at line 2, if the loop is
entered,i < M ≤ 1024 at line 3, so the assertion is safe.

We present CEGAR+PT (Alg. 1), a variation on the classical
CEGAR algorithm used by SMCs, which attempts to guide an
SMC towards proofs like the one above by introducingproof
templates, which provide outlines of correctness proofs. The
call to BUILD DB on line 2 builds a database which maps
〈loop, variable〉 pairs in the program to proof templates, by
examining the structure of the loop. When a loop is being
unrolled, USETEMPLATE (line 15) queries this database to see
if a template may be useful. BUILD DB may suggest templates
which do not help, so the calls to BACKTRACK on lines 12 and
19 ensure that unhelpful templates are eventually abandoned.

We illustrate CEGAR+PT on the example program in
Fig. 1(a), but stress that it works on more complex programs,
such as those shown in [5]. BUILD DB records thati appears
to be bounded byM in the loop on lines 2–5 of the program in
Fig. 1(a), and guesses that this bound can be used to prove the
safety of the assertion. When CEGAR+PT realizes that the loop
one lines 2–5 is being unrolled, it invokes USETEMPLATE,
which identifies and applies a corresponding proof template.
USETEMPLATE adds predicates toE based on the structure of
the loop. This alone is insufficient, as some of these predicates
must be true before the loop is entered — for example, in
Fig. 1(a), the loop invarianti ≤ M ≤ 1024 only leads to
a proof of correctness if it holds initially. Often proving that
these predicates are in fact true on loop entry requires the

discovery of additional “support” predicates. To ensure that
these support predicates are discovered, USETEMPLATE also
adds explicit assumptions toP (see Fig. 1(b)).

Since BUILD DB may suggest proof templates whose as-
sumptions do not hold, CEGAR+PT must discharge all as-
sumptions used (line 9), and backtrack if any do not hold (line
19). This is facilitated by a backtracking stackS. Whenever
USETEMPLATE supplies a template on line 15, it adds a stack
frame toS, containing (a) the current iteration of the loop
beginning on line 6 of CEGAR+PT (to enable the TIMEOUT

check on line 12), (b) the current values ofP , E, and ψ
(so that the calls to BACKTRACK on lines 12 and 19 can
restore the state before the template was applied), and (c)
the assumptions associated with the template (to enable the
call to DISCHARGENEXT on line 9).S also keeps track of
the number of times a template has been applied to〈L, i〉, to
ensure that each candidate template can be applied in turn.

In the example program in Fig. 1(a), USETEMPLATE adds
to E the predicatesi ≤ M , M ≤ i, andM ≤ 1024 and the
assumptions shown in Fig. 1(b). These are part of the definition
of the template, and are instantiated using the parametersi,M ,
and1024, which come from the program. With these, the SMC
can prove ERROR unreachable using the inductive argument
described at the beginning of this section.

HAVETEMPLATE checks whether a template can be used
for the pair〈L, i〉; our implementation checks that (a) there is
a proof template for〈L, i〉, (b) no template for〈L, i〉 is already
in use, and (c)ψ = ψ0, the last being because we do not yet
support the use of proof templates for multiple loops.

C. Proof Templates for Array Traversals

We have defined four parameterized proof templates corre-
sponding to common array traversals in which array indices
are kept in-bounds via (1) explicit numerical comparisons,(2)
sentinel null characters (as in string traversals), or (3) updates
correlated with a second variable kept in bounds by one of
the above two methods. We choose among these templates
based on combinations of two conditions: whether the iterator
(defined below) in the loop condition is the same as the iterator
in the assertion being checked, and whether the loop condition
is an arithmetic comparison on an iterator or a test on an array
cell. We have found that this information is often sufficientto
choose the correct template. Our template descriptions assume
structured loops withloop conditionsat their heads; however,
our templates work equally well for common less structured
loops withexit branchesat their headsor within their bodies.
We outline PTYASM’s handling of such loops, and how we
derive template parameters for them, in [5].

Preliminaries. We use standard compiler concepts [6] to
describe our proof templates. A statements is a definitionof
a variablev (or s definesv) if s contains an assignment tov.
If s reads the value ofv, we say thats usesv. For any loop
L, constants and variables which are used but not defined inL

are calledloop constants. If s1 ands2 are statements, we say
that s1 is dependenton s2, written s1 δ s2, if there exists a
variablev such thats1 usesv, s2 defines it, and the definition



P : { . . .}

whi le ( i <= M) {
Q: { . . .}
a s s e r t ( i <= N ) ;
R : { . . .} }

P : { . . .}
assume (M+c <= N ) ;
whi le ( i <= M) {
Q: { . . .}
a s s e r t ( ( i <= M+c ) && (M+c <= N ) ) ;
R : { . . .} }

P : { . . .}
a s s e r t (M+c <= N) ;
whi le ( i <= M) {
Q: { . . .}

R: { . . .} }

(a) Original (b) Assume (c) Discharge
Predicates:i ≤M,M ≤ i, i ≤M + c,M + c ≤ N .

Fig. 2. Structure of single-variable explicit template.

reachess1. We writes1 δ⋆ s2 if there exists a set of statements
s′
1
, . . . s′

n
, such thats1 δ s′1 δ · · · δs′

n
δ s2.

We introduce the concept of loop iterators to define our
templates. Given a loopL, a variablei is an iterator of L iff
there exists a statements such that (1)s is a definition ofi
within L; (2) s δ⋆ s; and (3)s is not dominated by any other
definition s′ in L such thats′ assigns a loop constant toi.
Unlike induction variables [6], iterators need not change by a
fixed amount on every loop iteration.

Single-Variable Explicit Template. We use the single-
variable explicit template when a loop iteratori appears in
a bounds check within a loop, and the loop condition is a
comparison betweeni and some loop constantM , e.g., as in
Fig. 1(a). Fig. 2 shows how the template is communicated to
an SMC. Our description assumes that the loop condition is
i ≤ M , but the details are similar if the loop condition is
i < M or i 6= M . The symbolsP , Q, andR in Fig. 2 denote
regions of the program. The template’s parameters arei,M,N ,
andc; roughly,c represents (a guess at) the maximum amount
by which i can be increased inQ. The template breaks the
proof of safety down as follows:

1) {true} P {M + c ≤ N},
2) {M + c ≤ N} Q;R {M + c ≤ N}, and
3) {i ≤M ∧M + c ≤ N} Q {i ≤M + c∧M + c ≤ N}.

Fig. 2(b) shows the effect of the changes that USETEM-
PLATE makes to the program’s internal representation in order
to guide the SMC towards this proof. The template supplies
the predicatesi ≤M , M + c ≤ N , andi ≤M + c, since they
appear in the proof outline, and the predicateM ≤ i, which
we have often found to be useful: together withi ≤ M , it
allows us to describe any comparison (<, 6=, . . .) betweeni
andM . In cases where the loop condition isi 6= M , such
as in our example in Fig. 1(a), USETEMPLATE also inserts
an assume(i ≤ M ) statement before the loop, and the SMC
must additionally prove that{i < M} Q;R {i ≤ M} holds,
so thati is bounded on each iteration. As shown in Fig. 2(c),
the SMC must discharge all assumptions used.

Extending to Strings and Two-Variable Traversals.
Loops over arrays often involve two iterators — for example,
when copying data using pointers. We use the two-variable
explicit template when the loop condition is a test on one
iterator (theleader), but the bounds check is on another. The
main idea is to try to prove that the change in the second
iterator on any iteration of the loop is bounded by the change
in the leader. The parameters arei, j,M,N , and c. Assume
that the loop condition isi ≤ M , and that the bounds check
is assert(j ≤ N ); the details are similar if the loop condition
is i 6= M or i < M . We introduce the variablesis and js to

All Testcases (59) String (14) Two-variable (10)
PTYASM 49 11 7
YASM 17 0 0
BLAST 19 0 0
SATABS 22 0 0

TABLE I
NUMBER OF TESTCASES SOLVED AT BUFFER SIZE1024, 600S TIMEOUT.

denote the values ofi andj before the loop is entered; these
variables allow us to represent the notion of change ini andj.
Let P ′ be the composition of statements(P ; is = i; js = j),
and letΦ = (M+c− is ≤ N− js) andΨ = (j− js ≤ i− is).
Then, the template breaks the proof of safety down as follows:

1) {true} P ′ {Φ},
2) {Φ ∧ Ψ} Q;R {Φ ∧ Ψ}, and
3) {i ≤M ∧ Φ ∧ Ψ} Q {i ≤M + c ∧ Φ ∧ Ψ}.

The template thus supplies the SMC with the predicatesi ≤
M ,M ≤ i, i ≤M+c, j−js ≤ i−is, andM+c−is+js ≤ N ,
and with anassume(M + c− is + js <= N) before the loop.
The template works similarly if the leader decreases on each
loop iteration; for example, if the leader is a count of the
amount of space remaining in a buffer.

For loops over strings, we use alength abstraction[7],
implemented using program instrumentation, to conservatively
approximate the semantics ofstrlen; for details, see [5].
String templates are similar to explicit templates; for exam-
ple, the single-variable string template uses the predicates
i ≤ strlen(A), strlen(A) ≤ i, strlen(A) ≤ N , A[i] = ‘\0’, and
addsassume(i <= strlen(A)) andassume(i <= strlen(A))
statements before the loop. The two-variable explicit template
generalizes to string traversals similarly.

III. E VALUATION

We have compared our SMC augmented with proof tem-
plates, PTYASM, against three other SMCs: YASM [8] (without
proof templates), BLAST [4], [9], and SATABS [10]. We
derived 59 testcases from the Verisec suite [2], selecting
26 patched testcases from 18 suite entries, excluding entries
which either did not contain buffer-dependent loops or which
contained loop structures already represented in the set. Since
our methodology is currently limited to analyzing loops in iso-
lation, we constructed, by hand, single-loop testcases isolating
each bounds checking assertion in each selected program. We
limit our evaluation to safe testcases since proof templates are
not designed to aid falsification. To pass a testcase, a tool had
to verify the assertion within a 600s timeout period; crashes,
timeouts, and incorrect results were counted as failures. We
set the buffer sizes to 1024 so that the tools could not feasibly
solve testcases by loop unrolling. All tests were run on a quad-
core Intel 2.66GHz machine with 16GB of RAM.

Table I summarizes our results. Overall, PTYASM is able to
verify 49 of our 59 testcases — more than twice as many as
the next best tool, SATABS. Of our 59 testcases, 14 involved
traversing strings. Of these 14 testcases, PTYASM was able to
verify 11, whereas the other tools were able to identify none.
Out of the ten of our 59 testcases which involved two-variable
traversals, PTYASM was able to verify 7, whereas the other
tools were able to verify none. More details are available in



1 whi le (A [ i ] != ’ \0 ’ ) {
2 i f ( ! ( j >= M) ) {
3 a s s e r t ( j < N) ;
4 j ++; }
5 i ++; }

1 whi le (A[ i ] != ’ \0 ’ ) {
2 i f (A[ i ] == ’ ? ’ ) {
3 a s s e r t ( i < N) ;
4 A[ i ] = ’ \0 ’ ; }
5 i ++; }

(a) (b)
Fig. 3. Programs where (a) exit branches do not yield the correct template
and (b) the current template is insufficiently general.

our technical report [3], and the complete experimental data
and test materials are available online athttp://www.cs.

toronto.edu/˜kelvin/ase08 .
PTYASM failed to check ten testcases within the timeout

period. In one of these testcases, the correct template was
supplied to PTYASM, but it was unable to converge within
the timeout period. The remaining nine failures fall into two
groups: (1) four testcases in which BUILD DB did not suggest
the correct template, either because no template exists, or
because the correct template cannot be inferred from loop exit
branches, and (2) five testcases in which our current templates
are insufficiently general. In both groups, PTYASM back-
tracked to the standard refinement strategy (loop unrolling)
and eventually timed out. Fig. 3(a) and (b) show simplified
representatives of these two groups. In Fig. 3(a), the single-
variable explicit template can be used to prove safety; however,
since the bound on the iteratorj is established on line 2, which
is not a loop exit branch, BUILD DB does not suggest this
template. We plan to enhance BUILD DB to suggest templates
based on checks which dominate assertions. Fig. 3(b) requires
a generalization of our string template, sincestrlen(A) can
change within the loop body. We plan to extend our system
to keep track of the value ofstrlen(A) on loop entry in such
cases; doing so would enable PTYASM to verify this testcase.

IV. RELATED WORK

Proof templates enable efficient modular safety proofs for
array traversals in the context of an SMC. Other projects have
made various tradeoffs to analyze loops, with array bounds
checking being a common motivation.

Using stubs for string functions makes verification efficient
when programs only traverse arrays using these functions, but
does not address custom array traversals [11]. Augmenting
SMCs with looping counterexamples [12], [13], or concrete
execution [14] enables efficientfalsification rather than ver-
ification. Replacing boolean programs with linear programs
enables some problems involving array traversal to be solved
efficiently, but sacrifices completeness of the SMC’s model-
checking phase [15]. Using a split prover [16] for refinement
ensures eventual convergence if a proof of safety exists within
difference logic, but does not guarantee that the proof is
efficient, and can drastically increase the number of predicates
used if a predicate with a large difference bound is needed.
ACSAR [17] usestransfinite refinementto abstract the effects
of loops, and has been used to the verify small loops.

Beyer et al. useinvariant templateswithin an SMC to avoid
loop unrolling [18], but do not address strings or modularize
proofs. The user must specify the invariant template, which
requires intuition about the structure of the loop and the
property being checked. It may be possible to combine our

approach with theirs, by using our algorithm to suggest proof
templates, casting them as invariant templates, and using their
invariant synthesis to customize them.

Outside the domain of SMCs, several tools check the
safety of array accesses using abstract interpretation or Hoare-
style deductive verification. Bounds-checking tools basedon
abstract interpretation [7], [19] rely on fixed abstractions which
cannot be refined at analysis time, thus leading to false alarms.
Tools based on deductive verification typically require an
inference procedure to provide loop invariants [20]. Denney
and Fischer [21] have applied a pattern-based approach which
is similar in spirit to ours to deductive verification, but not
for the problem of array bounds checking, and their scope is
restricted to automatically-generated programs.

V. CONCLUSIONS ANDFUTURE WORK

We find that proof templates supply SMCs with the pred-
icates and assumptions needed to prove the safety of array
bounds checks in common loops. We plan to extend our
framework to handle multiples loops, and to explore proof
templates for other problem domains.

REFERENCES

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner, “Thorough Static Analysis
of Device Drivers,” inProc. EuroSys’06.

[2] K. Ku, T. E. Hart, M. Chechik, and D. Lie, “A Buffer Overflow
Benchmark for Software Model Checkers,” inProc. ASE’07.

[3] T. E. Hart, K. Ku, M. Chechik, A. Gurfinkel, and D. Lie, “Augmenting
Counterexample-Guided Abstraction Refinement with Proof Templates,”
Dept. Computer Science, Univ. Toronto, Tech. Rep. CSRG-????, 2008.

[4] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy Abstraction,”
in Proc. POPL’02.

[5] T. E. Hart, K. Ku, M. Chechik, A. Gurfinkel, and D. Lie, “PTYASM:
Software Model Checking with Proof Templates,” inProc. ASE’08 —
Tool Demonstrations Track.

[6] S. Muchnick,Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[7] N. Dor, M. Rodeh, and S. Sagiv, “CSSV: Towards a RealisticTool for
Statically Detecting All Buffer Overflows in C,” inProc. PLDI ’03.

[8] A. Gurfinkel, O. Wei, and M. Chechik, “YASM: A Software Model-
Checker for Verification and Refutation,” inProc. CAV’06.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from Proofs,” inProc. POPL’04.

[10] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS: SAT-
based Predicate Abstraction for ANSI-C,” inProc. TACAS’05.

[11] S. Chaki and S. Hissam, “Certifying the Absence of Buffer Overflows,”
SEI, CMU, Tech. Rep. CMU/SEI-2006-TN-030, 2006.

[12] D. Kroening and G. Weissenbacher, “Counterexamples with Loops for
Predicate Abstraction,” inProc. CAV’06.

[13] C. Wang, A. Gupta, and F. Ivancic, “Induction in CEGAR for Detecting
Counterexamples,”Proc. FMCAD’07.

[14] D. Kroening, A. Groce, and E. Clarke, “Counterexample Guided Ab-
straction Refinement via Program Execution,” inProc. ICFEM’04.

[15] A. Armando, M. Benerecetti, and J. Mantovani, “Abstraction Refinement
of Linear Programs with Arrays,” inProc. TACAS’07.

[16] R. Jhala and K. L. McMillan, “A Practical and Complete Approach to
Predicate Refinement,” inProc. TACAS’06.

[17] M. N. Seghir and A. Podelski, “ACSAR: Software Model Checking with
Transfinite Refinement,” inProc. SPIN’07.

[18] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Path
Invariants,” inProc. PLDI’07.

[19] A. Venet and G. Brat, “Precise and Efficient Static ArrayBound
Checking for Large Embedded C Programs,” inProc. PLDI’04.

[20] Y. Moy, “Sufficient Preconditions for Modular Assertion Checking,” in
Proc. VMCAI’08.

[21] E. Denney and B. Fischer, “Annotation Inference for Safety Certification
of Automatically Generated Code (Extended Abstract),” inProc.ASE’06.


