
Systematic Construction of Abstractions for
Model-Checking

Arie Gurfinkel, Ou Wei, and Marsha Chechik

Department of Computer Science, University of Toronto
Email:

�
arie,owei,chechik � @cs.toronto.edu

This paper describes a framework, based on Abstract Interpretation, for creating
abstractions for model-checking. Specifically, we study how to abstract models of � -
calculus and systematically derive abstractions that are constructive, sound, and precise,
and apply them to abstracting Kripke structures. The overall approach is based on the
use of bilattices to represent partial and inconsistent information.

1 Introduction

Abstraction plays a fundamental role in combating state-space explosion in model-
checking. The goal of abstraction is to construct an abstract model of a system which is
small enough to be effectively analyzed, and yet rich enough to yield conclusive results.
Success of current abstraction projects, such as SLAM [2] and Bandera [6], indicates
that abstraction is an effective technique for enabling model-checking of realistic soft-
ware systems.

In model-checking, transition systems are typically abstracted as follows: (1) An
abstract statespace is defined such that each abstract state corresponds to a set of con-
crete states. This correspondence can be arbitrary, as in predicate abstraction [16], or
influenced by the concrete statespace, as in symmetry reduction [11]. (2) An abstract
transition system is constructed by defining a transition relation over this abstract states-
pace. (3) Finally, the resulting system is argued to be correct, i.e., it is shown to preserve
a fragment of the desired temporal logic.

The problem with the above approach is that it is not algorithmic: the techniques
used to construct the abstract systems require a certain amount of intuition of users, and
extra effort is needed to show that the resulting abstraction is correct. This makes it dif-
ficult to understand a specific abstraction method and improve on it. For example, given
an abstraction that preserves universal CTL, how should it be changed to preserve the
entire CTL? It is also difficult to understand the relationship between different abstract
methods. For example, as shown in [24], predicate abstraction and symmetry reduction
differ only in their choice of abstract states. However, this insight was not apparent just
from the description of these methods.

Given the role abstraction plays in the model-checking process, we believe it is
essential to create a general methodology for systematically constructing and analyzing
abstractions. In the context of static analysis of programs, such a framework, called
Abstract Interpretation (AI), has already been proposed by [7]. It provides a collection
of notations and tools to formalize the approximation of program semantics, as well as
to design and analyze program abstractions. The goal of this paper is to specialize the
AI framework to model-checking.

There are a number of ways to do this specialization, given the breadth of model-
checking approaches. Our goal here is to create abstractions that preserve properties
expressed in the modal � -calculus [19] (���). Following the recipes of AI, we system-
atically derive conditions under which an abstract � � model is the best abstraction of
a concrete one. We guarantee that these abstract models are (a) sound, i.e., if an � �
formula is satisfied in the abstract model it is satisfied in the concrete, (b) most pre-
cise, i.e., satisfy the most properties, and (c) have the desired structural characteristics,
e.g., a requirement that an abstraction of a transition system is a transition system as
well. These conditions are constructive and, as we show in this paper, can be derived al-
most mechanically. The algorithm for building a desired abstraction follows from these
conditions directly.

The logic ��� includes negation, so that an ��� formula ��� is satisfied iff � is refuted.
If we assume that every formula is either satisfied or refuted in an abstraction as well, it
may seem that preserving soundness for all � � formulas means that such an abstraction
must satisfy and refute exactly the same properties as the corresponding concrete model
(resulting in a bisimilar model). If the goal is to save space for model-checking, this
abstraction would be very limited. Thus, most existing abstractions are restricted to
fragments of ��� , i.e., only to the universal or only to the existential properties (see,
e.g., [21]).

The insight we use in this paper is that an abstraction is inherently incomplete: some
formulas may be neither satisfied nor refuted by it. We propose to treat satisfaction and
refutation independently. If we classify all � � formulas using a pair � Sat 	 Ref
 , where
Sat contains all the formulas satisfied in an abstract model, while Ref contains all the
refuted ones, then Sat and Ref are not necessarily complements of each other. In fact,
Sat and Ref may not even be disjoint, allowing some formulas to be both satisfied and
refuted.

Associating knowledge about truth and falsity of every piece of evidence can be nat-
urally encoded using 4-valued Belnap logic [3] which enjoys nice mathematical prop-
erties associated with bilattices [14, 13]. That is, bilattices enable a uniform approach
for handling partial and inconsistent information, allowing reasoning about truth and
knowledge in a single theoretical framework. In this paper, by combining the theories
of AI with that of bilattices, we obtain a simple and elegant framework for deriving
abstractions for � � . Due to the generality of bilattices, our results apply not only to the
traditional two-valued interpretation of � � , but also to its multi-valued [4] and quanti-
tative [9] interpretations.

The contribution of this paper is a general technique, based on AI, for deriving
abstractions for model-checking. It allows understanding and comparing different tech-
niques, and provides a methodology for proving soundness and precision of the desired
abstraction. We then study this technique on two additional levels. First, we apply it
to ��� models, and then specialize it to abstracting transition systems represented as
Kripke structures.

The rest of this paper is organized as follows: after providing the necessary back-
ground in Section 2, we show how to lift abstraction between elements to abstraction
between sets of elements in Section 3. This gives us a general framework for approx-
imating interpretations of ��� . In Section 4, we derive abstractions for model-theoretic

2

interpretations of ��� , and then apply our technique to abstracting transition systems
in Section 5. In Section 6, we specialize the results of Section 5 to boolean transition
systems, and compare them to those obtained by Dams et al. [8]. We relate our tech-
nique with other abstraction approaches in Section 7 and summarize our contributions
in Section 8.

2 Background
In this section, we introduce the basic concepts of lattice theory, modal � -calculus, and
abstract interpretation.

2.1 Lattices and Monotone Functions

A lattice is a partially ordered set ����� � 	���� in which every subset 	 of � has a least
upper bound, called join and denoted
�	 , and a greatest lower bound, called meet and
denoted ��	 . A lattice is distributive if meet and join distribute over each other, i.e.,
���������
��������
�����������
���� , and ���
�������������������
!��������� .

A De Morgan algebra is a structure "#�$� � 	�� 	�%�� , where � � 	���� is a distributive
lattice and %'& �)(� is a negation that satisfies involution (%*%++�,) and De Morgan
laws: %-��������.�/%��
�%�� , and %-���
����.�/%�0�1%�� .

We denote the space of functions from 2 to 	 by 23(4	 , or 	65 . For example,
both 27(98 	:(<;>= and ��;�?@�A5 denote the space of functions from 2 to functions
from 	 to ; .

Let 2 be a set and ���/� � 	���� be a lattice. The ordering and operations of � extend
pointwise to �B5 , i.e., C��ED6FHGIKJL2NMOCP��Q�R�)DS��Q� . This turns �B5 into a lattice with
the same properties as � . In particular, if � is distributive or De Morgan, so is � 5 .

A function C between two partially ordered sets ��2 	���� and ��	 	�T�� is monotone (or,
order-preserving) iff U���-VWCP��Q��T�CP����� , and anti-monotone iff !���+VXCP�����0T
CP��Q� . We use an upward (Y) and downward (Z) arrows to indicate monotone and anti-
monotone functions, respectively. For example, 8 2[(\	�=^] denotes the space of all
monotone functions from 2 to 	 , and ��	65��`_ denotes the space of all anti-monotone
functions. Monotone and anti-monotone functions are closed under pointwise meet and
join; thus, if 	 is a lattice, then so are 8 2,(a	-=b] and 8 2'(a	-=c_ .
2.2 Truth Domains and Sets

A truth-domain " is a collection of elements d , referred to as truth values, together
with a truth ordering T and a negation operator ��&Qd3([d , such that "$�e��d 	�T 	 ���
is a De Morgan algebra. The truth ordering orders the elements based on their truth
content; thus, �T'� stands for “ is less true than � ”. The meet (f) and join (g) of the
truth ordering are called conjunction and disjunction, respectively.

The best known truth domain is the classical boolean logic h with values true and
false. Its truth ordering is shown in the Hasse diagram in Figure 1(a), with negation
indicated in parentheses. Other examples include Belnap logic i , shown in Figure 1(b),
which extends boolean logic with two additional values: j and d, to represent “un-
known” and “inconsistent”, respectively; and Fuzzy logic k , shown in Figure 1(c). The
truth values of k are formed by the set of all real numbers in the closed interval 8 l 	�m�= ,
where l stands for false, m for true, and the remaining values stand for degrees of truth;
furthermore, negation is defined as ��n�o/mp%Un , so that �Pl-��m and �Rm>�,l .

3

(a) (b) (c) (d)false

true

(� true)

(� false)

f

t

m d

(� t)

(� d)

(� f)

(� m)

1 (� 0)

0.5 (� 0.5)

0 (� 1)

����������	� �
�������	� ����	����	� ����	���	�
�
��� ���	� ��	� ����

� ���
Fig. 1. (a)-(c) Truth domains: (a) 2-valued boolean logic, (b) Belnap logic, and (c) Fuzzy logic.
(d) An abstract domain for � .

Given a collection of elements � , a set over � is a function from � to a truth
domain. Thus, a boolean (or classical) set is a function from � to h , a Belnap set is
a function from � to i , and a fuzzy set is a function from � to k . Set ordering and
operations are defined by pointwise extensions. Let ��� 	����0&�� (ad be two sets. Then�! #"$�&%('*),+.-/�! /01+3254$�&%601+32 �! 879�:%('<;�+=-/�! /01+323>?�&%601+32�! '@;�+.-/A��8 /01+,2 �! 8B9�:%('<;�+=-/�! /01+323C?�&%601+32
2.3 Modal D -Calculus

In this section, we describe the modal � -calculus [19], or � � .
Definition 1. Let EGFIH be a set of variables and 2KJ be a set of atomic propositions. The
logic � � ��2KJ-� is the set of all formulas satisfying the grammarLNMOM PNQSR6T.R A LUR6L C LNR6V�LUR/W:T - L 0 T 2�X
where Y!JU2ZJ , and [�JUEGFIH . Furthermore, [in ��[-M �R�\[� must occur under the scope
of an even number of negations in �@�][� .
Additionally, we define the following syntactic abbreviations:L >_^U'`A�0]A L C9A8^�2 Lba ^U'`A L >c^ed L 'fA V A Lhg�i - L 0 i 25'`A Wji -/A L 0]A i 2

The modal operator k is typically interpreted as “an existence of an immediate
future”. For example, “Y ” means that Y holds now, “ kjY ” means that there exists an
immediate future where Y holds, and “ l(Y ” means that Y holds in all immediate futures.
The quantifiers � and m stand for least and greatest fixpoint, respectively.

An occurrence of a variable [in a formula � is bound if it appears in the scope of
a � quantifier and is free otherwise. For example, [is free in Y*gUk�[, and is bound in

��[�M�Y gnk�[. A formula � is closed if it does not contain any free variables.
A set-based interpretation of � � over a set domain "?o is a mapping pqp M!prp from

closed � � formulas to " -sets over ; . The elements of ; are often called states, andpqp �spqp �����B�ut is read as “the degree to which � is satisfied by (or, true in) a state � is t ”.
An ��� model is a structure v � �^"?o 	 �OY:w�� ��x 58y 	�k�w � , where "9o is a set do-

main; for each YLJ 2ZJ , Y w is in " o ; and k w & " o (" o is a z -monotone function.
The set domain is called the universe of v , and Y8w and k�w are interpretations of
atomic propositions and the k operator, respectively. A model v gives rise to an � �
interpretation pqp M�pqp w .

The interpretation prp �sprp w{ is defined inductively on the structure of the formula � ,
where |!&�E�F�HS(a"9o is an object assignment for free variables:ROR Q!R}R ~� ' Q,~ R}R T�ROR ~� 'f��0 T 2ROR L C9^ ROR ~� ' ROR L�ROR ~� B ROR ^ ROR ~� R}R A L�ROR ~� ' ROR L�R}R ~�ROR W +c- L�ROR ~� '

lfp ��� ;,�S- ROR L�ROR ~��� �/������}� R}R V�L�ROR ~� ' V8~ 0 ROR L�ROR ~� 2

4

where lfp ��C is the z -least fixpoint of C . For a closed ��� formula � , prp �sprp w{ � prp �sprp w{��
for any | and |�� . Thus, we write prp �sprp w for that value, and define it to be the model-
based interpretation of � .

Formulas of ��� are often interpreted over Kripke structures. A Kripke structure is
a tuple � � ��2ZJ 	 ; 	 " 	�� 	���� , where 2ZJ is a collection of atomic propositions, ; is a
collection of elements (called states), " is a truth domain, �*& 2ZJ/("�o is a mapping
from atomic propositions to sets over ; , and �:&@;a(<" o is a transition function
mapping each state to a set of its successors. For a transition function � , we define a
pre-image operator pre 8 �>= & " o (" o and its dual 	pre 8 �>= as:

pre
 �� 0��Z2�0��/2�'<>������G0 � 0���23B��K2�0���2 �
pre
 �� 0��Z25' pre
 �� 0 ��2

Intuitively, pre 8 ��=`���+����� � is a degree to which the set � ��� � of successors of � has a
non-empty intersection with � . A Kripke structure � �e��2ZJ 	 ; 	A" 	�� 	���� gives rise to
an ���I��2KJ-� model v ���-�R�e�b"?o 	��}Y:w �"!�#A� ��x 58y 	 k�w$�"!%#A� , where Yjw �"!�#.o&� �}Y � , and
k�w$�"!%#>o pre 8 �>= . Finally, the interpretation prp M,prp ! of � � in � is defined as prp �sprp !'o
pqp �spqp w$�'!�# .
2.4 Abstract Interpretation

The framework of Abstract Interpretation (AI) provides a collection of tools for system-
atic design and analysis of semantic approximations [7]. The framework is very flexible
and can be applied in various ways. Below, we give a brief overview of AI, summarizing
the results used in our work.

Basics of Abstract Interpretation. Inputs to an AI framework are collections of con-
crete elements ; and abstract elements 2 , called a concrete and an abstract domain,
respectively. A notion of approximation, or abstraction, is formalized by a soundness
relation (bzN2*) ; , where (� is read as “ +(-approximates � ”.

A concretization function ,3&>2 (-�o maps each abstract element to a set of
concrete elements corresponding to it: ,P��Q�*o/. � p� (��0 . An abstract element is
called consistent if ,���Q�21�43 ; otherwise, we say is inconsistent. The elements of 2
can be thought of as properties, such as “positive” or “odd”, and ,P��Q� as a collection of
concrete elements satisfying . The concretization , induces an approximation ordering576

on 2 such that 586 �RF9,���Q�;: ,������ .
Intuitively, 5 6 � means that approximates more concrete elements than � ; there-

fore, is less informative, or equivalently, less precise than � . When viewed as a prop-
erty, is weaker than � . For example, knowing that an element is “positive” is less
informative than knowing that it is both “positive” and “odd”.

In this paper, an abstract domain 2 is equipped with an information ordering
5
5

such that ��2 	 5 5 � is a lattice and 5 5 �KV 5 6 � . Thus, we can study properties
of an abstract domain independently of any particular soundness relation. Furthermore,
we assume that 2 satisfies “the existence of a best approximation” [7], that is:

GS��J1;,M=<Q�J�2 M �� (�.f*GI � JL2 M� � (�pV/,P�� � �>: ,P�� � �
and use ?3&�; (2 to denote an abstraction function that maps each concrete el-
ement to its best approximation. Note that for a given � , 2 may have several best
approximations; thus, ? is not uniquely defined. In such cases, it is convenient to

5

use the
5
5 -largest ? , so that (and , can be expressed as (� F 5 5 ?R����� and

�>J ,���Q��F: 5 5 ?B����� , respectively.
A lower bound with respect to

5 6
is called widening and is denoted by � . Intu-

itively, for a set � z,2 , � � is an abstract element representing the information com-
mon to all elements of � , i.e., ,P� � �-� :���� x�� ,P�	� � . In particular, the greatest lower
bound � 5 of

5
5 is a widening. A widening � is info-preserving if for any � contain-

ing no inconsistent elements, � � is the best representation of information common to
all elements of � , i.e., GIKJL2 M ,���Q�>:
� � x�� ,���� �.V9,P��Q�;:$,�� � �-� .

Abstract domains ��2=� 	 5 �O� and ��2K� 	 5 ��� are informationally equivalent if they rep-
resent the same degrees of information, that is, GI:�>JL2 ��M <Q���J�2K��M ,&� ��3���.� ,�� ���� �
and GI���J�2K�pM=< ,�>J 2=�RM ,&� ��3���.� ,,� ������ .

For examples in this paper, we use the set of integers � as a concrete domain, and the
domain , shown in Figure 1(d), as the abstract domain. The soundness relation (z
)�� is self-explanatory, e.g., 2 is (-approximated by Y�� �����6t�� , �6t�� , Y�� � , and ����� ,
where Y�� �����
t�� is its best abstract approximation. Similarly, , ���6t�� � is the set EVEN
of all even numbers, , ������D � is the set NEG of all negative numbers, , ������D����6t�� � is
NEG EVEN, etc.

Functional Abstraction. In practice, it is common to synthesize abstractions of com-
plex structures using abstractions of their parts. A particular application is abstraction
of functions, or functional abstraction [7].

Let !/�,2 ��(a2Z� and " �,;s��(:;(� be collections of abstract and concrete func-
tions, where 2=� and 2Z� are abstract domains approximating ;Z� and ; � , respectively.
A soundness relation ($#nz%!)&" is functional if D (�# -approximates C iff D preserves
soundness of C . Formally, ($# satisfies

')(�*,+�-)�. 0/21Z -�)�3 0/54, 06. 2!- ' 06. 2 (% + 063 2 (functional soundness)

Let � be a widening operator of 2 � , and ?87/&9" (:! be defined as
;,< 0 + 2�06.�2�'>=@? ��ACBEDGFIH ; % 0 + 063	2�2 (functional abstraction)

Then ?87-��CS� is a (�# -approximation of C , and its precision is determined by the precision
of the widening operator used.

Theorem 1. [7] Let ! , " , (�# , and ?87 be as above. If � is info-preserving, then ?07 ��CS�
is the best (�# -approximation of C .

One of the main results of AI is that ?07 preserves fixpoints:

Theorem 2. [7] Let ��; 	�T o � be a lattice, C &�8 ;e(;>=b] be a monotone function, and
��2 	�T 5 � be a lattice approximating ; via (o . If the join operator g 5 of 2 preserves
soundness, i.e., ��? o ��� � � g 5 ? o ��� � � � 5 5 ? o ��� � g o � � � , then the least fixpoint of ? 7 ��CS�
(o -approximates the least fixpoint of C : JLK�M)N�O�? 7 ��CS� (o JPK�M�N�Q C .

Functional Abstraction and Monotone Functions. Let !��/8 2 � (a2 � = be as above,
and assume that 2=� and 2K� are equipped with information orderings

5 � and
5 � , re-

spectively. Then the set !-]��/8 2 ��(a2K��=c] of
5

-monotone functions is informationally
equivalent to ! .Furthermore, if � is an info-preserving widening of 2=� , then its point-
wise extension to functions is also an info-preserving widening of !6] [24]. Therefore,
we always restrict the abstract domain of functional abstraction to

5
-monotone func-

tions.

6

3 Abstract Sets

Sets play the role of basic blocks in the definition of � � semantics. In this section, we
develop an abstraction of sets that preserves all set operations, including set comple-
ment. This abstraction gives us the necessary tools for abstracting � � models, which
we do in Section 4. But it is independent of � � and can be used anywhere abstract sets
are required.

We assume that ; and 2 are a concrete and an abstract domain, respectively, re-
lated by a soundness relation (and an abstraction function ? . We aim to lift (to
a soundness relation (� between concrete sets, i.e., functions from ; into a fixed truth
domain " , and abstract sets, i.e., functions from 2 into some truth domain i (poten-
tially different from "). The goal of (� is to preserve set membership: that is, if ���
(� -approximates � , then if EJ 2&(-approximates � , ������Q� must approximate �p����� .
As always, we also want to know when ��� is a best approximation of a given set � .

We view sets as functions, so it is natural to express (� as a functional abstraction.
For this, we must first identify the notion of an abstract truth domain i and settle on the
meaning of “approximating truth values”.

3.1 Bilattices as Abstract Truth Domains

Intuitively, an abstract truth-domain i is a truth-domain and, therefore, has a truth or-
dering and a negation. It is also an abstract domain and needs an information ordering.
Furthermore, truth operations should not interfere with the information ordering. For
example, if and � are in i and is less informative than � , then negation of (�P)
must be less informative than ��� .

A structure that captures our intuition is that of a bilattice, which has been intro-
duced by Ginsberg [14] to enable reasoning with partiality and inconsistency. Here, we
briefly describe distributive bilattices.

Definition 2. [14] A distributive bilattice is a structure i$�H��	 	 5 	�T 	 ��� such that:
(1) i � ����	 	 5 � is a lattice and i � ����	 	�T 	 ��� is a De Morgan algebra; (2) meet (�)
and join (
) of i � , and meet (f) and join (g) of i � are monotone with respect to both5

and T ; (3) all meets and joins distribute over each other; and (4) negation (�) is5
-monotone.

The ordering
5

ranks elements of i with respect to information, and T ranks them with
respect to truth. Operations f and g of i � are called conjunction and disjunction. In the
spirit of AI, we refer to � and
 as widening and narrowing, respectively.

De Morgan algebras have a natural connection to bilattices.

Theorem 3. [14, 13]. Let "[�a��d 	�� 	�%�� be a De Morgan algebra, and i0�b" � be a
structure ��d)Ld 	 5 	�T 	 ��� such that

� .,X����	� � 3�X�
�� ' .����C 3���
 � .,X���� 4 � 3�X�
�� ' .����C�
�� 3 A � .,X���� ' � �
X .��
Then, i��^"6� is a distributive bilattice. Furthermore, every distributive bilattice is iso-
morphic to i��^"6� for some De Morgan algebra " .

For a truth-domain " , an element ��n 	��
 of i0�b"6� is interpreted as a truth value
whose degree of truth is n and degree of falsity is � . For example, i0��h � consists of
four elements: ��� 	��
 representing true – maximal degree of truth and minimal degree of

7

falsity, � � 	 �
 representing false, ��� 	��
 representing lack of knowledge – minimal degree
of both truth and falsity, and � � 	 �
 representing an inconsistency (or disagreement) –
maximal degree of both truth and falsity. It is easy to verify that i�� h � is exactly Belnap
logic shown in Figure 1(b). For convenience, we introduce projections ��� and ��� defined
as ��� � �^n 	 �
 � o n and ��� � �^n 	 �
 �Bo � .

Guided by the above intuition, we say that i0�b"6� is an abstract truth-domain corre-
sponding to a truth domain " . Intuitively, ��n 	��
pJ�i0�b"6� approximates ��J�" if n is no
more true than � , and � is no more false than � . In particular, ��� 	�%��
 is the best approx-
imation of � . Formally, this is captured by an abstraction function ? � �����.o ��� 	�%��
 , and
a soundness relation (� o*. �� 	 ���sp 5 ? � ����� 0 .

It is easy to verify that truth operations of i0�b" � , including negation, preserve sound-
ness. That is, if &� 5 ? � ���
��� and �� 5 ? � ���/� � , then 3�.fL�� 5 ? � ���
�.fL�/� � , 3��gL�� 5
? � ���6��g��/��� , and �P3� 5 ? � � �P�6��� . Furthermore, � is an info-preserving widening.

3.2 Set Abstraction

We now formally define the soundness relation (� between concrete (;[(") and
abstract (2,(Hi��^"6�) sets as:��� (� � ')�. /21 -�)�3 /@4	
 06.�2!-/���!06.�2	� ; ��0]��063	2�2 (set soundness)

The soundness relation (� is functional, and the corresponding abstraction function ? �
follows immediately from Theorem 1:

; � 0]��2�06.�28'��? � A�� DGFIH ; � 0]��063	2�2 (set abstraction)

Note that ? � �\� ����Q�@� ��n 	��
 means that the elements in , ��Q� belong to � with a truth
degree of at least n , and to � with a truth degree of at least � . In particular, if � is a
boolean set, then ? � �\� � is a Belnap set; ? � �\�.����Q� is � iff , ��Q� is contained in � , � iff
, ��Q� is contained in � , j iff , ��Q� is not contained in either � or � , and d iff , ��Q� is
contained in both � and � .

For example, an abstraction ? � � EVEN � of a boolean set EVEN J�h � is

; � 0 EVEN
2�06.�2�'

��� ��	� if
4	
 06.�2 "

EVEN�
if
4	
 06.�2 "

ODD� otherwise

Note a difference between an abstract element �
t�� and an abstract set ? � � EVEN � . The
former represents a property of being an even number, and , ���6t�� �B� EVEN is the set
of all numbers having this property. On the other hand, ? � � EVEN � represents a set that
contains all even and no odd numbers; hence, , � ��? � � EVEN � � �*. EVEN 0 is a singleton
containing the only set satisfying these conditions.

Recall that the set operations of i0�b"6� 5 are pointwise extensions of the correspond-
ing operations of i��^"6� ; therefore, they preserve soundness. For example, if � � (� -
approximates � , then ��� (� -approximates � , etc.

Finally, since (� is functional, following the discussion in Section 2.4, we restrict
the domain of abstract sets to

5
-monotone functions, i.e., to i0�b"6� 5] . Note that abstract

set operations preserve
5

-monotonicity and do not interfere with this restriction. This
gives us with a abstract domain for sets that (a) preserves all set operations and (b) has
an info-preserving widening. We use elements of this abstract domain as basic blocks
for designing ��� -preserving abstractions in the next section.

8

(a) (b)

���
Interpre-

tation

� �
Model

Kripke
Structure

Section 4

Section 5

Concrete Abstract

������� Q �����
	 � � # O�

� � Q� � ������ O�� # � ��� � 	 � � # O� � ������ O�� # � ���

� o � �� � � ��� �
5 	 � � # �� � � ���

6!

6!"

6$#

%&%('�%&% � %&%)'�%&% �

6+*

6+*

6+* 6+,

6+-

���	�
���� ���	� �
�������	�

���� ����	� �
��������	�
��	�

t t

d

m

d

m

m t

m

d

m

d

m
d d

Fig. 2. (a) Abstracting .0/ : the top row summarizes soundness relations for abstracting . W inter-
pretations; the middle one – .0/ models, i.e., interpretions of atomic propositions and V relation;
the bottom one – .0/ -preserving abstractions of Kripke structures. (b) A fragment of the abstrac-
tion ;21 0 � 2 , where � 01+32 P +4365

.

4 Abstract Interpretation for Modal 7 -Calculus

In this section, we develop an abstraction of � � models that is sound w.r.t. satisfaction
and refutation of all ��� formulas, i.e., if an ��� formula is satisfied (refuted) by the
abstract model, it is satisfied (refuted) by the concrete one. We start by formalizing the
notion of ��� -preserving approximation in the language of AI, and then systematically
extend it to the desired abstraction. The top half of the diagram in Figure 2(a) illus-
trates the structures and relations discussed in this section, where solid lines represent
relations between structures, and dashed those between their components.

We assume that ; is a collection of concrete elements, called states, and " is a truth
domain. Recall from Section 2.3 that an interpretation of � � pqp M/pqp over a set domain "?o
maps each closed � � formula to a " -set over ; , where prp � prp ����� is the degree to which
a formula � is true in a state � .

Let 2 be an abstract domain approximating ; via a soundness relation (, and i0�b"6�
be an abstract truth domain approximating " via a soundness relation (� as defined in
Section 3.1. Furthermore, let prp M&pqp � be an interpretation of � � formulas as i0�b" � -sets
over 2 .

A natural way to extend the soundness relation (from states to � � interpretations
is to say that prp M/prp � approximates pqp M/pqp if for every ��� formula � and every abstract state
*J 2 , pqp �spqp � ��Q� approximates the degree to which pqp �spqp is true for every concrete state
� corresponding to . We denote this soundness relation by (� and formalize it using the
set soundness relation (� , defined in Section 3.2, asROR - R}R � (98 ROR - ROR ') L / . / - R}R L�ROR � (� ROR L�ROR (��� soundness)

In this paper, we are only interested in the model-based interpretations of � � . A
natural way to extend (� to models is to say that a concrete model " is approximated by
an abstract model ! if the corresponding � � interpretation prp M&pqp : is approximated by
pqp M�pqp ; . Formally, we define a model soundness relation (�< as= (9>@? ' ROR - ROR A (8 ROR - ROR B (model soundness)

In the rest of this section, we employ the AI framework to construct an abstract
model ! that is a best (< -approximation of a given concrete model " . As discussed in
Section 3, we restrict the universe of ! to

5
-monotone functions from 2 to i0�b" � .

9

We first outline the steps involved: (1) define a soundness relation (� between inter-
pretations of the k operator and derive the corresponding abstraction function ? � ; (2)
show that an abstract model !:� ��i��^"6� 5] 	 �OY ;R� ��x 58y 	 k ;R� (< -approximates a con-
crete model " �:�b"?o 	 �OY�:Q� ��x 58y 	 k :Q� if for each Y J 2KJ , Y ; (� -approximates Y : ,
and k ; (� -approximates k : ; (3) conclude that the best approximation of " is given by
?0<6�6" �.o��^i0�b"6� 5] 	 ��? � �OY : � � ��x 58y 	�? � �\k : � � .

Step 1. For a given � � -model, an interpretation of modal formulas, i.e. formulas
with k but no fixpoint quantifiers, is determined by the model’s interpretation of the k
operator. Thus, we define (� as follows:V A (� V B '$)�� /�� 0��K2	�
S-�)�� /54 � 0��S2!- V A 0���2 (� V B 0�� 2 (k -soundness)

Following Theorem 1, its corresponding abstraction function ? � is defined as
; � 0 V2B 2�0��S25'�� � A * D��0H ; � 0 V2B 0��K2�2 (k -abstraction)

Step 2. To show that an abstract model ! (�< -approximates a concrete model "
if each component of ! approximates the corresponding counterpart of " , we need to
show that for any formula � , prp � prp ; (� -approximates pqp �spqp : .

Theorem 4. Let "L���^"?o 	��}Y�: � ��x 58y 	�k :Q� be a concrete model, !����^i0�b"6� 5 	��}Y ;@� ��x 58y 	k ;R� be an abstract model such that 2 approximates ; via a soundness relation (.
Then, ! (< "�� G�YLJ 2ZJ'M Y ; (� Y�:�fnk ; (� k : .

The theorem is proved by structural induction on � , using Theorem 2 for cases where
� contains a fixpoint quantifier.

Step 3. Finally, we define an abstraction function ? < that maps each concrete model
to its best abstract approximation:

; > 0 ? 2�' 0 � 0��K2 �
 X 0 ; � 0 Q B 2�2�� � ��� X ; � 0 V�B 2�2 (model abstraction)

For example, consider a concrete boolean model "��:� h � 	\Y : 	�k : � , where Y : �
EVEN and k :����j��M . � p ����m J �;0 . Then, kjY is interpreted in " as pqp kjY prp :��
k : � EVEN � � ODD, and in the abstraction of " as pqp kjY prp � " � :�#�� ? � �\k :Q����? � � EVEN � � �
? � � ODD � .

The resulting abstraction function ? < allows us to abstract ��� models, obtaining
abstractions which are both sound and precise. However, ? < depends on an interpreta-
tion of k modality, which we left unspecified. We study this subject below.

5 Abstraction of Kripke Structures

In practice, the k modality is often interpreted using a Kripke structure. In this section,
we are interested in conditions under which a Kripke structure over an abstract states-
pace (i.e., an abstract Kripke structure) is a best approximation of a given concrete one.
We show that the framework of AI provides an elegant and almost mechanical way to
answer this question.

Approximating Kripke Structures. Below, we aim to extend the soundness relation
(< between models to a soundness relation (! between Kripke structures, and derive a
corresponding abstraction function ? ! .

Throughout this section, we assume that "�� ��; 	A" 	�� : 	��4: � is a concrete Kripke
structure over concrete states ; and a truth domain " , and ! �H��2 	 i0�b"6� 	�� ; 	�� ;R�

10

(a) (b)

� Q ��� Q 	 � � # O� �
	 � � # O�

o ��� � Q ����� 5 ��� 	 � � # O� �
	 � � # � �

� ��� o ��� Q � ��� 5 �
	 � � # O�

6 ,

6 -

�
	 � � � � �
	 � � � �
6�� ����

6
�

� � Q ����� � 	 � � # O� �
	 � � # � �

� Q 	 � � # O�

6�� ����

� ����� ���># 6 �
� ����� ��� #

Fig. 3. (a) Soundness relations between V modality and transition function; (b) Detail of (a):
relations (�� �� �! and (#" .

is an abstract Kripke structure, where 2 is an abstract domain related to ; via (, and
i��^"6� is an abstract truth domain related to " via (� .

The soundness relation (! on Kripke structures is defined as a restriction of the
model soundness relation (< (see Figure 2(a)):= (�$4? '&% 0 = 2 (9> % 0 ? 2 (Kripke soundness)

By Theorem 4, (! is decomposed over the components of the Kripke structure:= ($?(' 0r) Q / 1�) -�* A 0 Q 2 (� * B 0 Q 2�23C � A (1 � B
where the relation (,+ between transition functions is defined as:

� A (1 � B ' pre
 � A � (� pre
 � B � (transition soundness)

The abstraction function ? � corresponding to (� has already been defined in Section 3.2.
Thus, the only missing ingredient for defining ? ! is the transition abstraction ? + . Un-
fortunately, the soundness relation (+ is not functional; making Theorem 1 not appli-
cable. However, we show below that (+ can be easily made functional. We begin by
introducing an intersection operator -�.0/21 : -�.0/21 ��3!��� �.� o,g � ��3 S�.����� � which allows us
to express the pre-image of a transition function � as pre 8 �>=`���-�.� � � M4-�.0/21 ��� ��� � �����+� .
We then define a functional soundness relation (� ����� (see Figure 3(a)):

-�.0/21 ��3!� (� ����� -�.0/21 ��5 �.o G8�)J�i��^"6� 5] MOG���J , � � �.��M6-�.0/21 ��3!��� �.� (� -�.0/21 ��5 �����-�
Noticing that -�.0/21 ��3!� is determined by a set 3 , we extend (� ����� to a soundness

relation (87 between sets (see Figure 3(b)):� (#" � '&9;:=<0>/0���2 (�� �� �! 9;:=<0>/0�� 2 (successor soundness)

Finally, (,+ is made functional:

� A (1 � B - pre
 � A � (� pre
 � B �-)�. / 1 -)�3 /@4
 0��/28-09;:=<0>�0 � A 06.�2�2 (� �� �! 9?:=<4>/0 � B 063	2�2-)�. / 1 -)�3 /@4	
 0��/28- � A 06.�2 (#" � B 063 2
However, (7 is still not functional! Thus, before applying Theorem 1 to construct

? + , we need to construct the abstraction function ?@7 directly, i.e., without using Theo-
rem 1. We do so below.

Abstraction of Intersection. Intuitively, the ideal abstraction ? 7 is such that the di-
agram in Figure 3(b) commutes. That is, ?A7���3U�+�B5 implies that ? � ����� ��-�.0/21 ��3!� �+�
-�.0/21 ��5 � . Note that (� ����� is functional, thus the definition of ? � ����� ��-�.4/
1 ��3U� � follows from
Theorem 1. Following a standard technique of AI, we proceed to reorganize this def-
inition until the emergence of conditions under which 5 J$i0�b" � 5 is the best (87 -
abstraction of 3 . This derivation is simple but long, and is omitted from the paper. For
details, please see full version of this paper [18]. Here, we only show the final result.

11

Theorem 5. Let ; and ��2 	 5 5 � be a concrete and an abstract domain related by (,
" and i��^"6� be truth-domains related by (� , and for 3HJ�" 5 , let ? 7 be defined as; " 0��S2�06.�2 ' � > ? ��A � D FIH � 063 2�X C ? � �A��CDGFIH A� 063	2���X
where 	, ��Q� o . ��JH; p2? ����� 5 5 0 is a dual-conretization function. Then,
? � ����� ��-�.0/21 ��3!� �.� -�.4/
1 ��? 7���3U� � .

To construct ? + using Theorem 1, we need an info-preserving widening. The widen-
ing � on i���d�� 5 – the pointwise extension of � of i0�b"6� – is not info-preserving in
general. Instead, we restrict the abstract domain to the

5
-antimonotone functions, i.e.,

to i��^"6� 5_ , since (a) i��^"6� 5_ is informationally equivalent to i��^"6� 5 , and (b) it makes
pointwise widening � info-preserving. Note that ? 7 ��3U� is already

5
-antimonotone.

Abstraction of Transition Functions. Once the abstraction ?@7 is defined, the abstrac-
tion of transition functions ? + follows from Theorem 1:

; 1 0 � B 2�06.�28'� ? � A � DGFIH ; " 0 � B 063 2�2 (transition abstraction)

By expanding ? 7 , ? + can be alternatively expressed as:
��� 0 ; 1 0 � B 2�06.�2�0 �	2�2 P C ? � A�� DGFIH

pre
 � B � 0 4	
 0 � 2�2�063	2
��� 0 ;�1 0 � B 2�06.�2�0 �	2�2 P C ? � A�� DGFIH �

pre
 � B � 0]A�4
 0 �	2�2�063 2
That is, if � ; � ? + ��� : � , then a transition � ; �� ������� between abstract states and �
is as true as the least degree with which all concrete states in , ��Q� have a successor in
, ����� , and as false as the least degree with which all successors of states in , ��Q� are
not in 	, ����� .

In particular, if the concrete transition function � : is boolean, then � ;N� ? + ��� :Q�
is i�� h � -valued and satisfies:

� A 06.�2�0 � 2 P � 4	
 06.�2 "
pre
 � B � 0 4	
 0 � 2�2�X 4	
 06.�2 " �pre
 � B � 0]A�4	
 0 �	2�2��

For example, let �c� �^nI�*o n ��m . A fragment of its abstraction ? + ���=��� is shown in
Figure 2(b), where Y�� � , ����D and � ��� are removed for clarity. For any even n , n �
m is definitely odd, but it maybe positive or negative. Thus, the transition from �6t��
to � ��� is d, and transitions to Y�� ����� ��� and to ����D ��� ��� are j . Note that the pre-
image of ? + ���=��� approximates the pre-image of �_� , e.g., pre 8 ? + ���.���`= ��? � � EVEN � �.�
? � � ODD � .

Finally, the best abstract Kripke structure ? ! �6" � of a concrete Kripke structure
" �/��; 	A" 	��9: 	��4:Q� is obtained compositionally:

; $ 0 ? 2�' 0 1 X � 0��K2�X ; �	� * B X ; 1 0 � B 2�2 (Kripke abstraction)

Thus, we were able to systematically derive rules for abstracting Kripke structures
by abstract Kripke structures.

Note that the diagram in Figure 3(a) does not commute, i.e., ? � � pre 8 �>=b� 1� pre 8 ? + ����� = .
Thus, for a given Kripke structure, its best abstraction by an abstract � � -model is more
precise than its best abstraction by an abstract Kripke structure. For example, let �_� be

� %
01+325'
��� ��

 +

if
+��� C_+ /

ODD
� + if � �N+���#Cc+ / ODD
�
 otherwise

and 3 o � POS EVEN �,� � NEG ODD � . Then, ? � � pre 8 � �O=^����? � ��3!� ���OY�� � ��� ��� �B�
? � � POS ODD ���OY�� ����� ��� �N� � , but pre 8 ? + ��� ��� =`��? � ��3!� ���OY�� � ��� ��� �)� j . This
shows that transition systems are not necessarily the best abstract domain for � � -
preserving abstractions.

12

6 Application: Abstraction of Classical Kripke Structures
In this section, we look at boolean Kripke structures and compare our abstraction to
that of Dams et al. [8], which provides an alternative way of computing the best � � -
preserving abstraction of Kripke structures.

We begin by addressing minor differences between the two approaches. First, the
goal of [8] is to preserve satisfaction of positive � � , i.e., a fragment of � � with negation
restricted to atomic propositions. Second, Kripke structures are abstracted by Mixed
Transition Systems (MixTSs). Essentially, a MixTS is a Kripke structure with two sep-
arate transition relations, �.o and ��� , called constrained and free, respectively. The
interpretation of ��� over MixTSs is the same as its interpretation over Kripke struc-
tures, with the exception that k is interpreted as pre 8 �coP= and l – as 	pre 8 ����= .

Note that positive ��� is as expressive as full ��� : for every ��� formula � there exists
an equivalent positive formula NNF � ��� , its negation normal form. Thus, an abstraction
that preserves positive ��� easily extends to full ��� . Furthermore, the next theorem
shows that MixTSs are equivalent to i0��h � -valued Kripke structures.

Theorem 6. Let
�

be a MixTS with statespace 2 and transition functions �_o and ��� ,
and � be a i0��h � -valued Kripke structure with the same statespace, and a transition
function � ! such that �+!p��Q������� � ���=o���Q������� 	 � ������Q�������
 . Then, for any � � formula
� , pqp �spqp ! � ��pqpNNF � ���
pqp � 	6prpNNF � ���P�
pqp �
 .

Thus, in the case of boolean Kripke structures, the abstraction developed in this
paper is equivalent to that of [8]: same structures are used as an abstract domain, and
exactly the same � � formulas are preserved. However, unlike the approach taken in [8],
our work systematically derives both the abstraction and the notion of abstract Kripke
structures from � � -preservation and the soundness relation (� between concrete and
abstract sets.

It is interesting to note that although the two abstractions are equivalent w.r.t satis-
faction of ��� , they are not identical. For completeness, Dams et al. show that the most
precise MixTS abstracting a Kripke structure satisfies the following conditions:

� � 06.,X �	2 - � / � ��� � � ;
 0���2 R � /
	 9�� � �� R ����� 0 4	
 06.�2�X	�� 2 � �
��� 06.3X �	2 - � / � ��� � � ;
 0���2 R � /
	 9�� � � R � ��� 0 4	
 06.�2�X	� 2 � �

where ����� �\��	��>��o7G��EJ � M < �LJ��/M � ��� ����� � and �����Q�\� 	��>��o/< �)J � M < � J
�UM��6� � ����� � . It is different from our abstraction ? + , which, when put in this notation, is:

;21 0 � 2�06.�2�0 �	2 P � � ��� 0 4
 06.�2�X 4
 0 �	2�2�X�A � ��� 0 4
 06.�2�X �4
 0 � 2�2��
We believe that our characterization is simpler; however, it remains to be seen whether
it is also more useful in practice, e.g., if it leads to a smaller symbolic representation, or
easier to construct compositionally, etc. We leave this topic for future work.

7 Related Work
Over the years, many abstraction methods have been developed for � � model-checking
[5, 8, 11, 16, 20, 21, 23]. They concentrate on a specific model – transition systems and
most of them preserve soundness (satisfaction) for fragments of � � : if an abstract sys-
tem is an over-approximation of the concrete one, the abstraction is sound for all uni-
versal properties. Similarly, a sound abstraction for existential properties comes from
under-approximation.

13

The first approach for sound abstraction of full � � was proposed by Larsen and
Thompsen [20]. They have shown that Modal Transition Systems (MTS) can be used
to combine both over- and under-approximations. However, the goal of this work is not
abstraction, and it did not consider the problem of how to abstract a Kripke structure
using an MTS. The construction problem is addressed by Dams et al. [8], who indepen-
dently proposed using MixTSs, a slight generalization of MTSs, as abstract models, and
provided conditions for constructing an MixTS with the best precision. Although this
work uses AI to describe the relationship between concrete and abstract statespaces, ab-
stract transition systems are not derived systematically; instead, the optimal conditions
are defined based on intuition, and both soundness and optimality of precision require
separate proofs.

Among the attempts of using AI to systematically derive best abstractions, the work
of Loiseaux et al. [21] and Schmidt [22] are the closest to ours. [21] showed how to
derive a simulation-based sound abstract transition system from Galois connections
within the AI framework, but their results apply only to the universal fragment of
� � . Motivated by the study of MixTSs, [22] showed how to capture over- and under-
approximations between transition systems using AI and systematically derived Dams’s
most precise results. However, the starting goal of this work was formalizing the over-
and the under-approximations, restricting the result to the specific � � models, namely,
transition systems. On the other hand, in our work we start from formalizing the notion
of soundness of ��� interpretations – the most general and exact goal of abstraction for
��� (via the soundness relation (� in Section 4), and then systematically derive condi-
tions which guarantee the best precision of the abstraction. Thus, our results can be ap-
plied to different ��� models, where abstracting transition systems is just a special case.

Another important feature of our work is the use of bilattices. The approaches of [8,
22] develop best over- and under-approximations separately, whereas our combination
of AI with bilattices provides a uniform way for abstraction of both satisfaction and
refutation of ��� . Multi-valued logic has been previously combined with abstraction in
the form of 3-valued transition systems (e.g. [15]). However, these results do not use
the framework of AI, and, in particular, only deal with soundness and not the precision
of the abstraction. Furthermore, 3-valued Kripke structures (unlike those based on Bel-
nap logic) lack monotonicity [23]: a more refined abstract domain does not necessarily
result in a more precise abstraction, and thus the most precise abstraction may not even
exist.

8 Conclusion

In this paper, we have shown that abstract interpretation provides a systematic way
for designing abstractions for model-checking. On one hand, our work can be seen as
recreating the pioneering work of Dams et al. [8] in a systematic setting where each
step in designing an abstraction and each loss of precision can be traced back to either
the choice of an abstract domain, or the requirements on the abstract structure. On
the other hand, our work also extends their results to non-traditional interpretations
of ��� , such as its multi-valued [4] and quantitative [9] interpretations. To the best of
our knowledge, this is the first abstraction technique that can be applied to these non-
classical interpretations.

14

In this paper, we lay the basic groundwork for designing � � -preserving abstractions
using the framework of AI. However, our work can be easily extended in a number of
directions. We discuss a few of them below.

We have shown that requiring that an abstraction of a transition system be a tran-
sition system as well, comes with a loss of precision. Thus, it may be interesting to
explore how a transition system can be abstracted directly by an abstract � � model.
Such models will require new model-checking algorithms, but will provide additional
precision, and possibly be easier to construct. For example, recent work on symme-
try reduction [12] argues that instead of constructing a reduced abstract model, the
symmetry-reduced k modality can be implemented directly by putting symmetry re-
duction inside the model-checking algorithm. We believe that our framework can be
used to extend this approach to other, non-symmetry induced, abstract domains. Our
work on a software model-checker YASM [17] is a first step in this direction.

In designing abstractions of Kripke structures, we have assumed that the domain
and range of the transition function are abstracted by the same abstract domain. This
need not be the case. By using different but related abstract domains, we obtain a gen-
eralization of “hyper-transition abstractions” [23, 10] to arbitrary abstract domains.

Although not shown explicitly in the paper, the pointwise extension of the bilattice
narrowing operator
 to abstract structures provides a simple way to combine several,
not necessarily best, abstractions. This allows us to study incremental construction of
abstractions, such as the one in [1].

We believe that our framework provides the necessary starting point for exploring
the connection between AI and model-checking, and hope to continue this line of re-
search in the future.

References

1. T. Ball, V. Levin, and F. Xie. “Automatic Creation of Environment Models via Training”. In
TACAS’04, volume 2988 of LNCS, pages 93–107, 2004.

2. T. Ball and S. Rajamani. “The SLAM Toolkit”. In CAV’01, volume 2102 of LNCS, pages
260–264, 2001.

3. N.D. Belnap. “A Useful Four-Valued Logic”. In Dunn and Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 30–56. Reidel, 1977.

4. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. “Multi-Valued Symbolic
Model-Checking”. ACM TOSEM, 12(4):1–38, 2003.

5. Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model Checking and Abstrac-
tion”. ACM TOPLAS, 16(5):1512–1542, 1994.

6. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and H. Zheng. “Bandera:
Extracting Finite-state Models from Java Source Code”. In ICSE’00, pages 439–448, 2000.

7. P. Cousot and R. Cousot. “Abstract Interpretation Frameworks”. Journal of Logic and Com-
putation, 2(4):511–547, 1992.

8. D. Dams, R. Gerth, and O. Grumberg. “Abstract Interpretation of Reactive Systems”. ACM
TOPLAS, 2(19):253–291, 1997.

9. L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. “Model Checking
Discounted Temporal Properties”. In TACAS’04, volume 2988 of LNCS, pages 77–92, 2004.

10. L. de Alfaro, P. Godefroid, and R. Jagadeesan. “Three-Valued Abstractions of Games: Un-
certainty, but with Precision”. In LICS’04, pages 170–179, 2004.

15

11. E. A. Emerson and A. P. Sistla. “Symmetry and Model Checking”. FMSD, 9(1-2):105–131,
1996.

12. E. A. Emerson and T. Wahl. “Dynamic Symmetry Reduction”. In TACAS’05, volume 3440
of LNCS, pages 382–396, 2005.

13. M. Fitting. “Bilattices are Nice Things”. In Conference on Self-Reference, 2002.
14. M. L. Ginsberg. “Multivalued Logics: A Uniform Approach to Reasoning in Artificial Intel-

ligence”. Computational Intelligence, 4(3):265–316, 1988.
15. P. Godefroid, M. Huth, and R. Jagadeesan. “Abstraction-based Model Checking using Modal

Transition Systems”. In CONCUR’01, volume 2154 of LNCS, pages 426–440, 2001.
16. S. Graf and H. Saïdi. “Construction of Abstract State Graphs with PVS”. In CAV’97, volume

1254 of LNCS, pages 72–83, 1997.
17. A. Gurfinkel and M. Chechik. “Yasm: Model-Checking Software with Belnap Logic”. Tech-

nical Report 470, University of Toronto, April 2005.
18. A. Gurfinkel, O. Wei, and M. Chechik. “Logical Abstract Interpretation”. Technical Report

532, University of Toronto, September 2005.
19. D Kozen. “Results on the Propositional W -calculus”. Theoretical Computer Science, 27:334–

354, 1983.
20. K.G. Larsen and B. Thomsen. “A Modal Process Logic”. In LICS’88, pages 203–210, 1988.
21. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. “Property Preserving Ab-

stractions for the Verification of Concurrent Systems”. FMSD, 6:1–35, 1995.
22. D. A. Schmidt. “Closed and Logical Relations for Over- and Under-Approximation of Pow-

ersets”. In SAS’04, volume 3148 of LNCS, pages 22–37, 2004.
23. S. Shoham and O. Grumberg. “Monotonic Abstraction-Refinement for CTL”. In TACAS’04,

LNCS, pages 546–560, April 2004.
24. O. Wei, A. Gurfinkel, and M. Chechik. “Identification and Counter Abstraction for Full

Virtual Symmetry”. In CHARME’05, volume 3725 of LNCS, 2005.

16

