
SAFETY CASE IMPACT ASSESSMENT IN
AUTOMOTIVE SOFTWARE SYSTEMS: AN
IMPROVED MODEL-BASED APPROACH

SAHAR KOKALY, MCMASTER UNIVERSITY

RICK SALAY, UNIVERSITY OF TORONTO

MARSHA CHECHIK, UNIVERSITY OF TORONTO

MARK LAWFORD, MCMASTER UNIVERSITY

TOM MAIBAUM, MCMASTER UNIVERSITY

SAFECOMP’17

TRENTO, ITALY

SEP 12-15, 2017

CONTEXT
Pervasiveness of software has created special concerns regarding issues such
as safety, security and privacy.

Regulations and standards, e.g., ISO 26262 (Functional Safety in Road Vehicles)
to demonstrate compliance.

2

ISO 26262 RECOMMENDATION

3

Presenter
Presentation Notes
The recommended safety development process in ISO 26262 is to perform a Hazard Analysis and Risk Assessment, where potential hazards and residual risks are identified,
and use them to identify Safety Goals . The latter are then refined into Functional Safety Requirements , which are in turn refined to Technical Safety Requirements that refer
to particular software and hardware components in the system, and are decomposed into Software Safety Requirements and Hardware Safety Requirements , respectively.

SAFETY CASES
A Safety Case is an argument which demonstrates that each of the
safety goals has been met, by eventually linking them to evidence
(solution) in the system.
Evidence can come in many forms: e.g., test results, analyses,
model checking results, expert opinion, etc.

Figure: Goal Structured Notation (GSN) Metamodel 4

Presenter
Presentation Notes
The point is to be able to ultimately produce an argument (the Safety Case) which demonstrates that each of the safety goals has been met, by eventually linking them to evidence in the system.
This evidence can come in the form of test results, analyses , model checking results, expert opinion, etc.

Mention ASILs

EXAMPLE: POWER SLIDING DOOR (PSD)

5

PSD ORIGINAL SAFETY CASE

6

PROBLEM:
SAFETY CASE AND
SYSTEM CO-EVOLUTION

Safety Case

System Model System Model’

Safety Case’

Change

R R’

?

Problem: Can we aid the safety engineer in constructing a safety case for an
evolved system by reusing the components of the original safety case as much
and as soundly as possible, thus reducing the overall revision cost incurred?
Necessary step: Impact assessment to identify how changes in the system
affect the safety case. 7

Presenter
Presentation Notes
Like other systems, automotive software
systems naturally evolve due to a variety of reasons including
adding, removing or modifying features, fixing bugs, or improving
quality.

MAIN CONTRIBUTIONS

1. Presented a model-based approach for impact
assessment on GSN safety cases used with ISO 26262.

2. Identified six techniques for improving the precision of
the impact assessment approach.

8

MODEL BASED SAFETY CASE IMPACT
ASSESSMENT

System Megamodel

Annotated Safety Case

Model Slicers

Delta (change)

Safety Case

Traceability
Model-Based Impact
Assessment Algorithm

✓ !reuse recheck revise

9

Presenter
Presentation Notes
We introduced a model-based impact assessment approach
Given:
a model of the system (often described as a megamodel – a model with many heterogenous models and relationships between them)
a safety case
A traceability relationship between the system megamodel and the safety case
a delta representing a change in the system
And appropriate slicers for each of the model types in the system megamodel
the approach is able to produce an annotated safety case that reflects the impact of the system changes on the safety case elements.

REMOVAL OF REDUNDANT SWITCH IN PSD –
RESULTING ANNOTATED SAFETY CASE

10

IMPROVING THE PRECISION OF
IMPACT ASSESSMENT

Identified six techniques:
1. Increasing the granularity of traceability between the system and

the safety case.
2. Identifying sensitivity of safety case to system changes.
3. Understanding semantics of strategies
4. Decoupling revision from rechecking
5. Strengthened solutions do not impact associated goals
6. Understanding standard-system and standard-safety case

traceability.

Outcome:
less “false positives” in “revise” and “recheck” annotations

11

1: INCREASING THE GRANULARITY OF
TRACEABILITY BETWEEN THE SYSTEM AND
THE SAFETY CASE

12

Presenter
Presentation Notes
This allows us to identify finer grained impact of system changes on the safety case elements.

For example: B3 “The VS ECU sends accurate vehicle speed information to the Redundant Switch" can be traced to both VS ECU and
Redundant Switch components. Currently, when either VS ECU or Redundant Switch changes, Old approach marks the entire goal B3 as revise . A more fine-grained
traceability would link the identifier “VS ECU" to VS ECU in the system and the identifier “Redundant Switch" to the Redundant Switch in the system. Now,
if Redundant Switch changes in the system but VS ECU does not, then only the Identifier “Redundant Switch" in goal B3 needs to be marked for revision, while
the rest of the goal can be reused.

2: IDENTIFYING SENSITIVITY OF SAFETY
CASE TO SYSTEM CHANGES

Consider the goal:
“If the door state is open and the speed is greater than 15km/h, the driver is notified."

System Megamodel

13

Presenter
Presentation Notes
By attaching additional knowledge to the trace links that identifies under which cases a change in the system should actually
impact a linked element in the safety case, and when such a change can be ignored (e.g., name changes), we are able to reduce the cost of revising the safety case by eliminating
unnecessary revision.

In this example, the class Door in the Class Diagram model has an attribute state , which is an enumeration with possible values open and
closed . Assume a goal such as “If the door state is open and the speed is greater than 15km/h, the driver is notified.". Currently, if we add a new option to the door state (e.g., “stuck"), that is considered a change in the door state, which marks the goal for revision. However, such a change (an attribute enumeration extension) should not impact the goal which is only concerned with the door state being open. If we do not add that type of change in the sensitivity list of that particular trace link between system and goal, we are able to ignore it and allow the goal to be reuse d.

3: UNDERSTANDING SEMANTICS OF
STRATEGIES

14

OR

TRUE TRUETRUE TRUE TRUE

TRUE

TRUE

Presenter
Presentation Notes
Example: Assume in the PSD system that SG1 was connected to its subgoals
B1-B6 via an \OR" decomposition strategy (as opposed to an \AND"). Also
assume that currently all of B1-B6 have true states. This means that SG1 is also
evaluated to true. If the system changes so that B5-B6 are marked recheck, we
don't need to mark SG1 recheck since, due to disjunction, it must still be true.

15

OR

TRUE TRUETRUE TRUE Recheck

Recheck

TRUE

3: UNDERSTANDING SEMANTICS OF
STRATEGIES

Presenter
Presentation Notes
Example: Assume in the PSD system that SG1 was connected to its subgoals
B1-B6 via an \OR" decomposition strategy (as opposed to an \AND"). Also
assume that currently all of B1-B6 have true states. This means that SG1 is also
evaluated to true. If the system changes so that B5-B6 are marked recheck, we
don't need to mark SG1 recheck since, due to disjunction, it must still be true.

4: DECOUPLING REVISION FROM
RECHECKING

Idea: By knowing circumstances under which revising a goal
will not impact its truth value, we require a recheck after a
revision only when necessary.
Example: changing the name of a system element (e.g.,
Redundant Switch is renamed to Extra Switch) will cause the
goals referring to it to be marked for revision.

• However, since changing the name does not impact the truth
state of the goal, rechecking can be skipped.

• Other examples: capitalization of names, spelling corrections
or language translations, such that the renaming is done
consistently in both system and safety case.

16

5: STRENGTHENED SOLUTIONS
DO NOT IMPACT ASSOCIATED
GOALS

Idea: A change to a solution that strengthens it should not
affect its support for associated goals.
Example:

• Assume that B1 was “The VS ECU sends accurate vehicle
speed information to the AC ECU 90% of the time" and
that it was linked to a solution with test cases which showed
accuracy 90% of the time.

• If the system changes so that the test cases can now
demonstrate accuracy 100% of the time, this does not affect
goal B1 (meaning it should not be marked for rechecking).

17

ISO 26262 includes additional information about how ASILs
(Automotive Software Integrity Levels), assigned to safety case
goals, are related to ISO 26262 Work Products, which refer to
system models used as evidence to support the safety case.

Table: Methods for software unit testing - ISO 26262 Part 6

Knowing (and using) this traceability could significantly
enhance the impact assessment and produce more precise
results.

18

6: UNDERSTANDING STANDARD-
SYSTEM AND STANDARD-SAFETY
CASE TRACEABILITY

Presenter
Presentation Notes
If method 1e (Back-to-back comparison test between models and code)
used for unit testing as part of the Software Verification Report work product
for goal B1 is deleted, the ASIL for B1 supported by Sn1 changes from ASIL
C to ASIL B based on Table. 1. This would in turn impact the ASIL on SG1,
since the ASIL propagation rule no longer holds.

RESULTS
Derived a formula which computes the cost incurred
revising a safety case after a change in the system.

19

Demonstrated that cost is reduced with the improved
impact assessment techniques.

Presenter
Presentation Notes
Don’t go into the details of the fomula

TOOL SUPPORT
We are actively working on extending the model
management framework MMINT* to include:

• safety cases as a model type
• model management operators for safety cases (e.g.,

safety case slice)
• explicit trace links between the safety case and the

standard/system.
• Heterogeneous megamodeling operators (e.g.,

megamodel slice) as model management workflows.

* https://github.com/adisandro/MMINT 20

Presenter
Presentation Notes
Needs Work

https://github.com/adisandro/MMINT

FUTURE DIRECTIONS
• Consider the use of approach in design space exploration to

enable answering what-if questions about the impact of
changes on safety cases.
• Constructing a “change assurance case”

• Study the effect of changes, other than system changes, on
the safety case and understand what types of trace links are
required to support them.

• Consider changes involving the addition of elements.
• Do not currently handle this since we are unable to automatically

“discover” links to the safety case.

21

SAFETY CASE IMPACT ASSESSMENT IN
AUTOMOTIVE SOFTWARE SYSTEMS: AN
IMPROVED MODEL-BASED APPROACH

SAHAR KOKALY, MCMASTER UNIVERSITY

RICK SALAY, UNIVERSITY OF TORONTO

MARSHA CHECHIK, UNIVERSITY OF TORONTO

MARK LAWFORD, MCMASTER UNIVERSITY

TOM MAIBAUM, MCMASTER UNIVERSITY

SAFECOMP’17

TRENTO, ITALY

SEP 12-15, 2017

QUESTIONS?

	Safety Case Impact Assessment in Automotive Software Systems: An Improved Model-Based Approach
	Context
	ISO 26262 Recommendation
	Safety Cases
	Example: Power Sliding Door (PSD)
	PSD original safety case
	Problem: �Safety Case and System Co-Evolution
	Main Contributions
	Model Based Safety case Impact AssesSment
	Removal of Redundant switch in PSD – resulting annotated safety case
	Improving the precision of impact assessment
	1: Increasing the granularity of traceability between the system and the safety case
	2: Identifying sensitivity of safety case to system changes
	3: Understanding semantics of strategies
	Slide Number 15
	4: Decoupling revision from rechecking
	5: Strengthened solutions do not impact associated goals
	6: Understanding standard-system and standard-safety case traceability
	Results
	Tool Support
	Future Directions
	Safety Case Impact Assessment in Automotive Software Systems: An Improved Model-Based Approach

