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Model checking is an automated technique for deciding whether a computer program sat-

isfies a temporal property. Abstraction is the key to scalingmodel checking to industrial-sized

problems, which approximates a large (or infinite) program by a smaller abstract model and

lifts the model checking result over the abstract model backto the original program. In this

thesis, we study abstraction in model checking based onexact-approximation, which allows

for verification and refutation of temporal properties within the same abstraction framework.

Our work in this thesis is driven by problems from both practical and theoretical aspects of

exact-approximation.

We first address challenges of effectively applying symmetry reduction tovirtually sym-

metric programs. Symmetry reduction can be seen as astrongexact-approximation technique,

where a property holds on the original program if and only if it holds on the abstract model.

In this thesis, we develop an efficient procedure for identifying virtual symmetry in programs.

We also explore techniques for combining virtual symmetry with symbolic model checking.

Our second study investigates model checking ofrecursiveprograms. Previously, we have

developed a software model checker for non-recursive programs based on exact-approximating

predicate abstraction. In this thesis, we extend it to reachability and non-termination analysis of

recursive programs. We propose a new program semantics thateffectively removes call stacks

while preserving reachability and non-termination. By doing this, we reduce recursive analysis
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to non-recursive one, which allows us to reuse existing abstract analysis in our software model

checker to handle recursive programs.

A variety of partial transition systems have been proposed for construction of abstract

models in exact-approximation. Our third study conducts a systematic analysis of them from

both semantic and logical points of view. We analyze the connection between semantic and

logical consistency of partial transition systems, compare the expressive power of different

families of these formalisms, and discuss the precision of model checking over them.

Abstraction based on exact-approximation uses a uniform framework to prove correctness

and detect errors of computer programs. Our results in this thesis provide better understanding

of this approach and extend its applicability in practice.
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Chapter 1

Introduction

1.1 Model Checking and Abstraction

1.1.1 Model Checking

Computer systems are being used widely in our daily lives. We often rely on hardware and

software programs to control safety critical, mission critical, or economically vital tasks. En-

suring the correctness of these programs thus has become a major challenge in the computer-

dependent society. Formal methods provide us with techniques that support strict reasoning

about program correctness. In these techniques, a computerprogram is modeled by a mathe-

matical object, and the correctness of the program is formulated using mathematical specifica-

tion. A formal reasoning approach is then provided to determine whether the program satisfies

its specification. Thanks to the underlying rigorous mathematical foundations, formal methods

are considered as a promising approach to increase our confidence about computer programs.

Model checking [CE81, QS82] is a formal analysis technique that checks behavioral prop-

erties of computer programs based on state-exploration. Inthis method, a hardware or software

program is modeled using a finite state transition system, where the computational behaviors

of the program are given as paths in the transition system. The desired program properties

are expressed using temporal logic formulas. Temporal logic [Pnu77, CE81] provides tempo-

1



CHAPTER 1. INTRODUCTION 2

ral operators such as “always” and “eventually” and quantifiers over paths that capture a wide

range of behavioral properties of programs. A model checkerthen uses a statespace search

algorithm to determine whether the behavior described by a temporal property holds on the

model of the program. If the answer is true, the program satisfies the property, i.e., the prop-

erty is verified; a false answer means that the program violates the property, i.e., the property

is refuted. When an error is detected, the model checker usually reports a counterexample for

debugging. An advantage of model checking is that the searchalgorithm can be executed com-

pletely automatically. Furthermore, a model checker conducts an exhaustive exploration of all

possible program behaviors. Therefore, subtle errors of a program that often elude simulation

and testing approaches can be found in this way.

1.1.2 Fighting State-Explosion Problem

Despite the great success in checking hardware and softwareprograms [BDEGW03, IYG+05,

Kur08], scalability is still the primary challenge of applying model checking in the real world.

Since model checking is a state-exploration method, it is restricted to analyzing programs that

can be modeled by finite state transition system of small size. However, in practice, the state-

space of a program can be extremely large, which is known as the state-explosion problem.

For example, in the design of communication protocols, the size of the statespace of a program

often grows exponentially with the number of components. Model checking such programs

would require a significant amount of memory and CPU time. For software programs, the

existence of infinite data domain, e.g., integers, and complex control structures, e.g., recursion,

results in an infinite statespace, which makes direct model checking impossible. Therefore, a

central issue in the research on model checking is dealing with the state-explosion problem.

Several approaches have been proposed to reduce the state-explosion problem based on

symbolic representation, partial order reduction, compositional reasoning, induction, and ab-

straction. We introduce them below.

Symbolic model checking[McM93] uses binary decision diagrams (BDDs) [Bry92] to rep-
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resent program models, which allows for compact representation of the states and transition

relations of a program.Partial order reduction[GW94, CGMP99] reduces the size of the

statespace that needs to be searched by model checking algorithms. It takes advantage of the

commutativity of concurrent events, avoiding explorationof redundant interleaving behaviors

in asynchronous programs.Compositional reasoning[Pnu84, CLM89, GL91] exploits modu-

lar structures of a program to reduce the complexity of the model checking task. It typically

follows the assume-guarantee paradigm where the correctness of each component under an

assumption of its running environment implies the correctness of the whole program. For pa-

rameterized protocols that define an infinite family of programs, theinduction[WL89, KM95]

approach analyzes properties based on an invariant structure of the protocol. The results

in [EN95, EK00] show that such invariants can be defined as a union of program instances

up to a finite cutoff bound.Abstraction[Kur89, CGL94, ID96, CEJS98, KP00] is arguably the

most fundamental approach to scale model checking to realistic programs, which is the theme

of this thesis and is discussed below.

1.1.3 Abstraction

Abstraction in model checking can be seen as an instance ofabstract interpretation[CC92] on

analyzing temporal properties over state transition systems. In this case, when the model of

a program is too large to be directly handled by a model checker, we build a smaller abstract

model of the program and analyze properties over it. The hypothesis of abstraction techniques

is that for particular properties that we are interested in,many aspects of the original program,

e.g., specific values of program variables and process identities, are not necessary for the anal-

ysis. Therefore, we can abstract away these details of the program and use the simplified model

to check properties.

Abstraction in model checking (Figure 1.1) starts from a finite state abstraction that col-

lapses sets of concrete program states into abstract ones. Afinite abstract modelMα, which

is smaller than the concrete modelM of the program, is built over the abstract states to de-
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Program

Property

Mα

M

ϕ

MC(Mα, ϕ)

MC(M, ϕ)

approximation preservation

concrete

abstract

Figure 1.1: Overview of abstraction in model checking, whereM denotes the concrete model

of a program, MC(M, ϕ) – the concrete model checking,Mα – the abstract model, and

MC(Mα, ϕ) – the abstract model checking.

scribe the program behaviors in an abstract way. The construction of the abstract modelMα

can be viewed as an interpretation of the program using non-standard semantics defined over

the abstract statespace.M andMα are related by an approximation relation that determines

how program behaviors are approximated. This results in a property preservation relation that

defines how to lift abstract model checking results back to the concrete level. If the result is

conclusive, i.e., it allows us to determine whetherϕ is satisfied overM, the abstract model

checking process is finished. Otherwise, additional refinement steps are performed to produce

more precise abstract models for analysis.

In the following, we review the techniques for abstract model checking using the following

steps: (a) abstraction of statespace, (b) construction of abstract model, and (c) refinement.

Abstraction of statespace. Abstract statespace is the basis for abstraction in model checking.

It determines the information that an abstract model can represent and properties that can be

effectively analyzed over it. A simple abstraction of the statespace is calledlocalization re-

duction[Kur94, CGP99], where abstract states are defined over a subset of program variables

relevant to analysis of particular properties. Since localization reduction does not reduce the
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domain of variable values, it cannot produce a finite model ifprogram variables are defined

over an infinite data domain.Data abstraction, traditionally used in program analysis to com-

pute abstract program invariants [CC92, NNH05, Sch98], is applied to abstract model checking

in [CGL94, CDH+00, PDV01]. An abstract statespace in data abstraction is defined based on

simple data facts about program variables, e.g., parity, sign, or range. A limitation of data

abstraction is that it cannot capture relations between program variables, because the abstract

states only express independent attributes of them. This limitation is avoided by usingpredi-

cate abstraction[GS97]. First proposed by Graf and Saidi, predicate abstraction has become

a popular technique used in abstract model checking [BPR01, CCG+04, HJMS02, GC06]. In

this case, an abstract statespace is defined based on a set of predicates. Concrete data values

are mapped to boolean variables represented by these predicates at the abstract level, while the

original data variables are eliminated.

In practice, an appropriate choice of abstract statespace depends on the class of programs

and properties to be analyzed. For example, to analyze parameterized programs, one can

choose a variant of predicate abstraction calledenvironment abstraction[CTV06], where pred-

icates contain not only the information about individual processes, but also the relationship

between them. For shape analysis, predicate abstraction represents points-to relations in shape

graphs of heap storage [SRW99, DN03]. For programs composed of identical processes, ab-

stract statespaces can be defined as symmetric classes of program states [ES96, CJEF96].

Construction of Abstract Model. Given an abstract statespace, we need to build an abstract

model over it for model checking properties. Research onoptimality[LGS+95, CIY95, DGG97,

Sch04, GWC06a] defines structural conditions that characterize the best abstract model, which

represents the most precise approximation of concrete program behaviors. However, the op-

timal conditions are usually defined with respect to concrete transitions in original programs.

Directly using them in the construction of abstract models would require first building the con-

crete model, which is often infeasible due to the large or infinite statespace. Therefore, in

practice, we look for approaches that compute abstract models directly from the program text,
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where transitions between abstract states are constructedbased on evaluation of an abstract

semantics of programs. The resulting abstract model is usually less precise than the optimal

one, but can be constructed more efficiently.

Building abstract models from program text is studied in [CGL94], where concrete states

are abstracted using data abstraction, and relational semantics of a program is represented by

first-order formulas derived from programs. An abstract model is constructed by approximat-

ing the concrete semantics of the program. Automatically computing abstract models based

on predicate abstraction is suggested in [GS97], and is now astandard technique in abstract

model checking of software programs [BMMR01, BPR01, HJMS02, CCG+04, GC06]. Typi-

cally, this approach first translates a program into a boolean program over the variables defined

by predicates. Each statement in the original program is approximated by one or more state-

ments on the predicates in the boolean program, which describe how the values of the predi-

cates are changed when the concrete statement is executed. This step is conducted based on

strengthening the weakest precondition for each predicatewith the aid of a theorem prover. An

abstract model is then constructed based on an approximating semantics of the boolean pro-

gram. In [CKSY05], an abstract model over predicates is computed with a SAT solver using

the similar approach as [CGL94].

Refinement. If an abstract model, e.g., built by symmetry reduction [ES96, CJEF96], has be-

haviors equivalent to the original program, model checkingresults over it are conclusive. Oth-

erwise, loss of information introduced in the abstraction process may result in inconclusive

analysis, and a refinement step is necessary. Automation of the refinement process is called

abstraction refinement[Kur94, BPR02, Dam03], which starts with a coarse initial abstract

model of the program, iteratively refining it until the abstract model contains sufficient details.

Completeness results of abstract model checking [KP00, DN04, DN05] show that for every

program and temporal property, there exists a finite abstract model such that satisfiability of

the property over it implies its satisfiability over the original program. However, in general

finding an appropriate abstraction for an infinite state program is not computable. Otherwise,
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the program verification problem would be decidable. In practice, heuristic methods are often

used to guide the refinement process.

In [NK00, PPV05, YBS06], refinement is based on computing weakest precondition, which

generates new predicates for more precise abstraction. This approach is guided by precise up-

dates of existing predicates with respect to statements in aprogram. Recently, a counterexample-

guided refinement approach has been used widely in abstract model checking [CGJ+03, Bal04,

HJMS02]. Typically, acounterexampleis an abstract program execution produced in a previous

model checking run, which is used to demonstrate the violation of a property on the abstract

model. Because of imprecision introduced by abstraction, the counterexample may be infea-

sible. That is, the counterexample does not correspond to a concrete execution of the original

program. A refinement process then tries to remove this spurious counterexample by refining

the abstract statespace. This leads to a more precise abstract model for analysis. The new facts

for refinement, e.g., new predicates, can be discovered using different ways. The approach

in [CGJ+03] uses symbolic algorithms to simulate a counterexample on the concrete program.

If the counterexample is spurious, a shortest feasible prefix of the counterexample is identified,

and the last abstract state in the prefix, called a failure state, is split into more precise abstract

states to eliminate the spurious counterexample. The feasibility of a counterexample can also

be checked using a theorem prover [BR01, HJMM04] or SAT solver [CCK+02]. In this case,

a formula is generated such that it is satisfiable if and only if the counterexample is feasible.

If the formula is not satisfiable, more predicates are pickedfor refinement based on analysis of

the unsatisfiability proof of the formula. In [GC03, GWC06b], a counterexample is represented

as a proof of the property being analyzed. Steps in the proof correspond to transitions between

abstract states. If a real counterexample exists, a complete proof is produced. Otherwise, only

a part of the proof can be generated. In this case, by analyzing the proof steps that can not be

completed, new information is derived for refinement.

Abstraction is an essential approach for fighting the state-explosion problem in model

checking. We have presented an overview of the approach. In the next section, we introduce
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the class of abstraction methods and the problems investigated in this thesis.

1.2 Scope of This Thesis

In this thesis, we focus on abstraction methods that supportboth verification and refutation of

program properties in the same framework, which we refer to as exact-approximation1.

In general, abstraction in model checking falls into three types (illustrated in Figure 1.2),

depending on the approximation relations between concreteand abstract models and property

preservation relations for temporal properties. In theover-approximationabstraction frame-

work [CGL94, LGS+95, KP00, BPR01], an abstract model contains more behaviors than the

original program. Such abstraction is sound for proving universal temporal properties that hold

along all executions of the program. For example, if we can prove absence of error on an

abstract model, it implies that no error exists in the original program either. This framework

is the one for verification, since traditionally correctness of programs is often expressed using

universal properties. The dual of this framework isunder-approximation[PPV05, BKY05,

GC06, BK07], which is also known as the framework for refutation. In this case, an abstract

model contains less behaviors than the concrete one, which enables us to prove properties that

hold along some executions of the program, e.g., presence ofa bug.

An obvious limitation of over- and under-approximations isthat they only preserve sound-

ness for fragments of temporal properties that are not closed under negation, i.e., the negation

of a universal (resp. existential) property is an existential (resp. universal) property. There-

fore, if a property fails to hold on the abstract model, we know nothing about the property

on the original program (depending on the property being checked and the framework). For

example, if proving absence of error fails in an over-approximating abstract analysis, we do

not know whether an error exists in the original program. This limitation can be avoided by

1Different terminology has been used to describe abstraction for both verification and refutation, e.g.,exact-
abstraction[CGL94, PPV05, Eme08],3-valued abstraction[BG99, HJS01, dAGJ04, SG06], andBelnap abstrac-
tion [GWC06a, GWC06b].
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program

over-approximation

under-approximation

under-approximation

over-approximation

exact-approximation

Figure 1.2: Illustration of the three types of abstraction.

using theexact-approximationframework [Kur89, BBLS92, CIY95, DGG97, BG99, HJS01].

An abstract model in this framework can be seen as a combination of both over- and under-

approximations. The abstract analysis based on such abstract models is sound for the full set

of temporal properties, that is, both true and false resultsare preserved to the concrete level.

Therefore, exact-approximation supports both verification and refutation of temporal properties

with the same effectiveness.

Exact-approximation can be defined asstrongandweak, according to the degree of preser-

vation of temporal properties. We investigate both of them in this thesis. In the following,

we define the problems addressed by this thesis in the contextof strong and weak exact-

approximations, respectively.

1.2.1 Strong Exact-Approximation

In strong exact-approximation [Kur89, BBLS92, DGG97], modelchecking results are not only

preserved from the abstract level to the concrete level, butalso in the reverse direction. There-

fore, a property holds on an abstract model if and only if it holds on the concrete one. Ab-

stract models used for strong exact-approximation are built over classical boolean transition

systems. The relation between abstract and concrete modelsis captured by bisimulation equiv-

alence [Mil80, Par81], where both models can simulate each other’s behaviors in a stepwise
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manner and thus satisfy the same set of properties. In this case, an abstract model can be seen

as a combination of the same over- and under-approximationsof the original program. The

advantage of strong exact-approximation is that we can always get conclusive model checking

results from abstract analysis.

In this thesis, we study a special strong exact-approximation technique, calledsymme-

try reduction[CJEF96, ES96, ID96], which explores symmetric structures of a program for

abstraction. Many concurrent programs or communication protocols, e.g., mutual exclusion

protocol, consist of the coordination of several identicalprocesses. The program behaviors are

unchanged under permutation of process identities. Such high level symmetry is reflected in

the program statespace, which can be used to avoid exploringthe states that are symmetric to

the ones that have been explored before. Based on this observation, symmetry reduction uses

equivalence classes of symmetric states as abstract states, and builds a quotient structure over

them that is guaranteed to be bisimilar to the concrete program model. If the symmetry set is

large, the quotient structure is substantially smaller than the concrete model.

In practice, however, there exist many programs which are not genuinely symmetric: they

are composed of many similar, but not identical processes, e.g., readers-and-writers (a variant

of the mutual exclusion protocol). Although symmetry is exhibited in a large part of such pro-

grams, their global behaviors are not symmetric. To extend the scope of symmetry reduction to

such “almost” symmetric programs, Emerson et al. have proposed weaker notions of symme-

try, includingnear or roughsymmetry [ET99] andvirtual symmetry [EHT00]. In particular,

virtual symmetry is the most general notion under which the program model is bisimilar to its

reduced quotient structure. While virtual symmetry increases a potential domain of problems

that can be symmetry reduced, its practical application depends on successful solutions to the

following questions:

Question 1: How to identify virtually symmetric programs?The first step of using sym-

metry reduction is the identification of symmetry in a program. To avoid construction of the

concrete model of the program, which is usually not feasible, we need an efficient approach to
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detect this symmetry from the program description. Genuinesymmetry often exhibits certain

patterns in the design level, and can be identified from the specification of the program. How-

ever, for virtually symmetric programs, asymmetric behaviors may arise for different reasons.

Lack of regularity in such programs makes it difficult to identify virtual symmetry syntactically.

Question 2: How to combine virtual symmetry and symbolic model checking effectively?

Symbolic model checking uses compact data structures to represent program models. Sym-

metry reduction reduces the size of program model based on state abstraction. Since the two

approaches exploit different features of programs for fighting the state-explosion problem, it is

desirable to combine them to obtain better model checking performance. This idea has been

investigated in the context of genuine symmetry [ET99, BG02,EW03]. In order to analyze a

wider class of programs, it is interesting to investigate how to extend these results to virtual

symmetry as well.

Symmetry reduction is a strong exact-approximation technique that uses a symmetry-reduced

structure for abstract model checking. A limitation of strong exact-approximation is that

bisimulation-based abstraction is too restrictive. In practice, it is not always possible to find an

abstract model such as the symmetry-reduced one that has behaviors equivalent to the original

program and enables significant statespace reduction at thesame time. The reason is that ab-

straction often introduces some loss of information, and thus, some program behaviors become

unknown. Therefore, enforcing bisimulation restricts thechoice of abstract models, which

is not helpful for reduction of model size. This problem can be avoided usingweakexact-

approximation [CIY95, DGG97, BG99, GJ03, DN04] that allows for more general abstraction

by accommodating unknown information. We discuss it below.

1.2.2 Weak Exact-Approximation

Unlike strong exact-approximation, over- and under-approximating behaviors represented by

abstract models in weak exact-approximation may not be the same. The gap between them

represents the unknown behaviors caused by abstraction. Werefer to such abstract models as
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partial, since they capture an incomplete view of the original program behaviors. The relation

between partial and concrete models is generalized from bisimulation, describing approxima-

tion relations for over- and under-approximating behaviors, respectively. If a partial model has

enough information for proving or disproving a property, itgives conclusive results, i.e., true

or false, respectively, which are preserved to the concretelevel. Otherwise, an unknown result

is reported, and a refinement step is necessary.

We study weak exact-approximation from the following two aspects: (1) model checking

recursive programs and (2) analysis of partial modeling formalisms.

(1) Software model checking directly checks a program by combining automated predicate

abstraction [GS97, BMMR01] and counterexample-guided abstraction refinement [CGJ+03].

Using a list of predicates over program variables, a software model checker constructs a finite

abstract model of a program for property analysis. If the result is inconclusive, counterexam-

ples are generated to find additional predicates for refinement. The process continues until

either the property is successfully proved or disproved, orresources are exhausted. Tradi-

tional software model checkers [BMMR01, HJMS02, CKSY05] buildan over-approximating

abstraction of the programs, and typically bias their analysis towards verification of proper-

ties. In our previous work, we have developed a software model checker YASM [GWC06b],

which constructs an abstract model based on exact-approximating semantics of predicate ab-

straction [GWC06a, GC06]. Therefore, it supports both verification and refutation. In this

thesis, we extend such analysis ability of YASM by addressing the following problem:

Question 3: How to model check recursive program with exact-approximation? Software

programs often involve significant use of recursion. A limitation of YASM is that it cannot

handle programs with recursive functions. A state in a recursive program is an unbounded

call stack of activation records, which introduces anothersource of infinity on the statespace

other than data domain. Since YASM only uses predicate abstraction to abstract data aspects of

program states, it does not support abstract analysis with call stacks. A naive solution to this

problem requires the development of new abstract models that combine call stack and predicate
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abstraction, and subsequently, new algorithms for analyzing these models. In this thesis, we

investigate how to avoid this problem and look for a simple approach that allows us to reuse

existing abstract analysis in YASM.

(2) Partial models play a fundamental role in weak exact-approximation. They support

a combination of over- and under-approximations without requiring them to be the same. A

variety of modeling formalisms have been proposed for this in literature. In this thesis, we

conduct a systematic analysis of a set of partial modeling formalisms that are used widely

for exact-approximation [GHJ01, HJS01, DGG97, dAGJ04, CDEG03, SG04]. In general,

these modeling formalisms consist of two kinds of transition relations, one corresponding

to over-approximation, calledmay transitions, and the other — under-approximation, called

must transitions. We call these formalismspartial transition systems, which can be classi-

fied into three families, represented byKripke Modal Transition Systems(KMTSs) [HJS01]

with the requirement of everymusttransition is also amay transition,Mixed Transition Sys-

tems(MixTSs) [DGG97] with independentmayandmusttransitions, andGeneralized Kripke

Modal Transition Systems(GKMTSs) [SG04] withmusthyper-transitions. In this thesis, we

study these formalisms from two points of view: a semantic one, using partial transition sys-

tems for abstracting concrete programs, and a logical one, using partial transition systems for

temporal logic model checking. Specifically, we address thefollowing questions:

Question 4: What are the connections between semantic and logical consistency of partial

transition systems?Semantic and logical consistency correspond to the semantic and logical

view of partial transition systems, respectively: semantic consistency ensures that a partial

transition system does approximate some concrete program,and logical consistency ensures

that a partial transition system gives consistent interpretation to all temporal formulas, that is,

no formula can be interpreted both true and false at the same time. Both notions of consistency

are required for meaningful abstract model checking. We areinterested in analyzing the equiv-

alence relation between semantic and logical consistency.We also want to find out if there is a

structural condition that can capture them.
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Question 5: Does the structural difference affect the expressive power of partial transition

systems?Expressive power measures the abstraction ability of partial transition systems. The

three families of partial transition systems represented by KMTSs, MixTSs, and GKMTSs have

similar but different structures, which have been introduced for various reasons, e.g., to obtain

optimal abstraction and better refinement. It is interesting to see whether these structurally

different formalisms have the same expressiveness. Dams and Namjoshi have shown that all of

these formalisms are subsumed by tree automata [DN05]. However, a comparison of expressive

power between them is still missing.

Question 6: How to use partial transition systems effectively in practical model checking?

In practice, model checking is often conducted based on a tractable inductive semantics of

temporal logic. Based on this semantics, a GKMTS allows for more precise analysis results

than the semantically equivalent MixTS or KMTS, i.e., proving or disproving more properties.

However, while both MixTSs and KMTSs have been used in the development of practical sym-

bolic model checkers (e.g., [GC06, CDEG03]), the direct use ofGKMTSs has been hampered

by the difficulty of encoding hyper-transitions symbolically. To obtain more precise symbolic

model checking using partial transition systems, it is interesting to investigate approaches that

allow us to combine both a symbolic encoding of MixTSs and a better model checking preci-

sion of GKMTSs.

1.3 Contributions of This Thesis

The main theme of this thesis is the study of abstraction in model checking based on exact-

approximation. In general, this thesis presents several theoretical and practical contributions in

the following aspects:

• We study symmetry reduction on full virtual symmetry [WGC05].We formalize the

connection between symmetry reduction and abstraction. Based on that, we address

Question 1 by providing an efficient procedure for identifying full virtual symmetry,
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and provide a solution to Question 2 by extending counter abstraction to fully virtually

symmetric programs.

• We propose a novel approach for analyzing reachability and non-termination properties

of recursive programs with exact-approximation [GWC08], which provides a solution

to Question 3. We accomplish this by using a mixed program semantics to remove call

stacks, which leads to a natural combination of analysis of recursive program with exact

predicate abstraction. We also develop on-the-fly algorithms to improve analysis perfor-

mance.

• We provide answers to Questions 4, 5 and 6 about partial modeling formalisms [WGC09a,

WGC09b]. We prove equivalence between semantic and logical consistency over a class

of partial transition systems, and provide a necessary and sufficient structural condition

to characterize them. We show that the three families of modeling formalisms, KMTSs,

MixTSs, and GKMTSs, have the same expressive power. We also propose a new induc-

tive semantics of temporal logic, which results in more precise symbolic model checking

using partial transition systems.

We give a more detailed overview of these contributions below.

1.3.1 Full Virtual Symmetry Reduction

Our study of symmetry reduction in this thesis focuses on theproblems of identification and

symbolic model checking of fully virtually symmetric programs, i.e., programs that are vir-

tually symmetric up to exchanging the roles of processes. This form of virtual symmetry is

interesting because symmetry reduction over these programs often allows for exponential re-

duction in the model size.

Our solutions are based on a view of symmetry reduction from the perspective of abstrac-

tion. Symmetry reduction is usually defined based on the permutations of processes in pro-

grams. While this provides a natural way to understand symmetry reduction from the design



CHAPTER 1. INTRODUCTION 16

perspective, its connection with the general framework of abstraction is missing. We com-

plete this by formalizing symmetry reduction using the notions in abstraction. We define the

mapping between the components of symmetry reduction and abstraction, which gives us an

alternative characterization of symmetry reduction.

Based on this characterization, we provide an efficient approach to identify full virtual sym-

metry from program specifications. The problem of identifying full symmetry (the genuine

counterpart of full virtual symmetry) has been avoided by using specification languages with

special restrictions on syntax [ET99, EW03]. We show that lack of regularity in asymmetric

programs makes it difficult to capture restrictions that ensure full virtual symmetry syntacti-

cally. We then provide an algorithmic approach to the problem. We show that identification

of full virtual symmetry can be reduced to satisfiability of aquantifier-free Presburger for-

mula. This formula is built directly from the specification of a program, and can be checked

automatically using existing decision procedures [BB04, Pug92]. .

Our solution to symbolic symmetry reduction of full virtualsymmetry is based on counter

abstraction. The bottleneck of symbolic symmetry reduction is that the BDDs of orbit relations,

which define the equivalence between symmetric states, often have exponential size [CJEF96].

In [ET99, EW03], Emerson et al. showed that for full symmetry,the problem of building

orbit relation can be avoided viacounter abstraction[PXZ02]. The idea of this technique

is based on the observation that equivalence classes of symmetric states under full symmetry

can be generically represented using counters of local process states. Then a fully symmetric

program can be abstracted into another one that operates on counter variables. The model of the

translated program is isomorphic to the symmetry-reduced structure of the original program,

and can be symbolically analyzed directly. In the thesis, weshow that this technique can be

extended to handle full virtual symmetry as well. For the translation step, we identify several

cases of asymmetric transitions and provide procedures to translate them to the ones defined

over counter variables. We report on experiments to illustrate the feasibility of our approach.
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1.3.2 Reachability and Non-Termination Analysis of Recursive Programs

We investigate abstract analysis of recursive programs with respect to reachability and non-

termination. These two properties are often used in practice for analyzing software programs.

Our approach is based on a mixed program semantics that allows us to combine analysis of

recursive programs with exact predicate abstraction without explicitly dealing with call stacks.

We notice that reachability and non-termination properties depend only on top activation

records of call stacks. To analyze these properties, we develop a stack-free program semantics

where each state is asingleactivation record. The stack-free semantics combines bothopera-

tional and natural semantics [NN92] that correspond to the executions of single statements and

functions, respectively. It uses non-determinism at call sites to simulate the executions within

and outside of function bodies, which effectively eliminates the call-stack while preserving

stack-independent properties. Based on the stack-free semantics, we develop algorithms for

analyzing reachability and non-termination properties ofrecursive programs. Since there are

no call stacks involved in the stack-free semantics, we can reuse the existing exact predicate ab-

straction in our software model checker YASM [GWC06b] to obtain abstract analysis of these

properties. To improve the performance of the analysis, we also develop on-the-fly versions of

the algorithms, where computation of natural semantics of functions, i.e., the summary of the

behaviors of functions, is driven by the analysis of particular properties.

Our algorithms share many insights with techniques in othertools for analyzing recursive

programs (e.g., [BR00, ACEM05, BCP06, PSW05]), i.e., they are functional [SP81] in terms

of interprocedural analysis, and apply only to stack-independent properties. However, all those

tools useover-approximationto analyze infinite programs. It is not clear how to combine them

with exact-approximation. The novelty of our approach is that it separates the analysis of recur-

sive programs from abstraction of data domains. Therefore,combining the analysis algorithm

with different abstractions is trivial in our work. Moreover, over-approximation makes it im-

possible to use the existing tools for detecting non-termination since over-approximation may

introduce spurious non-terminating computations, whereas this is not a problem in our case.
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We have implemented our approach in the software model-checker YASM. Our approach

allows us to reuse existing abstract analysis in YASM to handle recursive programs. We exper-

imented on reachability and non-termination analysis of several non-trivial C programs.

1.3.3 Analysis of Partial Modeling Formalisms

We investigate the three families of partial transition systems represented byKripke Modal

Transition Systems(KMTSs) [HJS01],Mixed Transition Systems(MixTSs) [DGG97] andGen-

eralized Kripke Modal Transition Systems(GKMTSs) [SG04], providing answers to Questions

4, 5 and 6.

For the relation between semantic and logical consistency of partial transition systems, we

show that while in general they are not equivalent, there is aclass of partial transition systems

for which semantic and logical consistency coincide. We call this classmonotonebecause of

the monotonicity condition imposed on the transition relations. The class of monotone tran-

sition systems is as expressive as the class of all partial transition systems. That is, for every

partial transition system, there is an equivalent monotoneone. We also provide a structural con-

dition to capture both notions of consistency. We show that aprevious requirement of “every

musttransition is also amaytransition” [HJS01, dAGJ04] is sufficient for logical consistency,

but not necessary. For semantic consistency, the requirement is neither necessary nor suffi-

cient. Over the class of monotone transition systems where semantic and logical consistency

coincide, we define an alternative structural condition andshow that it is both necessary and

sufficient to guarantee consistency.

We compare the expressive power of the three families of formalisms, KMTSs, MixTSs,

and GKMTSs, and show that they are equally expressive, i.e.,for any partial transition system

expressed in one formalism, there exists another one in the other such that the two transition

systems approximate the same set of concrete programs. Thatis, neither hyper-transitions nor

restrictions onmayandmusttransitions affect expressiveness. They do, however, affect the

size of the models: GKMTSs and KMTSs can be converted to semantically equivalent MixTSs
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of smaller or equal size. Dams and Namjoshi have shown that the three families of formalisms

are less expressive than tree automata [DN05]. Our results complete the picture by showing

the expressive equivalence between those formalisms.

While analysis of properties over the GKMTS using the standard inductive semantics

is more precise than that over a corresponding MixTS (or KMTS) obtained by semantics-

preserving translations, the direct use of GKMTSs in symbolic model checking has been ham-

pered by the difficulty of symbolic encoding of hyper-transitions. To address this problem, we

develop a new semantics, calledreduced, that is still inductive (and tractable) but more precise

than the standard one. We show that GKMTSs and MixTSs are equivalent with respect to the

reduced inductive semantics, and give a symbolic approach for computing the semantics. The

outcome is an algorithm that combines the benefits of the symbolic encoding of MixTSs with

the better precision of GKMTSs. We implement our algorithm and evaluate it empirically over

MixTSs constructed using predicate abstraction.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2, we set our notation and describe

temporal logic, model checking, and the abstraction framework of exact-approximation. In

Chapter 3, we describe our work on symmetry reduction with full virtual symmetry, reported

in [WGC05]. In Chapter 4, we describe our approach for analyzingreachability and non-

termination properties of recursive programs, reported in[GWC08]. In Chapter 5, we describe

our results of analysis of partial modeling formalisms, reported in [WGC09a] and [WGC09b].

Finally, we conclude in Chapter 6 with a summary of this thesisand a discussion of limitations

of our work and future research directions.



Chapter 2

Background

The work presented in this thesis is concerned with abstraction in model checking. This chapter

introduces the concepts and fixes the notation used in later chapters. In Section 2.1, we present

truth domains that are associated with concrete and abstract model checking results. In Section

2.2, we introduce model checking, including temporal logics and models of computation. In

Section 2.3, we define an abstraction framework for model checking, and introduce strong and

weak exact-approximations.

2.1 Truth Domains

A truth-domainD is a collection of elementsD, referred to astruth values, together with a

truth ordering⊑ and a negation operator¬ : D → D, such thatD = (D,⊑,¬) is a De Morgan

algebra. The truth ordering orders the elements based on their truth content; thus,a ⊑ b stands

for “a is less true thanb”. The meet (∧) and join (∨) of the truth ordering are calledconjunction

anddisjunction, respectively.

The most known truth domain is the classical boolean logic2 (Figure 2.1(a)) with values

t (true) andf (false) such thatf ⊑ t. Kleene logic [Kle52]3 (Figure 2.1(b)) extends2 with an

additional elementm, representing “unknown” information. The truth ordering of the logic is

extended asf ⊑ m andm ⊑ t, and negation as¬m = m. We define an additional ordering

20
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Figure 2.1: (a)-(c) Truth domains: (a)2-valued boolean logic, (b)3-valued Kleene logic, and

(c) 4-valued Belnap logic.

�, that relates values based on the amount ofinformation; thusm � t andm � f, so that

m represents the least amount of information. Belnap logic [Bel77] 4 (Figure 2.1(c)) extends

3 with an additional elementd representing “inconsistent” information. The truth ordering is

extended so thatf ⊑ d andd ⊑ t, and negation as¬d = d, i.e., d is equivalent tom with

respect to this ordering. Finally, the information ordering is extended by makingd be the

largest element, i.e.,f � d andt � d.

2.2 Model Checking

Given a hardware or software program, model checking automatically determines whether the

model of the program satisfies a temporal property. In this section, we first introduce two tem-

poral logics, the modalµ-calculus [Koz83] and the Computation Tree Logic (CTL) [CES83].

We then describe the classical models of programs based on boolean transition systems, and

the semantics of temporal logics over them.

2.2.1 Temporal Logics

We begin by introducing the modalµ-calculus.

Definition 2.1 (Modal µ-Calculus). Let Var be a set of variables, andAP be a set of atomic
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propositions. The logicLµ(AP ) is the set of all formulas satisfying the grammar

ϕ ::= p | Z | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | µZ · ϕ(Z),

wherep is an atomic proposition inAP , andZ is a fixpoint variable from inVar.

An occurrence of a variableZ in a formulaϕ is bound if it appears in the scope of aµ

quantifier and isfreeotherwise. For example,Z is free inp∨♦Z, and is bound inµZ · p∨♦Z.

A formulaϕ is closedif it does not contain any free variables.

We define the following syntactic abbreviations:

ϕ ∨ ψ , ¬(¬ϕ ∧ ¬ψ)

ϕ⇒ ψ , ¬ϕ ∨ ψ

�ϕ , ¬♦¬ϕ

νZ · ϕ(Z) , ¬µZ · ¬ϕ(¬Z/Z)

whereϕ(ψ/Z) denotes the syntactical substitution ofψ for free occurrences ofZ in ϕ.

A µ-calculus formula issyntactically monotoneif and only if for every formula of the form

µZ ·ϕ(Z), all occurrences of the fixpoint variableZ in ϕ fall under an even number of negations

in ϕ. From this point onwards, we consider syntactically monotoneµ-calculus formulas only.

The modal operator♦ is typically interpreted as “an existence of an immediate future”. For

example, “p” means thatp holds now, “♦p” means that there exists an immediate future where

p holds, and “�p” means thatp holds in all immediate futures. The quantifiersµ andν stand

for least and greatest fixpoint, respectively.

We often writeLµ to denote the set ofµ-calculus formulas over some unspecified set of

atomic propositions. EveryLµ formula can be transformed to anLµ formulaNNF(ϕ), called

the negation normal formof ϕ, where negation is restricted to the level of atomic proposi-

tions [DGG97]. We say anLµ formula is universal(resp. existential) if the only allowed

modality in its negation normal form is� (resp.♦). We use�Lµ and♦Lµ to denote the uni-

versal and existential fragments ofLµ, respectively.
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Computation Tree Logic(CTL) is a restricted subset ofLµ, which is often used in the

specification and analysis of temporal properties.

Definition 2.2 (CTL). LetAP be a set of atomic propositions. The temporal logicCTL over

AP is is the set of all formulas satisfying the grammar

ϕ ::= p | ¬ϕ | EXϕ | E[ϕU ϕ] | EGϕ

wherep is an atomic proposition inAP .

Additionally, we define the following syntactic abbreviations:

AXϕ , ¬EX¬ϕ

A[ϕU ψ] , ¬E[¬ψ U ¬ϕ ∧ ¬ψ] ∧ ¬EG¬ϕ

AGϕ , ¬E[trueU ¬ϕ]

EFϕ , ¬AG¬ϕ

AFϕ , ¬EG¬ϕ

The meaning of the operatorX is that a property holds in next time;U specifies that the first

property holds until the second property becomes true sometime in the future; The operators

F andG requires a property to hold eventually and globally respectively. The universal and

existential path quantifiersA andE specify that some property holds for all computational

paths and for some path, respectively.

CTL has a fixpoint characterization. Every CTL formula can be translated to anLµ formula

according to the following definition1.

EXϕ , ♦ϕ

E[ϕU ψ] , µZ · ψ ∨ (ϕ ∧ ♦Z)

EGϕ , νZ · ϕ ∧ ♦Z

1This translation is based on the assumption that the transition relations of CTL models are total. A translation
without this assumption can be found in [Bra91].
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The universal and existential fragmentsACTL andECTL [GL91] are the intersections of

CTL with �Lµ and♦Lµ, where only universal and existential path quantifiers are allowed,

respectively.

In the following, we define classical models of computation and the semantics of temporal

logics over them.

2.2.2 Models of Computation

A model of a program is built based on a state transition system. A transition systemof a pro-

gram describes the transition relations between program states. Amodelextends a transition

system with a state labeling function, which is used to interpret atomic propositions in tempo-

ral logic formulas. A transition system can be associated with different labeling functions for

model checking of different temporal properties. We refer to a class of transition systems as

modeling formalism.

We first describe classical models of computation,Kripke structures, that are built over

boolean transition systems.

Definition 2.3 (Boolean Transition Systems). A boolean transition system(BTS) is a tuple

B = 〈S,R〉, where

• S is a set of states and

• R ⊆ S × S is a transition relation.

For example, the picture in Figure 2.2 represents a BTSB1 with

• S1 = {s1, s2, s3},

• R1 = {(s1, s2), (s2, s3), (s2, s2), (s3, s3), (s3, s1)}.
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s3

s1 s2

Figure 2.2: An example of boolean transition systemB1.

For a pair of statess andt related by the transition relation, i.e.,R(s, t) holds, we say thatt

is a successor ofs, ands is a predecessor oft, and useR(s) to denote the set of all successors

of s. For a transition relationR, we define the pre-image ofR, pre[R] : 2S → 2S, as

pre[R](Q) , {s ∈ S | R(s) ∩Q 6= ∅}

pre[R](Q) is a set of states that haveR-successors inQ. For example, inB1, pre[R1]({s1}) =

{s3}, andpre[R1]({s2}) = {s1, s2}.

Let B = 〈S,R〉 be a BTS, andAP be a set of atomic propositions. Alabeling function

L : AP → 2S is an interpretation of atomic propositions over a set of statesS such that

s ∈ L(p) iff the atomic propositionp is true at the states. The pairB , 〈B,L〉 defines a

classical computational model, called aKripke Structure.

We now define the semantics of temporal logics over Kripke structures. A semantics ofLµ

is calledinductiveif it is defined inductively on the syntax of the logic. The inductive semantics

of Lµ over Kripke structures is defined as follows.

Definition 2.4 (Lµ semantics over Kripke Structures). LetB = 〈B,L〉 be a Kripke structure,

whereB = 〈S,R〉 is a BTS. LetVar be a set of fixpoint variables, andε : Var → 2S be

an object assignment for free variables. Theinductive semantics(or interpretation) of anLµ
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formulaϕ overB, denoted‖ϕ‖Bε , is defined as follows:

||p||Bε , L(p) ||Z||Bε , ε(Z)

||ϕ ∧ ψ||Bε , ||ϕ||Bε ∩ ||ψ||Bε ||¬ϕ||Bε , S \ ||ϕ||Bε

||µZ · ϕ||Bε , lfp⊆
(

λQ · ||ϕ||Bε[Z 7→Q]

)

||♦ϕ||Bε , pre[R](||ϕ||Bε )

whereZ ∈ V ar is a fixpoint variable,ε[Z 7→ Q] denotes the object assignment that is the

same asε except thatε[Z 7→ Q](Z) = Q, and lfp⊆f is the⊆-least fixpoint off .

For a closedLµ formulaϕ, ||ϕ||Bε = ||ϕ||Bε′ for anyε andε′. Thus, we write||ϕ||B for that

value. When it is clear from context, we simply call the inductive semantics as the semantics

of Lµ and omitB.

The semantics||ϕ||B defines a mapping from the statesS to a2-valued truth domain such

that for each states ∈ S,

||ϕ||B(s) =















t if s ∈ ||ϕ||B

f if s /∈ ||ϕ||B

If ||ϕ||B(s) = t, that meansϕ is satisfied ats, i.e.,B, s |= ϕ; otherwise,ϕ is refuted ats, i.e.,

B, s |= ¬ϕ.

Given a modelB and a temporal propertyϕ, model checking automatically determines

whetherϕ is satisfied or refuted at the states inB according to the semantic ofϕ . For the

BTSB1 shown in Figure 2.2, letAP = {p, q} be a set of atomic propositions, and a labeling

functionL1 be defined asL1(p) = {s1, s2}, andL1(q) = {s2}. We present several example

properties over the Kripke structureB1 = 〈B1, L1〉.

• Propositional property(ϕ , p∧ q)). This property requires that bothp andq are true at

the same time. According to the labeling functionL1, the propertyϕ is satisfied at the

states2.



CHAPTER 2. BACKGROUND 27

• Modal property(ϕ , EX(p∧ q)). This property requires that a state has at least one

successor where bothp andq are true. Sincep ∧ q holds ats2 ands2 is a successor ofs1

ands2, the propertyϕ is satisfied at the statess1 ands2.

• Reachability property(ϕ , EF (p∧ q)). This property requires that a state can reach

some state satisfyingp ∧ q in zero or more steps. Sincep ∧ q is satisfied ats2, the

propertyϕ is satisfied at the statess2, s1, ands3, which can reachs2 in 0, 1 and 2 steps,

respectively.

• Non-termination property(ϕ , EGp)). This property requires that there is an infinite

path from a state such thatp always holds on the path. Note thatp is true ats1 ands2

in B1. Since there is a self-loop ats2, ands1 is a predecessor ofs2, the propertyϕ is

satisfied ats1 ands2.

2.3 Abstraction Framework

Abstraction in model checking builds a smaller abstract model to approximate a large or infi-

nite program, and uses the abstract model checking result toderive the one at concrete level.

An abstraction framework [CC92] formalizes the connection between concrete and abstract

model checking, which defines a class of modeling formalismsfor abstraction, the approxima-

tion relation between concrete and abstract models, and thepreservation relation of temporal

properties.

Abstract model checking starts with an abstraction of statespace. LetB = 〈B,LB〉 be a

Kripke structure representing the concrete model of a program, whereB = 〈C,R〉 is a BTS.

The set of statesC in B is called aconcretestatespace. Anabstractstatespace approximating

C is a finite set of statesA together with asoundnessrelationρ ⊆ C × A, where(c, a) ∈ ρ

means thata ρ-approximatesc. ρ induces aconcretizationfunctionγ(a) , {c | (c, a) ∈ ρ}.

That is,γ(a) is the set of all concrete states approximated bya. For a setQ ⊆ A, we define

γ(Q) , ∪a∈Qγ(a).
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The abstract states describe concrete states in an abstractway. For the purpose of model

checking, other components ofB are lifted into the abstract world as well. An abstract model

M = 〈M,LM〉 describes abstract program behaviors, consisting of a transition systemM

over the abstract statespaceA and a labeling functionLM for A. Let a andc be an abstract

and concrete states, respectively, anda approximatesc. We distinguish three kinds of abstrac-

tion frameworks based on approximation of program behaviors and preservation of temporal

properties.

1. over-approximation: Intuitively, an over-approximating abstract modelM consists of

“more” behaviors than the concrete one. Therefore, if anuniversalproperty holds on the

abstract model, it also holds on the concrete one. Since abstract model checking starts

from a notion of abstraction of states, the preservation of temporal properties is often

defined on the level of individual states. That is,

∀ϕ ∈ �Lµ · (M, a |= ϕ) ⇒ (B, c |= ϕ)

Note that over-approximation only preserves soundness forthe universal fragment of

temporal logic. Therefore, if an universal propertyϕ is refutedat a, it does not imply

thatϕ is refuted atc as well.

2. under-approximation: An under-approximating abstract modelM consists of “less” be-

haviors than the concrete program. In this case, if anexistentialproperty holds on the

abstract model, it also holds on the concrete one. That is,

∀ϕ ∈ ♦Lµ · (M, a |= ϕ) ⇒ (B, c |= ϕ)

Similar to over-approximation, under-approximation onlypreserves soundness for a frag-

ment of temporal properties.

3. exact-approximation: An exact-approximating abstract modelM combines both over-

and under-approximating abstract program behaviors, which allows for verification and
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refutation ofarbitrary Lµ formulas in the framework. In this case,

∀ϕ ∈ Lµ · (M, a |= ϕ) ⇒ (B, c |= ϕ)

If the reverse direction also holds, that is, the values ofϕ overM are eithertrueor false,

thenϕ is satisfied (resp. refuted) over the concrete model if and only if it is satisfied

(resp. refuted) over the abstract model. We refer to such exact-approximation as being

strong. More general exact-approximation frameworks, calledweak, allow for unknown

values of formulas over the abstract model. In this case, thepreservation oftrueandfalse

results only hold from the abstract to the concrete level.

In the rest of this section, we describe modeling formalismsand approximation relations

between concrete and abstract models in strong and weak exact-approximations, respectively.

2.3.1 Strong Exact-Approximation

In strong exact-approximation frameworks, we use boolean transitions system as the modeling

formalism, and represent abstract models using Kripke structures. The approximation relation

between abstract and concrete models is based onbisimulation.

Definition 2.5 (Bisimulation between BTSs). [Mil89] Let B1 = 〈S1, R1〉 andB2 = 〈S2, R2〉

be two BTSs.H ⊆ S1 × S2 is a bisimulationbetweenB1 andB2 if for any (s1, s2) ∈ H, the

following two conditions hold:

(a) ∀t1 ∈ S1 · (s1, t1) ∈ R1 ⇒ ∃t2 ∈ S2 · (s2, t2) ∈ R2 ∧ (t1, t2) ∈ H

(b) ∀t2 ∈ S2 · (s2, t2) ∈ R2 ⇒ ∃t1 ∈ S1 · (s1, t1) ∈ R1 ∧ (t1, t2) ∈ H

In this case, we sayB1 andB2 areH-bisimilar, writtenB1 ≡H B2.

Definition 2.6 (Equivalence between Labeling Functions). LetAP be a set of atomic propo-

sitions. LetL1 andL2 be a labeling function for the statespacesS1 andS2, respectively. Let
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H ⊆ S1 × S2 be a relation.L1 andL2 are H-equivalent, denotedL1 ≡H L2, if the following

condition hold:

∀(s1, s2) ∈ H · ∀p ∈ AP · s1 ∈ L1(p) ⇔ s2 ∈ L2(p)

Note that Definition 2.5 and Definition 2.6 are defined over a specific relationH. The

reason for this is that in abstract model checking, we often consider the relationship between

concrete and abstract models with respect to the soundness relation between concrete and ab-

stract statespaces, instead of an arbitrary one. A concreteand an abstract Kripke structures are

bisimilar if the underlying transition systems and labeling functions respectively are bisimilar

and equivalent with respect to the soundness relation.

Definition 2.7 (Bisimulation between Kripke Structures). [CGP99] Let ρ be a soundness

relation between a concrete statespaceC and an abstract statespaceA. Let AP be a set

of atomic propositions. LetB1 = 〈B1, L1〉 be an abstract Kripke structure overA, andB2 =

〈B2, L2〉 be a concrete Kripke structure overC, whereB1 = 〈A,R1〉 andB2 = 〈C,R2〉 are the

abstract and the concrete BTS, respectively.B1 is bisimilar to B2 iff B1 ≡ρ B2 andL1 ≡ρ L2,

i.e., for any(c1, a1) ∈ ρ, the following conditions hold:

(a) ∀a2 ∈ A · (a1, a2) ∈ R1 ⇒ ∃c2 ∈ C · (c1, c2) ∈ R2 ∧ (c2, a2) ∈ ρ

(b) ∀c2 ∈ C · (c1, c2) ∈ R2 ⇒ ∃a2 ∈ A · (a1, a2) ∈ R1 ∧ (c2, a2) ∈ ρ

(c) ∀p ∈ AP · a ∈ L1(p) ⇔ c ∈ L2(p)

The following theorem shows that ifB1 andB2 are bisimilar, then for any abstracta and a

concrete statec approximated bya, anLµ formulaϕ is satisfied (resp. refuted) ata overB1 iff

it is satisfied (resp. refuted) atc overB2, i.e.,∀ϕ ∈ Lµ · (B1, a |= ϕ) ⇔ (B2, c |= ϕ).

Theorem 2.8. [CGP99] LetB1 = 〈B1, L1〉 be an abstract Kripke Structure that is bisimilar

to a concrete Kripke StructureB2 = 〈B2, L2〉, andϕ ∈ Lµ. Then,γ(||ϕ||B1) = ||ϕ||B2 .
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2.3.2 Weak Exact-Approximation

Weak exact-approximation uses more expressive modeling formalisms than boolean transi-

tion systems to support combination of over- and under-approximations. These formalisms

typically have two types of transition relations,may and must, corresponding to over- and

under-approximating behaviors, respectively. We refer tothese formalisms aspartial transi-

tion systemssince they allow us to describe undefined behaviors of programs. Partial transition

systems are equivalent tomulti-valued transition systemswhere transition relations are defined

w.r.t. a multi-valued domain. We introduce both of them below.

Partial transition systems. We start by introducing exact-approximation based on partial tran-

sition systems.

A partial transition systemallows us to describe possible and necessary behaviors of pro-

grams. In the following, we first we first define several transitions systems. Each of them can

be referred to as a partial transition system.

Definition 2.9 (GKMTS, MixTS, and KMTS). [DGG97, BG99, HJS01, SG04] AGeneralized

Kripke Modal Transition System(GKMTS) is a tupleM = 〈S,Rmay, Rmust〉, whereS is the

statespace, andRmay ⊆ S × S, Rmust ⊆ S × 2S are themay and must transition relations,

respectively. AMixed Transition System(MixTS) is a GKMTS s.t.Rmust ⊆ S × S. A Kripke

Modal Transition System(KMTS) is a MixTS s.t.Rmust ⊆ Rmay.

Intuitively, mayandmusttransitions represent possible and necessary behaviors, respec-

tively. Examples of partial transition systems are shown inFigure 2.3(a)-(b). In this thesis,

we often writes
may
−−→ t for (s, t) ∈ Rmay, s

must
−−→ t, ands

must
−−→ Q for (s, t) ∈ Rmust and

(s,Q) ∈ Rmust, respectively. Note that partial transition systems subsume BTSs: a BTS can be

seen as a special KMTS whereRmay = Rmust.

The pre-image function in a partial transition system is defined over a pair of sets〈Q1, Q2〉 ∈
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(a) (b) (c)

s2

s1

s3

s2

s1

s3

s2

s1

s3

m
t

d d

Figure 2.3: (a)-(b) Examples of partial transition systems(dotted lines representmaytransitions

and solid –must): (a) a MixTSM1 and (b) a GKMTSM2, where the dashed ellipse denotes

the set of states that are the destination of themusthyper-transition froms1 ; and (c) a4-valued

transition systemM3.

2S × 2S, and takes into account the two types of transition relations:

pre[〈Rmust, Rmay〉](〈Q1, Q2〉) , 〈preU(Q1), preO(Q2)〉

where

preU(Q) ,















{s | ∃t ∈ Q · s
must
−−→ t} if M is a MixTS

{s | ∃U ⊆ Q · s
must
−−→ U} if M is a GKMTS

preO(Q) , {s | ∃t ∈ Q · s
may
−−→ t}

LetAP be a set of atomic propositions, andLit(AP ) be a set of literals ofAP . A partial

labeling functionL : S → 2Lit(AP ) assigns to each states a set of literals that are true ats. That

is, p is true ats if p ∈ L(s), and false if¬p ∈ L(s); inconsistent ifp,¬p ∈ L(s); otherwise,

the value ofp at s is unknown. A pairM = 〈M,L〉 of a partial transition systemM and a

labelingL is called apartial model. The semantics of anLµ formulaϕ overM is given by a

pair e = 〈U,O〉, whereU,O ⊆ S. Intuitively, U is the set of states that must satisfyϕ, andO

is the set of states that do not refute (may satisfy)ϕ. The inductive semantics ofϕ overM,

denoted||ϕ||M, is defined as follows.
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Let e be a pair〈U,O〉. LetU andO denote the setsS \U andS \O, respectively. We write

U(e) andO(e) to denoteU andO, respectively. We define the operators∼ and⊓ as follows:

∼〈U,O〉 , 〈O,U〉

〈U1, O1〉 ⊓ 〈U2, O2〉 , 〈U1 ∩ U2, O1 ∩O2〉 .

Definition 2.10 (Inductive Semantics ofLµ over Partial Models). [DGG97, BG99, HJS01,

SG04]. LetM = 〈M,L〉 be a partial model,M = 〈S,Rmay, Rmust〉, Var a set of fixpoint

variables, andε : Var → 2S × 2S. The inductive semantics ofϕ ∈ Lµ is:

||p||Mε , 〈{s | p ∈ L(s)}, {s | ¬p /∈ L(s)}〉

||¬ϕ||Mε , ∼||ϕ||Mε

||ϕ ∧ ψ||Mε , ||ϕ||Mε ⊓ ||ψ||Mε

||♦ϕ||Mε , 〈preU(U(||ϕ||Mε )), preO(O(||ϕ||Mε ))〉

||Z||Mε , ε(Z)

||µZ · ϕ||Mε , 〈lfp⊆
(

λQ · U(||ϕ||Mε[Z 7→Q])
)

, lfp⊆
(

λQ · O(||ϕ||Mε[Z 7→Q])
)

〉

whereZ ∈ Var and lfp is the least fixpoint.

The semantics||ϕ||M defines a mapping from the statesS to a4-valued truth domain such

that for each states ∈ S,

||ϕ||M(s) =















































t if s ∈ U(||ϕ||M) ∩ O(||ϕ||M)

f if s /∈ U(||ϕ||M) ∪ O(||ϕ||M)

m if s ∈ O(||ϕ||M) \ U(||ϕ||M)

d if s ∈ U(||ϕ||M) \ O(||ϕ||M)

If ||ϕ||M(s) is t or f, it means thatϕ is satisfied or refuted ats, respectively;m means that the

value ofϕ is unknown ats, andd denotes an inconsistent result since in this casesmust satisfy

ϕ (s ∈ U(||ϕ||M)) and must refuteϕ (s /∈ O(||ϕ||M)) at the same time. For example, consider



CHAPTER 2. BACKGROUND 34

the MixTSM1 shown in Figure 2.3(a). LetAP = {p, q} be the set of atomic propositions and

the labeling functionL1 be defined asL1(s1) = {p, q}, L1(s2) = {p}, andL1(s3) = {q}.

Over the partial modelM1 = 〈M1, L1〉, we have||p||M1 = 〈{s1, s2}, {s1, s2, s3}〉; that

is, p is true ats1 and s2, and unknown ats3; For the modal propertyϕ , ♦p, we have

||ϕ||M1 = 〈{s1, s2}, {s1, s3}〉, that is, the propertyϕ is true ats1, unknown ats3, and in-

consistent ats2.

The approximation relation between a partial model and a concrete model (Kripke struc-

ture) is defined based onmixed simulation.

Definition 2.11(Mixed Simulation between MixTSs). [DGG97] LetM1 = 〈S1, R
may
1 , Rmust

1 〉

andM2 = 〈S2, R
may
2 , Rmust

2 〉 be two MixTSs.H ⊆ S1 ×S2 is amixed simulationbetweenM1

andM2 if for any (s1, s2) ∈ H, the following two conditions hold:

(a) ∀t2 ∈ S2 · (s2, t2) ∈ Rmust
2 ⇒ ∃t1 ∈ S1 · (s1, t1) ∈ Rmust

1 ∧ (t1, t2) ∈ H

(b) ∀t1 ∈ S1 · (s1, t1) ∈ Rmay
1 ⇒ ∃t2 ∈ S2 · (s2, t2) ∈ Rmay

2 ∧ (t1, t2) ∈ H

In this case, we sayM2 H-simulatesM1, writtenM2 �H M1.

Intuitively,M2 simulatesM1 wheneverM2 is less precise about its behaviour thanM1. This

definition generalizes to GKMTSs [SG04].

Definition 2.12 (Approximation between Labeling Functions). Let AP be a set of atomic

propositions. LetL1 andL2 be a partial labeling function for the statespaceS1 andS2, re-

spectively. LetH ⊆ S1 × S2 be a relation.L1 H-approximatesL2, denotedL1 �H L2, if the

following condition hold:

∀(s1, s2) ∈ H · L1(s1) ⊆ L2(s2)

LetC andA be a concrete and an abstract statespace, respectively, andρ be the soundness

relation, andγ be the concretization function. A partial transition system M overA approx-

imatesa concrete BTSB overC (or, equivalentlyB refinesM ) iff M ρ-simulatesB, i.e.,
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M �ρ B. The set of all BTSs that refineM is denoted byC[M ]. Let LM andLB be the

state labelings forA andC, respectively.LM approximatesLB iff LM ρ-approximatesLB,

i.e.,LM �ρ LB. A partial modelM = 〈M,LM〉 approximatesa concrete modelB = 〈B,LB〉

(or, equivalently,B refinesM) iff M approximatesB andLM approximatesLB.

Definition 2.13 (Approximation between Partial Models). [DGG97] Let ρ be a soundness

relation between a concrete statespaceC and an abstract statespaceA. LetM = 〈M,LM〉 be

a partial model overAwhereM = 〈A,Rmay
M , Rmust

M 〉 is a MixTS. LetB = 〈B,LB〉 be a concrete

model overC whereB = 〈C,Rmay
B , Rmust

B 〉 is a BTS, i.e.,Rmay
B = Rmust

B . M approximatesB iff

M �ρ B andLM �ρ LB. That is, for any(c1, a1) ∈ ρ, the following conditions hold:

(a) ∀a2 ∈ A · (a1, a2) ∈ Rmust
M ⇒ ∃c2 ∈ C · (c1, c2) ∈ Rmust

B ∧ (c2, a2) ∈ ρ

(b) ∀c2 ∈ C · (c1, c2) ∈ Rmay
B ⇒ ∃a2 ∈ A · (a1, a2) ∈ Rmay

M ∧ (c2, a2) ∈ ρ

(c) LM(a1) ⊆ LB(c1)

This definition generalizes to partial models over GKMTSs [SG04]. We denote the set of

all concrete refinements ofM by C[M].

The following theorem shows that ifM approximatesB, then for any abstracta and a

concrete statec approximated bya, if anLµ formulaϕ is satisfied (resp. refuted) ata overM,

then it is satisfied (resp. refuted) atc overB, i.e.,∀ϕ ∈ Lµ · (M, a |= ϕ) ⇒ (B, c |= ϕ).

Theorem 2.14. [DGG97, SG04] LetM = 〈M,LM〉 be a partial model that approximates a

concrete modelB = 〈B,LB〉, andϕ ∈ Lµ. Then,γ(U(‖|ϕ‖|M)) ⊆ U(‖ϕ‖B), andγ(O(‖ϕ‖M))

⊆ O(‖ϕ‖B).

Multi-valued Transition Systems. We now introduce exact-approximation using multi-valued

transition systems, which is based on extension of sets and transitions to multi-valued truth

domains.

We first introducemulti-valuedsets. Given a collection of elementsC and a truth domain

D , aD-valuedsetX overC is a total functionS → D. For example, a2-valued set is simply a



CHAPTER 2. BACKGROUND 36

boolean or a classical set, and a4-valued set is a function fromC to Belnap logic4. Given a set

overC and an elementc fromC, the valueX(c) represents the degree to whichc belongs toC.

For example,X(s) = t means thatc is contained inX, f means thatc is not contained inC, m

means thatc may be contained inX, andd indicates an inconsistent case. A fuzzy set [Zad87]

is also a multi-valued set defined over fuzzy logic, where thetruth values are formed by the set

of all real numbers in the closed interval[0, 1] such that0 stands forfalse, 1 for true, and the

remaining values stand for degrees of truth. We useDC to denote all theD-valued sets overC.

Set ordering and operations are defined by pointwise extensions. LetS1, S2 ∈ DC be two

D-valued sets. Then

S1 ⊆ S2 , ∀x · S1(x) ⊑ S2(x)

S1 ∪ S2 , λx · S1(x) ∨ S2(x)

S1 , λx · ¬S1(x)

S1 ∩ S2 , λx · S1(x) ∧ S2(x)

Note that the classical set theory is a special case where thetruth domain is2.

Definition 2.15 (Multil-Valued Transition Systems). A D-valued transition systemis a tuple

M = 〈S,R,D〉, where

• S is a set of states,

• D is a truth domain,

• R : S × S → D is a transition relation,

In the rest of this thesis, we only consider multi-valued transition systems with truth do-

mains from the set of{2,3,4}, which are equivalent to the partial transition systems we dis-

cussed previously. An example of4-valued transition system is shown in Figure 2.3(c), and

a BTS is simply a2-valued transition system. For a relationR : S × S → D, we define the

preimageof a setQ ∈ DS w.r.t. R as

pre[R](Q) , λs ∈ S ·
∨

t∈S R(s, t) ∧Q(t)
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LetAP be a set of atomic propositions. A labeling function associated with a multi-valued

transition system is a functionL : AP → 4S. A pairM = 〈M,L〉 of a multi-valued transition

systemM and a state labelingL is called amulti-valued Kripke structure. The inductive

semanticsof anLµ formulasϕ overM, denoted||ϕ||M, is a4-valued set overS, which is

defined in the same way as that over classical Kripke structures (Definition 2.4), with the only

difference that set operations are defined based on multi-valued truth domains.

Multi-valued Kripke structures are isomorphic to partial models w.r.t.Lµ formulas [GJ03,

GWC06a]. For example, a labeling functionL : S → 2Lit(AP ) can be transformed to a function

L′ : AP → 4S such thatL′(p)(s) is t if p ∈ L(s) and¬p /∈ L(s), f – if ¬p ∈ L(s) andp /∈ L(s),

m – if p,¬p /∈ L(s), andd – if p,¬p ∈ L(s). A MixTS can be easily transformed to a4-valued

transition system by assigningmayandmusttransitions the valuet, mayand notmust– m, must

and notmay– d, and empty transitions –f, e.g., the MixTS in Figure 2.3(a) can be transformed

to the4-valued transition system in Figure 2.3(c). Similarly, a KMTS and a GKMTS can be

respectively transformed to a3-valued transition system and a4-valued transition system with

extension of hyper-transitions.

The isomorphism lifts approximation relation from partialmodels to multi-valued Kripke

structures.

Definition 2.16 (Approximation between Multi-Valued Models). [GJ03, GWC06a] LetB be

a concrete model over a statespaceC, andM be a multi-valued Kripke structure over an

abstract statespaceA. M approximatesB iff the partial modelM′ that is isomorphic toM

approximatesB.

In this case, the preservation of temporal properties can becharacterized using the infor-

mation ordering on truth domains.

Theorem 2.17. [GJ03, GWC06a] LetM be a multi-valued Kripke structure that approximates

a concrete modelB, andϕ ∈ Lµ. Then, for any abstract statea and a corresponding concrete

statec, ||ϕ||M(a) � ||ϕ||B(c).
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That is, if ||ϕ||M(a) is trueor false, ||ϕ||B(c) is alsotrueor false, respectively.

2.4 Summary

In this chapter, we have introduced temporal logics and computational models used for model

checking, as well as the abstraction framework for strong and weak exact-approximations.

We have described several modeling formalisms for abstractmodel checking, which are

used throughout in this thesis. Specifically, in Chapter 3, westudy a strong exact-approximation

technique – symmetry reduction, where symmetry-reduced structures are represented using

boolean transition systems. In Chapter 4, we study software model checking of recursive

programs, and discuss abstract analysis based on multi-valued transition systems, where multi-

valued logic provides a convenient way to define operations used for abstract analysis. In Chap-

ter 5, we study modeling formalisms for weak exact-approximation based on partial transition

systems, where themayandmust transitions allow for a natural way to understand abstract

behaviors.



Chapter 3

Full Virtual Symmetry Reduction

In this chapter, we investigate symmetry reduction, which is a special technique for strong

exact-approximation. Based on our characterization of symmetry reduction from the perspec-

tive of abstraction, we provide the solutions to identification and symbolic symmetry reduction

of fully virtually symmetric programs.

3.1 Introduction

Symmetry is naturally exhibited in concurrent programs or protocols that consist of synchro-

nization and coordination of several identical processes.Such symmetry can be seen as a form

of redundancy, and model checking can then be performed on the symmetry-reduced quotient

structure that is bisimilar to, and often substantially smaller than, the original model of the

program [CJEF96, ES96]. To extend symmetry reduction to “almost” symmetric programs,

Emerson et al. [EHT00] definedvirtual symmetryas the most general condition under which

the transition system of a program is bisimilar to its symmetry-reduced quotient structure, and

thus symmetry reduction can be applied. Although virtual symmetry increases a potential do-

main of problems that can be symmetry reduced, its practicalapplication depends on successful

solutions to the following questions:

39
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(1) How does one identify virtual symmetry without buildingthe transition system of the

program (which is typically infeasible)?

(2) How does one symbolically model check a virtually symmetric program?

In this chapter, we answer these questions forfully virtually symmetric programs, i.e.,

programs that are virtually symmetric up to exchanging the roles of processes. This form of

symmetry typically arises in programs composed of similar,but not identical, processes. An

example of such a program is Readers-and-Writers (R&W): a variant of a well-known mutual

exclusion protocol (MUTEX), where writer processes are given a higher priority than reader

processes for entering the critical section [EHT00]. Like full symmetry, full virtual symmetry

often leads to an exponential reduction on the statespace ofthe system, which is the focus of

our study in this chapter.

Specifically, this chapter includes the following technical contributions:

1. We provide a characterization of symmetry reduction fromthe perspective of abstraction.

We consider symmetry reduction as a special technique for strong exact-approximation,

where existential and universal abstractions over symmetric equivalence classes coin-

cide.

2. We provide an algorithmic way to identify full virtual symmetry. We first show that

virtual symmetry of a program is equivalent to virtual symmetry of local transitions of

processes, which reduces the problem of checking virtual symmetry, a global property

of a program, to a local property of each transition. Then, based on our characterization

of symmetry reduction, we further reduce identification of full virtual symmetry of local

transitions to satisfiability of a quantifier-free Presburger formula built directly from the

description of the program.

3. We extend the counter abstraction technique to full virtual symmetry, which avoids the

bottleneck problem of symbolic symmetry reduction. We achieve this by translating the
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description of a fully virtual symmetric program to the description of another program

over counter variables of local process states. The resulting program defines a transition

system isomorphic to the symmetry-reduced structure of theoriginal program, and can

be directly analyzed symbolically.

4. We evaluate our techniques of identification and symbolicsymmetry reduction of full

virtual symmetry over two families of programs used in practice, where processes have

different proprieties and asymmetric permissions for accessing resources, respectively.

This chapter is organized as follows. Section 3.2 reviews the basics of symmetry reduction

and fixes the notation used in this chapter. Section 3.3 formalizes the connection between

symmetry reduction and abstraction. Section 3.4 introduces our specification language for

asymmetric programs. Section 3.5 provides our approach foridentifying full virtual symmetry.

Section 3.6 describes the extension of counter abstractionto handle fully virtually symmetric

programs. Section 3.7 reports our experimental results. Section 3.8 discusses related work, and

Section 3.9 concludes this chapter.

3.2 Preliminaries

Symmetry Reduction. Let B = (S,R) be a transition system1. A permutationσ on S is a

bijectionσ : S → S. LetG be a permutation group onS. The groupG induces an equivalence

partition onS. The equivalence class of a states is called theorbit of s underG, defined by

θG(s) , {s′ ∈ S | ∃σ ∈ G · σ(s) = s′}. We useθ(s) to denote the orbit ofs whenG is clear

from the context. The extension ofθ to a set of statesQ ⊆ S is defined byθ(Q) ,
⋃

s∈Q θ(s).

The quotient structureof B induced byG is a transition systemBG = (SG, RG) where

SG , {θ(s) | s ∈ S}, and∀s, t ∈ S · (θ(s), θ(t)) ∈ RG ⇔ ∃s′ ∈ θ(s) · ∃t′ ∈ θ(t) · (s′, t′) ∈ R.

A permutation groupG is anautomorphism groupfor B if it preserves the transition relation

1Abstract models in symmetry reduction are defined over boolean transition systems. Therefor, we only con-
sider boolean transition systems in this chapter. For simplicity, we call them transition systems.



CHAPTER 3. FULL V IRTUAL SYMMETRY REDUCTION 42

R, i.e., ∀s, t ∈ S · (s, t) ∈ R ⇒ ∀σ ∈ G · (σ(s), σ(t)) ∈ R. A transition systemB is

calledsymmetricwith respect to a permutation groupG, if G is an automorphism group for

it. In this case,B is bisimilar to its symmetry-reduced quotient structure w.r.t. the relation

ρG , {(s, θ(s))|s ∈ S}.

Theorem 3.1. [CJEF96, ES96]LetB = (S,R) be a transition system,G be a permutation

group acting onS. Then,B ≡ρG
BG if G is an automorphism group forB.

Therefore, model checking anLµ formulaϕ onB can be reduced to model checkingϕ on

BG, provided that the state labeling associated with atomic propositions ofϕ are preserved by

ρG.

Compositional Transition Systems. Symmetry reduction is often applied to a parallel com-

position of similar processes. Such a composition is modeled by a transition system whose

statespace is assignments of local states to each process.

Let I = [1..n] be the index set ofn processes which have the same set of local statesL.

The composition of the processes is modeled by acompositional transition systemB = (S,R),

whereS = Ln. Then a global states in S is ann-tuple(l1, . . . , ln) ∈ Ln. For eachi ∈ I, we

uses(i) to denote the value ofli, i.e., the current local state of theith process,Pi, at s. Let

K ⊆ I be a set of processes. Thegroup counterof a local stateLwith respect toK is a function

#L[K] : Ln → [0..n] such that for any global states, #L[K](s) = |{i ∈ K | s(i) = L}|.

That is,#L[K](s) is the number of processes inK whose current state ats isL. In particular,

if K = I, we use#L to denote#L[I], and call#L thetotal counterof L.

The full symmetry groupof I, i.e., the group of all permutations acting onI, is denoted

by Sym(I). A permutationσ ∈ Sym(I) is extended to act on a states of a compositional

transition systemB as follows: ∀i, j ∈ I · σ(s)(i) = s(j) ⇔ σ(i) = j. In the rest of the

chapter, we do not distinguish between a permutation group on S or I. A transition systemB

is calledfully symmetric ifB is symmetric with respect toSym(I).
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3.3 Abstraction and Virtual Symmetry

In this section, we formalize the connection between symmetry reduction and abstraction. We

then show how this connection can be used to establish a necessary and sufficient condition for

the application of symmetry reduction. This condition, referred to by Emerson et al. asvirtual

symmetry[EHT00], generalizes the notion of automorphism-based symmetry [CJEF96, ES96]

(see Theorem 3.1) and increases the applicability of symmetry reduction.

In this chapter, we only consider partition-based abstractstatespaces where the concretiza-

tion of abstract states partitions the concrete statespace. In this case, the soundness relation

ρ associates each concrete state with exactly one abstract state, which defines an abstraction

functionα such that for any concrete states, α(s) is the uniquea such that(s, a) ∈ ρ.

Given a transition systemB = (S,R), let Sα be a statespace that abstracts the concrete

statespaceS. Let ρ ⊆ S × Sα, α : S → Sα, andγ : Sα → 2S be the soundness relation,

abstraction, and concretization functions, respectively. Following [DGG97], we define two

transition systems overSα as follows. A relationR∃∃
α ⊆ Sα × Sα is anexistential abstraction

of R where(a, b) ∈ R∃∃
α if and only if R has a transition betweensomeconcretizations ofa

andb; R∀∃
α is auniversal abstractionwhere(a, b) ∈ R∀∃

α if and only ifR has a transition from

everyconcretization ofa to someconcretization ofb:

R∃∃
α , {(a, b) | ∃s ∈ γ(a) · ∃t ∈ γ(b) ·R(s, t)} (existential abstraction)

R∀∃
α , {(a, b) | ∀s ∈ γ(a) · ∃t ∈ γ(b) ·R(s, t)} (universal abstraction)

Accordingly, we defineB∃∃
α = (Sα, R

∃∃
α ) andB∀∃

α = (Sα, R
∀∃
α ) to be the existential and the

universal abstractions ofB, respectively.

Theorem 3.2.B is ρ-bisimilar toB∃∃
α if and only ifB∃∃

α is isomorphic toB∀∃
α : B∃∃

α ≡ρ B ⇔

B∃∃
α = B∀∃

α .

Proof:

The proof of this theorem follows from the definitions of R∀∃
α , R∃∃

α , and bisimulation. Note that

the isomorphism between B∀∃
α and B∃∃

α can be defined by the identity function id : Sα → Sα.
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Abstraction Symmetry Reduction

abstract statespace :Sα orbits induced byG: SG

soundness relation :ρ mapping from states to orbits:ρG

abstraction function :α orbit functionθG: αG(s) , θG(s)

concretization function :γ identity function:γG(θG(s)) , θG(s)

existential abstraction ofR : R∃∃
α quotient ofR with respect toG: RG

abstract equivalence: orbit equivalence:

α(s) = α(t) θ(s) = θ(t) ⇔ ∃σ ∈ G · s = σ(t)

Table 3.1: A mapping between abstraction and symmetry reduction.

Symmetry reduction of a transition systemB = (S,R) with respect to a permutation group

G can be seen as a form of abstraction. Formally, letSG, the set of orbits ofS, be the abstract

statespace, andρG be the soundness relation. Under this interpretation, the quotientBG ofB is

equivalent to the existential abstraction ofB. A mapping between key concepts in abstraction

and symmetry reduction is summarized in Table 3.1.

Using this connection between symmetry and abstraction, wereinterpret Theorem 3.2 as a

necessary and sufficient condition for bisimilarity betweenB and its quotientBG. Note that

R∃∃
α = R∀∃

α if and only if (s, t) ∈ R ⇒ ∀s′ ∈ γ(α(s)) · ∃t′ ∈ γ(α(t)) · (s′, t′) ∈ R

In the context of symmetry reduction,γ(α(s)), the abstract equivalence class ofs, is simply

its orbit θ(s). Furthermore,s ands′ share an orbit, i.e.,s′ ∈ θ(s) if and only if there exists

a permutationσ ∈ G such thats′ = σ(s). By combining the above, we obtain the following

theorem.

Theorem 3.3. LetB = (S,R) be a transition system,G be a permutation group acting onS,

andρG , {(s, θ(s)) | s ∈ S}. Then,B ≡ρG
BG if and only if

∀s, t ∈ S · (s, t) ∈ R ⇒ ∀σ ∈ G · ∃σ′ ∈ G · (σ(s), σ′(t)) ∈ R (3.1)
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Proof:

The proof follows from the reasoning in the previous paragraph.

Note that Theorem 3.3 is a generalization of Theorem 3.1 sinceG is no longer required to

be an automorphism group forB, and thusB is not necessarily symmetric with respect toG.

Definition 3.4. A transition systemB is virtually symmetric with respect to a permutation

groupG if and only ifB ≡ρG
BG.

The problem of establishing a necessary and sufficient condition for a quotientBG to be

bisimilar toB has also been addressed by Emerson et al. [EHT00]. Unlike us,they do not

use abstraction, but proceed directly to show thatB is virtually symmetric with respect toG

if and only if it can be “completed” to a transition systemB′ such thatB′ is both symmetric

with respect toG and bisimilar toB. Thus, Theorem 3.3 provides an alternative (and, in our

opinion, simpler) characterization of virtual symmetry. In the rest of the chapter, we show

how this new characterization leads to an efficient identification of full virtual symmetry and

combination with symbolic model checking.

3.4 Specification Language

In this section, we define our specification language for concurrent programs. We begin by

reviewing existing approaches for specifying fully symmetric programs in Section 3.4.1 and

then extend them to asymmetric programs in Section 3.4.2.

3.4.1 Specifying Symmetric Programs

Consider an asynchronous composition ofn processes{P1, . . . , Pn} executing a common con-

current program. Each process is specified using a finite directed graph, called asynchroniza-

tion skeleton[CE81]. Nodes in the graph represent states of the process, and edges, labeled

with boolean expressions calledguards, represent guarded transitions. For example, a synchro-

nization skeleton of a process participating in MUTEX is shown in Figure 3.1(a). A MUTEX
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(a) (b)

N T C

I = [1, 2, 3]

gI : true

Ir = [1] Iw = [2, 3]

gIr
: (#C = 0) ∧ (#T [Iw] = 0)

gIw
: #C = 0

I = [1, 2, 3]

gI : true

N T C
true #C = 0

true

Figure 3.1: (a) Synchronization Skeleton for MUTEX. (b) GSST for three-process R&W.

process has 3 states: Non-critical (N ), Trying (T ), and Critical (C); it can enter statesN and

T freely, but can only enter the stateC if no other process is currently in stateC.

When all processes have identical synchronization skeletons, their asynchronous compo-

sition can be specified using a single skeletonP . This skeleton can be seen as a template

from which skeletons of each individual process are instantiated. Thus, Figure 3.1(a) is also a

synchronization skeletontemplatefor MUTEX.

A synchronization skeleton templateP defines a compositional transition systemB(P ) in

which a (global) transition results from a local transitionof some process. For example, in the

three-process MUTEX,B(P ) has a transition from(N,N, T ) to (N,N,C) because the third

process,P3, can move fromT toC.

Note that when each transition guard inP is invariant under any permutation of process

indices, the transition systemB(P ) is unchanged by any permutation of process indices; that

is, it is fully symmetric [ET99]. For example, the three-process MUTEX is fully symmetric

since if the guard(#C = 0) is true in a states, it is also true in a stateσ(s) for any permutation

σ ∈ Sym([1, 2, 3]). Symmetry reduction of a fully symmetric program can often yield an

exponential reduction in the number of states. In practice,full symmetry of a synchronization

skeleton is ensured by restricting basic elements of the guards to the ones shown in the left

column of Table 3.2, whereli = L is true in a states if the ith process is in a stateL, i.e.,

s(i) = L. The basic elements can be equivalently expressed using total counters, as shown in

the right column of Table 3.2 [ET99].
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Basic Elements Predicates on Total Counters

∀i · li = L, ∀i · li 6= L #L = n, #L = 0

∃i · li = L, ∃i · li 6= L #L ≥ 1, #L ≤ n− 1

∃i 6= j · li = L ∧ lj = L #L ≥ 2

Table 3.2: Basic guard elements for ensuring full symmetry.

3.4.2 Specifying Asymmetric Programs

In this chapter, we are interested in applying symmetry reduction to asymmetric programs com-

posed of many similar, but not identical processes, such as R&W. In this case, since the con-

dition for entering the critical section is different between the two groups of processes (writers

have a higher priority than readers), the program cannot be specified by a single synchroniza-

tion skeleton. Thus, for such asymmetric programs, we need both a more general specification

formalism, and an approach to identify whether the program is fully virtually symmetric. To

address the first problem, we define ageneralized synchronization skeleton template.

Definition 3.5. A generalized synchronization skeleton template(GSST) for an asynchronous

program withn processes is a tupleP = (L,R, I, τ), whereL is a finite set of (local) states,

R ⊆ L×L is a (local) transition relation,I = [1..n] is the index set, andτ : R → [I → G] is

a labeling function that labels each transition with a guard for each process. Here,G : Ln →

{true, false} is a set of transition guards.

We assume that for any local transitionu → v ∈ R, u 6= v, i.e., no self-loops are allowed

in a GSST.

Definition 3.6. A GSSTP = (L,R, I, τ) defines an asynchronous transition systemB(P ) =

(S,R), whereS = L|I| is the global statespace, andR ⊆ S×S is the global transition relation

defined as follows:

(a) for any local transitionu→ v ∈ R,

Ru→v(s, t) , ∃i ∈ I ·(s(i) = u∧t(i) = v∧(s |= τ(u→ v)(i))∧∀j 6= i·s(j) = t(j))
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wheres |= τ(u → v)(i) means thats satisfies the guard for theith process at the transition

u→ v, and

(b) R ,
⋃

r∈RRr.

Intuitively, Ru→v is the set of all global transitions resulting from some process changing

its state fromu to v. We say thats → t ∈ R is a result of firing a local transitionu → v if

s→ t is inRu→v.

For a local transitionr ∈ R, the labeling functionτ : R → [I → G] can be seen as: (a)

a partitionΠr = {I1, . . . , Id} of processes into process groups, (b) an index mapping function

π : I → Πr, and (c) a functionη : Πr → G assigning a guard to each process group, i.e., for

any i ∈ I, τ(r)(i) = η(π(i)). For example, in the GSST for the three-process R&W shown

in Figure 3.1(b), the guards for the local transitionT → C are described by partitioning the

processes into two groups:Ir = {P1} (readers) andIw = {P2, P3} (writers). Readers have the

guardgIr
: (#C = 0) ∧ (#T [Iw] = 0), and writersgIw

: #C = 0. Note that this allows us to

specify not only the static process partitioning, i.e.,∀r, r′ ∈ R · Πr = Πr′, but a dynamic one

as well, that is, processes can be divided into different groups at different local transitions.

Motivated by R&W, we restrict our attention to a counter-based syntax of guards. Formally,

a guard for a transitionu → v is a boolean combination ofgroup counter constraintson the

local stateu, i.e.,#u[Ik] ⊲⊳ b, or total counter constraintson any local states, i.e.,(
∑

i #Li) ⊲⊳

b, whereb is a positive integer, and⊲⊳ is one of{≤,≥,=}. For example, in Figure 3.1(b),

#C = 0 means no process is currently in the local stateC, whereas#T [Iw] = 0 means that

nowriter process is currently inT .

3.5 Identification of Full Virtual Symmetry

In this section, we address the problem of identifying full virtual symmetry. Notice that we

cannot simply use Condition (3.1) of Theorem 3.3 since it requires building the transition

relation of the program, which may not be feasible. In Section 3.5.1, we discuss conditions that
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ensure that the specified program is fully virtually symmetric, and show how to decide these

conditions using constraints derived directly from the program description in Section 3.5.2.

3.5.1 Full Virtual Symmetry in Asynchronous Transition Systems

Let P be a GSST andr be a transition inP . If all processes atr belong to the same group,

i.e., |Πr| = 1, then the transition guard is defined on total counters and isindependent of

any permutation of process indices. Furthermore, if this isthe case for all transitions inP ,

thenP is just a synchronization skeleton, and the underlying transition systemB(P ) is fully

symmetric (see Section 3.4.1). In general, whenP contains a transitionr with |Πr| > 1, even

restricting guards to just total counter constraints is notsufficient to ensure thatB(P ) is fully

virtually symmetric. For example, consider the GSST shown in Figure 3.1(b) and assume that

we change the guardgIr
of the transitionT → C to (#C = 0) ∧ (#T = 2). In this case,

B(P ) contains a global transition froms = (N,N, T ) to t = (N,N,C) corresponding to the

processP3 entering stateC. Let σ ∈ Sym(I) be a permutation that switches process indices

1 and3. Then, the only two states reachable fromσ(s) = (T,N,N) aret1 = (T, T,N) and

t2 = (T,N, T ). Since neithert1 nort2 can be obtained by applying a permutationσ′ ∈ Sym(I)

to t, transitions of the formσ(s) → σ′(t) arenot in B(P ) for any permutationσ′; hence,B(P )

is not fully virtually symmetric.

As illustrated by the example above, it is difficult to capture the restrictions that ensure

full virtual symmetry syntactically. The difficulty comes from lack of regularity in asymmetric

systems. Therefore, we seek an algorithmic way to identify symmetry. As mentioned before,

we cannot simply use Condition (3.1) of Theorem 3.3 since it requires building the transition

relation ofB(P ).

Notice that in our example, full virtual symmetry is broken at a global transition resulting

from firing a local transition where the processes are partitioned into several groups. We gener-

alize from this example and show that virtual symmetry of a transition system is equivalent to

virtual symmetry of each transition relation subset definedby a local transition. This allows us
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to decompose the problem of identifying virtual symmetry ofa system alonglocal transitions.

Formally, we establish the following theorem.

Theorem 3.7. Given a GSSTP = (L,R, I, τ) and a permutation groupG ⊆ Sym(I), the

transition systemB(P ) = (S,R), whereR ,
⋃

r∈RRr, is virtually symmetric with respect to

G if and only if each transition relation subsetRr is virtually symmetric with respect toG, i.e.,

R∃∃
αG

= R∀∃
αG

⇔ ∀r ∈ R · (Rr)
∃∃
αG

= (Rr)
∀∃
αG

.

Before giving the proof of this theorem, we provide the following lemma. LetB = (S,R)

be a transition system, andα : S → Sα be an abstraction function. We define a restriction of

R to a pair of abstract states(a, b) as

R|(a,b) , {(s, t) ∈ R | s ∈ γ(a) ∧ t ∈ γ(b)}

Note thatR =
⋃

a,b∈Sα
R|(a,b), and the universal and the existential abstractions ofR coincide

if and only if they coincide for eachR|(a,b). The following lemma generalizes this observation.

Lemma 3.8. LetB = (S,R) be a transition system,α : S → Sα be an abstraction function,

andR =
⋃

i∈[1...k]Ri such that∀i ∈ [1...k] · ∃D ⊆ S × S · Ri =
⋃

(s,t)∈D R|(α(s),α(t)). Then,

R∀∃
α = R∃∃

α ⇔ ∀i ∈ [1...k] · (Ri)
∀∃
α = (Ri)

∃∃
α .

Proof:

(⇐) Since R∀∃
α ⊆ R∃∃

α always holds, we only need to show that R∀∃
α ⊇ R∃∃

α . For any a, b ∈ S,
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we have that

(a, b) ∈ R∃∃
α

⇒ (by the definition of R∃∃
α )

∃s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ R

⇒ (since R =
⋃

i∈[1...k] Ri)

∃i ∈ [1...k] · ∃s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ Ri

⇒ (by the definition of (Ri)
∃∃
α )

∃i ∈ [1...k] · (a, b) ∈ (Ri)
∃∃
α

⇒ (since (Ri)
∃∃
α = (Ri)

∀∃
α )

∃i ∈ [1...k] · (a, b) ∈ (Ri)
∀∃
α

⇒ (by the definition of (Ri)
∀∃
α )

∃i ∈ [1...k] · ∀s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ Ri

⇒ (since Ri ⊆ R)

∀s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ R

⇒ (by the definition of R∀∃
α )

(a, b) ∈ R∀∃
α

(⇒) Since (Ri)
∀∃
α ⊆ (Ri)

∃∃
α always holds, we only need to show that (Ri)

∀∃
α ⊇ (Ri)

∃∃
α for any

i ∈ [1...k]. For any (a, b) ∈ (Ri)
∃∃
α , we have that

(a, b) ∈ (Ri)
∃∃
α

⇒ (by the definition of (Ri)
∃∃
α )

∃s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ Ri

⇒ (by the assumption of Ri)

∃s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ Ri ∧ ∃s′, t′ ∈ S · (s, t) ∈ R|(α(s′),α(t′))

⇒ (since Sα is a partition-based abstract statespace,

α(s) = α(s′) = a and α(t) = α(t′) = b)

∃s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ Ri ∧ (s, t) ∈ R|(a,b)

⇒ (by the assumption of Ri)

R|(a,b) ⊆ Ri (⋆)
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Furthermore,

(a, b) ∈ (Ri)
∃∃
α

⇒ (since Ri ⊆ R)

(a, b) ∈ R∃∃
α

⇒ (since R∃∃
α = R∀∃

α )

(a, b) ∈ R∀∃
α

⇒ (by the definition of R∀∃
α )

∀s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ R

⇒ (by the definition of R|(a,b))

∀s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ R|(a,b)

⇒ (by (⋆): R|(a,b) ⊆ Ri)

∀s ∈ γ(a) · ∃t ∈ γ(b) · (s, t) ∈ Ri

⇒ (by the definition of (Ri)
∀∃
α )

(a, b) ∈ (Ri)
∀∃
α

Based on Lemma 3.8, we now give the proof of Theorem 3.7.

Proof:

We prove this theorem by showing that each Rr satisfies the precondition of Lemma 3.8. Recall

that in the context of symmetry reduction, αG(s) is equivalent to θ(s) (see Table 3.1). We only

need to show that Rr =
⋃

(s,t)∈Rr
R|(θ(s),θ(t)). That is, we need to show that if a transition

s → t is a result of firing a local transition r, then for any permutations σ, σ′ ∈ G, a transition

σ(s) → σ′(t) is a result of firing r as well. This follows from the following facts:

(1) two states s1 and s2 share an orbit only if they agree on total counters, and

(2) a global transition s → t is a result of firing a local transition u → v if and only if #u at

s is one more than that at t, #v at s is one less than that at t, and the total counters of

other local states at s and t are the same.

WhenG is the full symmetry groupSym(I), Theorem 3.7 can be simplified further since

here two states share an orbitif and only if they agree on total counters. Note that ifRr is fully
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virtually symmetric, i.e.,(Rr)
∀∃
αG

= (Rr)
∃∃
αG

, thenDom(Rr) contains its orbitθ(Dom(Rr)),

which follows from the definitions of existential and universal abstractions. On the other hand,

if Dom(Rr) containsθ(Dom(Rr)), then for any pair of statess and s′ in the same orbit,

if s → t is in Rr for some statet, then there exists a statet′ such thats′ → t′ is in Rr.

Furthermore,t and t′ agree on total counters, and thus belong to the same orbit. Hence, by

Theorem 3.3,Rr is fully virtually symmetric. Sinceθ(Dom(Rr)) always containsDom(Rr),

we obtain the following theorem.

Theorem 3.9. Given a GSSTP = (L,R, I, τ), the transition systemB(P ) = (S,R) is fully

virtually symmetric if and only if∀r ∈ R · θ(Dom(Rr)) = Dom(Rr).

Proof:

The proof follows from the reasoning in the previous paragraph.

Thus, we have reduced the problem of checking virtual symmetry of R, a global property

of the entire system, to a local property of each transition subsetRr.

3.5.2 Constraint-Based Identification of Full Virtual Symmetry

In this section, we present a technique for identifying fullvirtual symmetry based on The-

orem 3.9. Specifically, we construct Presburger formulas representing sets of states directly

from the description of the GSST.

By Theorem 3.7, checking whether a transition systemB(P ) is fully virtually symmetric

is equivalent to checking whetherRr is fully virtually symmetric for each local transitionr of

the GSSTP . Note that if all processes belong to the same group at a localtransitionr, i.e.,

|Πr| = 1, thenRr is fully symmetric and no check is required. Otherwise, when|Πr| > 1,

by Theorem 3.9, we need to check whether the domain ofRr, Dom(Rr), is equal to its orbit,

θ(Dom(Rr)). In this section, we show that bothDom(Rr) andθ(Dom(Rr)) can be repre-

sented by Presburger formulas and their equivalence can be reduced to checking satisfiability

of a Quantifier Free Presburger (QFP) formula.
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Constraints Meaning

0 ≤ #N [Ir] 0 ≤ #T [Ir] 0 ≤ #C[Ir]

0 ≤ #N [Iw] 0 ≤ #T [Iw] 0 ≤ #C[Iw]

each group counter

is a positive integer

#N [Ir] + #T [Ir] + #C[Ir] = 1

#N [Iw] + #T [Iw] + #C[Iw] = 2

there is one reader process

and two writer processes

Table 3.3: Invariant for the three-process R&W.

We illustrate the procedure on theT → C transition of the R&W whose GSST is shown

in Figure 3.1(b). The counter-based syntax of the guards provides a compact representation

of a set of states in the transition systemB(P ) using Presburger formulas on group counters.

The formulaϕT→C representingDom(RT→C) is constructed based on the transition guards in

the GSST as follows. According to the interleaving semantics, a states is in Dom(RT→C) if

and only if either a reader or a writer process can move fromT to C at s. In the first case,s

must satisfy the guardgIr
, and since the current local state of the reader process isT , s satisfies

gIr
∧ #T [Ir] ≥ 1; similarly, in the second case,s satisfiesgIw

∧ #T [Iw] ≥ 1. Therefore,

Dom(RT→C) can be represented by the formulaϕT→C = ϕT→C,Ir
∨ ϕT→C,Iw

, where

ϕT→C,Ir
, gIr

∧ #T [Ir] ≥ 1 ∧ invT→C

ϕT→C,Iw
, gIw

∧ #T [Iw] ≥ 1 ∧ invT→C

and the invariantinvT→C , defined as the conjunction of the constraints in the left column of

Table 3.3, represents the statespace of the system. Note that ϕT→C is still defined only on

group counters since#C is equivalent to#C[Ir] + #C[Iw]. In general, for a local transition

r, the formulaϕr representingDom(Rr) is a disjunction of formulas representing subsets of

Dom(Rr) with respect to each process group.

We now show how to derive a formulãϕr representingθ(Dom(Rr)) from ϕr. For sim-

plicity, assume thatP contains only two local states,X andY , and the processes are par-

titioned into two groups. LetDom(Rr) and the invariant of the statespace be represented by

ϕr(X1, X2, Y1, Y2) andinvr(X1, X2, Y1, Y2), respectively. Theñϕr representingθ(Dom(RT→C))
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is defined as

ϕ̃r(X1, X2, Y1, Y2) , ∃X ′
1, X

′
2, Y

′
1 , Y

′
2 · (invr(X1, X2, Y1, Y2) ∧ ϕr(X

′
1, X

′
2, Y

′
1 , Y

′
2)

∧ (X1 + X2 = X ′
1 + X ′

2) ∧ (Y1 + Y2 = Y ′
1 + Y ′

2))

That is, a states satisfiesϕ̃r if and only if there exists a states′ satisfyingϕr (s′ ∈ Dom(Rr))

ands ands′ agree on total counters, i.e., they are in the same orbit. SinceDom(Rr) is a subset

of θ(Dom(Rr)),Dom(Rr) = θ(Dom(Rr)) if and only if the sentence

ψ , ∃X1, X2, Y1, Y2 · (ϕ̃r ∧ ¬ϕr)

is unsatisfiable. Sinceψ contains only existential quantifiers, this is equivalent to unsatisfiabil-

ity of a QFP formula obtained fromψ by removing all quantifiers, which can be checked using

any existing decision procedure for QFP [BB04, Pug92, WB95].

Note that while the satisfiability problem of a Presburger formula has a worst-case super-

exponential complexity, satisfiability of a QFP formula is NP-complete [Pap81]. Furthermore,

the number of local transitions in a GSST that need to be checked is expected to be small, since

we are interested in asynchronous systems in which processes are relatively similar to one

another. Indeed, if the processes differ significantly, it does not seem appropriate to consider

full virtual symmetry at all. In practice, the structure of the guards often leads to further

optimizations of the decision procedure. As illustrated byexperiments in Section 3.7, full

virtual symmetry can be identified efficiently when the guards are defined on a small number

of local states.

3.6 Counter Abstraction for Full Virtual Symmetry

The naive way of constructing a symmetry-reduced quotient structure requires a representative

function for choosing a state as the unique representative from each orbit [CJEF96, ES96].

The abstract transition relation is then defined on the set ofrepresentatives. For symbolic

model checking, computation of the representative function requires building an orbit relation

which, for many groups, including the full symmetry group, has a BDD representation that is
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exponential in the minimum of the number of processes and thenumber of local states in each

process [CJEF96], decreasing the effectiveness of symbolicmodel checking.

An alternative is to use acounter abstraction(or generic representatives) technique pro-

posed by Emerson at el. [ET99, EW03], which avoids building the orbit relation. As we have

seen before, under the full symmetry group, states in the same orbit agree on all total counters.

Thus, each orbit can be uniquely represented by values of these counters. For example, in the

three-process MUTEX, the orbit{(N, T, T ), (T,N, T ), (T, T,N)} is represented by a tuple

(1, 2, 0) which corresponds to the counters of statesN , T andC. In this section, we extend the

counter-based abstraction technique to handle a fully virtually symmetric structure specified

by a GSST. The key idea is that instead of using the orbit relation, a structure isomorphic to the

quotient structure is constructed on the statespace of total counters directly from the GSST.

For the rest of this section, letP = (L,R, I, τ) be a GSST of a fully virtually symmetric

program with local statesL = {L1, . . . , Lm} and process indicesI = [1..n]. A counter ab-

stractionα : S → Sα on the structureB(P ) = (S,R) is constructed using a set of assignments

to a vectorx = (x1, . . . , xm) of m counter variables ranging over[0..n]. Each variablexi cor-

responds to a total counter#Li of a local stateLi. Since there aren processes, the sum of the

values ofx must always equaln. Therefore,

Sα , {(c1, . . . , cm) ∈ [0..n]m |
m

∑

i=1

ci = n}

The abstraction functionα : S → Sα maps a states ∈ S to an abstract statea ∈ Sα if and

only if for eachi ∈ I, a(i) equals#Li(s). The concretization functionγ : Sα → 2S maps an

abstract statea to an orbitθ where states inθ agree witha on total counters. In what follows,

letRα denote the existential abstraction ofR with respect toα.

Theorem 3.10.Given a GSSTP and a counter abstractionα, the abstract structure

B(P )α = (Sα , Rα) is isomorphic to the quotient structureB(P )Sym(I) = (SSym(I), RSym(I))

via a bijectionh : Sα → SSym(I), where∀s ∈ S · h(α(s)) , θ(s).

Proof:
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The proof follows from the fact that the orbits and transitions in a fully symmetric program can

be characterized by total counters.

The above definition ofB(P )α guarantees that the abstract transition relationRα can be

constructed directly fromP for a fully virtually symmetric program. Since existentialab-

straction distributes over union, andR =
⋃

r∈RRr by Definition 3.6, it follows thatRα =

⋃

r∈R(Rr)α. Therefore, we only need to show how to construct(Rr)α for a local transitionr.

We start by illustrating the construction in the case of an unguarded local transitionr. If

r is of the formLi → Lj, thenr can be fired from a global states if and only if s contains

a process whose current state isLi; in other words,Dom(Rr) is #Li ≥ 1. Furthermore, if

s → t is in Rr, then the counters#Li and#Lj at t are one less and one more than those at

s, respectively. From the definition of existential abstraction, for any abstract statesa andb,

a transitiona → b is in (Rr)α if and only if s → t ∈ Rr for somes ∈ γ(a) andt ∈ γ(b).

Therefore,

(Rr)α ≡ xi ≥ 1 ∧ (xi := xi − 1; xj := xj + 1)

which is a formula over counter variables. Generalizing from this example, we obtain that for

every local transitionr of the formLi → Lj,

(Rr)α ≡ gr ∧ (xi := xi − 1; xj := xj + 1)

wheregr is a formula defined over counter variablesx representing the “existential” abstraction

of Dom(Rr). Specifically,

a |= gr ⇔ ∃s ∈ γ(a) · s ∈ Dom(Rr)

SinceB(P )α is isomorphic to the quotient structure, the above construction allows us to com-

bine symmetry reduction and symbolic model checking without building the orbit relation. The

only remaining problem is the construction of the formulagr for an arbitrary local transitionr.

In the rest of this section, we show how to do this for cases where r is guarded by (a) a single

guard on total counters, (b) multiple guards on total counters, and (c) multiple guards on group

counters of the source state ofr and arbitrary total counters.
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Case (a).Let r be a local transitionLi → Lj. Supposer is guarded by a single guardg, i.e.,

|Πr| = 1. ThenDom(Rr) can be represented byψr = (#Li ≥ 1 ∧ g), i.e.,s ∈ Dom(Rr) if

there is at least one process ats in local stateLi ands satisfiesg. Let sub(ψr) denote a formula

obtained fromψr by replacing each occurrence of a total counter with its corresponding counter

variable. For example,sub(#Li ≥ 0) = (xi ≥ 0) andsub(#Li ≥ 1 ∧ #Lj ≤ 3) = (xi ≥

1∧xj ≤ 3). Sinceg contains only total counter constraints, we definegr , sub(#Li ≥ 1∧g).

Note that this procedure constructs a counter abstraction for a fully symmetric synchronization

skeleton, and is effectively equivalent to thegeneric representativesapproach of Emerson and

Trefler [ET99].

Case (b). Suppose thatr is guarded by multiple guards, i.e.,|Πr| = d > 1, but each

guard is expressed using only total counters. In this case,Dom(Rr) is represented byψr =

∨

k∈[1..d](#Li[Ik] ≥ 1∧ gIk
), wheregIk

is the guard for the process groupIk. Sinceψr depends

on group counters, we cannot simply definegr to besub(ψr). However,Rr is fully virtually

symmetric, soDom(Rr) = θ(Dom(Rr)) by Theorem 3.9, andθ(Dom(Rr)) is representable

by ψ̃r = (#Li ≥ 1 ∧ (
∨

k∈[1..d] gIk
)). Thus, we definegr , sub(ψ̃r).

Case (c).Finally, we look at the case where the guards ofr depend on group counters. In

this case,̃ψr defined above still contains group counters. However, this problem can be solved

for cases where group counters in guards for a transitionr : Li → Lj are defined only overLi.

First, letQ ⊆ S be some non-empty set of states given by some formulaψ defined only on

group counters ofLi. That is,

ψ =
∧

k∈[1..d](mink ≤ #Li[Ik] ≤ maxk)

where{mink} and{maxk} are positive integers. Then, the orbitθ(Q) underSym(I) is given

by the formula

ψ̃ = (min ≤ #Li ≤ max)

where

min ,
∑

k∈[1..d]mink max ,
∑

k∈[1..d]maxk
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For example, suppose there are only two local states,L1 andL2, d = 2, andQ is given by

ψ = (1 ≤ #L1[I1] ≤ 4) ∧ (1 ≤ #L1[I2] ≤ 4)

Thenθ(Q) is ψ̃ = (2 ≤ #L1 ≤ 8) since for any states in S satisfyingψ̃ there exists a state

s′ in S satisfyingψ such thats ands′ agree on total counters ofL1 andL2, i.e., they are in

the same orbit. Furthermore, ifQ is encoded by a conjunctionψt ∧ ψg, whereψt andψg are

defined only on total and group counters, respectively, thenthe orbit ofQ is given byψt ∧ ψ̃g.

Second, suppose a guardgIk
contains group counter constraints. LetDom(Rr)Ik

denote

the subset ofDom(Rr) containing states in which the local transitionr of some process in

the groupIk can be fired. If the formulaψr,Ik
representingDom(Rr)Ik

can be decomposed

asψr,Ik
= ψt

r,Ik
∧ ψg

r,Ik
, then a total counter formula representingθ(Dom(Rr)Ik

) is computed

as described above. Otherwise,ψr,Ik
can be converted to a DNF, and formulas corresponding

to the orbit of each clause are computed as above. SinceDom(Rr) =
⋃

k∈[1..d]Dom(Rr)Ik
,

andθ distributes over union, i.e.,θ(Q1 ∪ Q2) = θ(Q1) ∪ θ(Q2), we can definẽψr represent-

ing θ(Dom(Rr)) as a disjunction of the clause formulas. Finally,ψ̃r depends only on total

counters; thus, we definegr to besub(ψ̃r).

For example, the domain of the transitionT → C of the R&W shown in Figure 3.1(b), is

the union of the domain for the readers and that of the writers. For readers,

Dom(RT→C)Ir
≡ #T [Ir] >= 1 ∧ #T [Iw] = 0 ∧ #C = 0

≡ #T [Ir] = 1 ∧ #T [Iw] = 0 ∧ #C = 0

since there is only one reader. Using only total counters, the orbitθ(Dom(RT→C)Ir
) is repre-

sented byψ̃r = (#T = 1 ∧ #C = 0). Similarly, for the writers,

Dom(RT→C)Iw
≡ #T [Iw] ≥ 1 ∧ #C = 0

and the orbitθ(Dom(RT→C)Iw
) is represented bỹψw = (#T ≥ 1 ∧ #C = 0). Finally, gT→C

is defined bysub(ψ̃r ∨ ψ̃w) = (#T ≥ 1 ∧ #C = 0).
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3.7 Experiments

In this section, we report on experiments of identifying full virtual symmetry and perform-

ing counter abstraction-based symbolic model-checking. We used the Omega library [Pug92]

as the QFP solver to check for full virtual symmetry as described in Section 3.5, and used

NuSMV [CCGR99] as the model-checker for both the direct and the counter abstraction-based

analysis : we constructed NuSMV programs to represent the original and the counter abstracted

programs and then run NuSMV to check properties.

The examples we used for experiments are two typical asymmetric programs in practice

where processes share resources based on different priorities or permissions. The first example

is a generalized R&W (GR&W) [ET99], where we assumed that each process hasm local

states{L1, . . . , Lm}, whereLm represents the critical section. Each process can be in one of

the local states, and must go throughL1 to Lm−1 before accessing the critical section. The

process can return fromLm to L1 freely. The processes are partitioned intod groups, each of

sizeq, based on their priorities: a process cannot access the critical section if another process

with higher priority is waiting for it. For this example, we verified the standard safety property

AG(#Lm ≤ 1), which ensures that no two processes can access the criticalsection at the

same time. The second example is an asymmetric sharing of resources (ASR) [EHT00]. In

this example, there are a set ofr resources shared byn processes. There is one non-critical

section (N ) for all the resources, and for each resourcei, there is a trying (Ti) and a critical (Ci)

section associated with it. The processes have different permissions to access the resources,

and the number of processes that can be waiting for each resource and using it is bounded. This

example is motivated by the drinking philosophers problem [CM84], where a set of bottles are

shared by a set of philosophers, and a philosopher can only drink from the bottles that are

assigned to him. For this example, we check the maximum sharing of the resources; that is,

we checked that whether it is possible for all the resources to be used at the same time, i.e.,

EF
(
∧

i∈[1..r](#Ci > 0)
)

.

To experiment the scalability of our approach, we created instances of the examples with
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varying values of the numbers of processes or shared resources. The programs of these in-

stances are automatically generated using template codes.The experiments were performed on

a Sun Fire V440 server (4@1.3GHz, USPARC3i, 16384M). The results of the direct (NuSMV)

and the counter abstraction-based (Symmetry Reduction with Counter Abstraction) analysis are

summarized in Table 3.4 (Page 65), where dashes indicate that verification did not complete

due to either memory or time limits. Where appropriate, we separate the checking time into

identifying symmetry (CkSym) and checking the resulting reduced model (ModelCk). For ASR,

we also reported the results of computing the set of reachable states first, before evaluating the

property (the-f option of NuSMV).

Since counter abstraction is based on full symmetry groups,the reduction of the statespace

can be exponential. It has been shown that counter abstraction enables significant reduction

of memory and CPU usage on model checking fully symmetric programs [EW03]. From our

experiment results, we obtained the same observation of applying counter abstraction to fully

virtually symmetric programs. Moreover, letp be the number of processes in a program, andl

be the number of local states of each process. As shown in [ET99], counter abstraction reduces

a problem of worst case sizelp that is exponential inp, to one of worst case sizepl that is

polynomial for a fixed number of local states. Therefore, it is assumed that counter abstraction

is most useful in the case wherel is a fixed constant andp is a parameter. From our experiment

results, we see that memory usage grows slowly with the number of processes, which shows

that the method is applicable for programs comprised of a large number of processes.

In these examples, the time it took to identify full virtual symmetry was relatively small.

One reason is that the guards depend only on a small number of process groups and local

states. Otherwise, more specialized solvers may be useful.For example, identifying symmetry

of GR&W with d = 100 andq = 20 took us many hours with the Omega library and only 17

seconds with the pseudo-Boolean solver (PBS) [ARMS02].
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3.8 Related Work

Concurrent programs are often composed of identical processes. The global transition relations

of such programs exhibit a great deal of symmetry, which can be used for statespace reduction.

The ideas of exploiting symmetry reduction in model checking were introduced in [CJEF96,

ES96, ID96]. Symmetry reduction techniques have been implemented in model checking tools,

such as SMC [SGE00], Murphi [ID96], SymmSpin [BDH02], and Verisoft [God97].

To extend symmetry reduction to asymmetric programs, Emerson and Trefler first proposed

“looser” notions ofnearsymmetry where asymmetric behaviors initiate only from highly sym-

metric states, andrough symmetry [ET99] where asymmetry arises from static processpri-

orities. They generalized these notations byvirtual symmetry in [EHT00], which applies to

a broader class of asymmetric programs. In this chapter, we viewed symmetry reduction as

strong exact-approximation, and give an alternative characterization of virtual symmetry di-

rectly from the perspective of abstraction. Dams et al. [DGG97] have used existential and

universal abstractions to define over- and under-approximations of program behaviors, respec-

tively. We showed that symmetry reduction can be seen as an abstraction over symmetric

equivalence classes where existential and universal abstractions coincide.

Identification of symmetry is a necessary step for applying symmetry reduction. In prac-

tice, the problem of identifying genuine symmetry has been avoided by imposing restrictions

on the specification languages [ID96, SGE00, ET99, EW03]. Forexample, the input program

in SMC [SGE00] is divided into modules and each module specifies a set of processes that

are identical up to renaming. In particular, the counter-based synchronization skeletons used

in [ET99, EW03] guarantees that a program is fully symmetric.However, as we showed in

this chapter, lack of regularity in asymmetric programs makes it difficult to capture the restric-

tions that ensure full virtual symmetry syntactically. Emerson et al. proposed a combinatorial

condition for checking virtual symmetry based on counting the missing transitions [EHT00],

which seems to require the construction of the transition system of a program. Based on our

characterization of symmetry reduction, we avoided this problem by checking satisfiability of
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a QFP formula built from a program description.

Symbolic symmetry reduction was studied in [CJEF96], where the authors showed that

construction of the orbit relations is a bottleneck, because the BDDs of orbit relations for many

symmetry groups are exponential. To address this problem, they proposed to perform sym-

metry reduction in a coarse way by choosing multiple elements from each orbit. Emerson

et al. [ET99] showed that using ageneric representativestechnique (also called counter ab-

straction [PXZ02]), symmetry-reduced structures can be directly constructed from a program

description translated from the original one. Therefore, the problem of computing orbit rela-

tions is avoided. This approach was later applied to fully symmetric programs on processes

communicating via shared variables [EW03], and the experiments show that it is superior to

that of the unique and multiple representatives. Our work extended the applicability of this

technique to fully virtually symmetric programs.

There are other approaches that combine symmetry reductionand symbolic model check-

ing with different flavors. The dynamic symmetry reduction proposed by Emerson [EW05]

avoids building the symbolic representation of the symmetry-reduced structure. Instead, they

provided a symbolic abstract transfer function that computes transition images with respect to

the underlying symmetry groups. This function is embedded into the model checking process,

used to compute fixpoints for temporal properties. Barner andGrumberg proposed on-the-fly

symbolic model checking with symmetry reduction [BG02] thatincrementally explores the

reachable states. Symmetry is used there to avoid includingstates that are symmetric to the

ones explored before. This approach in general discovers a part of the reachable states, and

therefore, is mainly for refutation of universal properties.

3.9 Conclusion

In this chapter, we studied a strong exact-approximation technique – symmetry reduction in the

context of full virtual symmetry. We formalized its connection with abstraction, and provided
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an alternative characterization of symmetry reduction. Based on this, we developed techniques

to address challenges of applying symmetry reduction in practice. We first developed an effi-

cient approach to identify full virtual symmetry based on satisfiability of formulas built from

the program description. We then extended counter abstraction for symbolic model checking

of fully virtually symmetric programs, which avoids the problem of computing orbit relations.

We reported on experiments that illustrate the feasibilityof our approach.

We believe that our techniques have a potential to increase the scope of symmetry reduction,

and would like to investigate this in the future. Note that our work assumed that group counters

occurring in a guard are defined only on the source state (see Section 3.6). While this did not

pose a problem for examples we have tried, we do not know what the consequences of this

restriction are, and would like to explore this further. Since counter abstraction abstracts away

process identities, it does not allow us to analyze the behavior properties of an individual

process, e.g., the property stating that it is always true that if a process tries to access a shared

resource, it will be granted in future. In [PXZ02], counter abstraction is extended to handle

properties of an individual process by abstracting all the processes in a program except for a

generic one. Since the generic process is left intact duringthe abstraction, it can be used for

checking properties of an individual process. We would liketo investigate how to extend this

technique to handle full virtual symmetry in the future.
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NuSMV Symmetry Reduction with Counter Abstraction

Parameter BDD Nodes Mem. Time BDD Nodes Mem. Time (sec.)

Allocated (MB) (sec.) Allocated (MB) CkSym ModelCk Total

G
en

er
al

iz
ed

R
&

W
d (q=20, m=10)

5 51,778,281 931 241 25,146 7 0.07 0.27 0.34

10 - - - 31,772 8 0.83 0.53 1.36

15 - - - 38,927 8 5.09 1.26 6.35

m (d=5, q=20)

10 51,778,281 931 241 25,146 7 0.07 0.27 0.34

20 121,392,365 2,041 837 130,891 10 0.07 0.59 0.66

30 - - - 379,336 14 0.07 1.35 1.42

q (d=10, m=20)

10 121,408,515 2,040 742 131,010 10 0.80 0.58 1.38

30 - - - 187,469 12 0.81 24.14 24.95

50 - - - 195,653 13 0.75 67.21 67.96

A
sy

m
m

et
ric

S
ha

rin
g

of
R

es
ou

rc
es

n (r=2)

40 8,151,508 151 30.74 427,075 14 0.10 4.35 4.45

80 57,163,279 1,001 2928.81 289,566 18 0.10 36.83 36.93

n (r=3)

40 44,877,253 782 43108.92 390,715 17 0.15 9.68 9.83

80 - - - 420,347 20 0.15 80.61 80.76

n (r=5)

40 - - - 67,060 19 0.30 28.31 28.61

80 - - - 342,060 39 0.30 279.89 280.19

n (r=10)

40 - - - 484,260 48 3.00 251.87 254.87

80 - - - 671,318 153 3.00 1409.53 1412.53

A
sy

m
.

S
ha

rin
g

of
R

es
ou

rc
es

(r
ea

ch
ab

le
st

at
es

) n (r=2)

40 8,543,329 159 34.47 10,165 7 0.10 0.15 0.25

80 57,375,594 1,006 528.25 18,611 7.2 0.10 0.25 0.35

n (r=3)

40 42,633,638 805 1614.32 21,647 7.3 0.15 0.21 0.36

80 - - - 38,913 7.7 0.15 0.39 0.54

n (r=5)

40 - - - 71,925 8.2 0.30 0.49 0.79

80 - - - 133,034 9.5 0.30 1.03 1.33

n (r=10)

40 - - - 394,722 14 3.00 2.55 5.55

80 - - - 404,477 18 3.00 6.13 9.13

Table 3.4: Experimental results for generalized R&W and asymmetric sharing of resources.



Chapter 4

Reachability and Non-Termination

Analysis of Recursive Programs

In this chapter, we propose an approach for analyzing reachability and non-termination prop-

erties of recursive programs. We first define a mixed program semantics that reduces recursive

program analysis to non-recursive one by removing call stacks. Based on this semantics, we

develop a simple approach for reachability and non-termination analysis of recursive programs,

which can be combined with exact-approximating predicate abstraction that has been imple-

mented in our software model checker YASM [GWC06b].

4.1 Introduction

Software model checking is one of the prominent analysis techniques that enables checking

of program code. It combines automated construction of a finite abstract model with au-

tomated analysis by model checking and iterative abstraction refinement. Traditional soft-

ware model checking, e.g., SLAM [BPR03], relies on an over-approximating abstraction of

the program and thus is biased towards establishing correctness of safety properties. To ex-

ploit the bug detection ability of model checkers and to extend the scope of abstract model

66
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1. x=read(); y=read();

2. if(x>0){

3. while(x>0) {

4. x=x+1;

5. if(x<=0) ERROR;}

6. } else

7. while(y>0) y=y-1;

8. END;

1. p = *;

2. if(p){

3. while(p) {

4. p = p?true:*;

5. if(!p) ERROR;}

6. } else

7. while(*) p = p;

8. END;

(a) (b)

Figure 4.1: (a) A programEX0, (b) its over-approximationO(EX0) using predicatep : x > 0.

checkers to richer properties, recent research has proposed abstract analysis based on exact-

approximation [BG99, GHJ01, SG03, SG04, BKY05, GWC06a, GC06]. Itcombines both

over- and under-approximations, and therefore can be used to prove and disprove proper-

ties with the same effectiveness. Although such an abstraction has been shown to be effec-

tive in practice [GC06, GWC06b], until now this line of researchhas focused exclusively

on analyzing non-recursive programs. In this chapter, we propose a novel approach to ex-

tend exact-approximating analyses torecursiveprograms. We illustrate our approach on non-

termination and reachability analysis of several C programs, including the benchmarks from

BEBOP[BR00], VERA [ACEM05], and MOPED[ES01, BEM97], theAck program from [CPR06a]

and a buggy version ofQuicksort from [ES01]. To our knowledge, this is the first time that

non-terminationof such C programs was established completely automatically.

As a motivation, we review an over-approximation-based approach for model checking of

non-recursive programs and its limitations. Assume we wantto check whether theERROR label

is reachable in the C programEX0 shown in Figure 4.1(a). This safety property is expressed in

CTL asϕ : AG (pc 6= ERROR). An over-approximating abstractionO(EX0) of EX0 using the

predicatep : x > 0 is shown in Figure 4.1(b), where ‘*’ is interpreted as a non-deterministic



CHAPTER4. REACHABILITY AND NON-TERMINATION ANALYSIS OF RECURSIVEPROGRAMS68

choice,!pmeans thatp is false, and the assignmentp = p?true:*means that if the current

value ofp is true, thenp is true after execution of this statement; otherwise, the value of p is

assigned non-deterministically.O(EX0) is a finitebooleanmodel which over-approximates the

original program: it contains all feasible and some infeasible (or spurious) executions. For

example,O(EX0) has an execution which gets stuck in thewhile(*) loop on line 7, butEX0

does not have the corresponding execution. Thus, if a universal temporal property, i.e., in the

one expressed in ACTL, holds inO(EX0), it also holds inEX0. For example, our propertyϕ is

satisfied byO(EX0), which meansERROR is unreachable inEX0. However, when a property is

falsified byO(EX0), the result cannot be trusted since it may be caused by a spurious behavior.

For example, consider checking whetherEX0 always terminates, i.e., whether it satisfiesψ :

AF (pc = END). ψ is falsified on our abstraction, but this result cannot be trusted due to the

infeasible non-terminating execution around thewhile(*) loop on line 7.

The falsification (or refutation) ability of predicate abstraction can be dramatically im-

proved by using anunder-approximating abstraction, where each abstract behavioris simulated

by some concrete one. In this case, if a bug (or an execution) is present in the abstract model,

it mustexist in the concrete program. For example, the predicatep mustalways betrue in the

while(p) loop at line 3 (assumingint is interpreted as mathematical integers). Thus, an

under-approximation based on predicatep is sufficient to establish thatEX0 is non-terminating.

In our previous work, we have developed a software model checker YASM [GWC06b] for

checking non-recursive programs based on exact-approximating predicate abstraction [GC06]

that combines both over- and under-approximations. Our goal in this chapter is to extend its

analysis ability to recursive programs. One way to do this isextending pushdown systems to

support exact-approximation and developing analysis algorithms for this new modeling for-

malism. In this chapter, we propose an alternative solutionto this problem. The key to our

approach is to separate the analysis of recursion from abstraction of the data domain based

on a new semantics of recursive programs. By doing this, our approach does not require the

development of new specialized types of pushdown systems, nor new specialized analysis algo-



CHAPTER4. REACHABILITY AND NON-TERMINATION ANALYSIS OF RECURSIVEPROGRAMS69

rithms, which allows us to reuse the existing abstract analysis in YASM for analyzing recursive

programs. Specifically, this chapter makes the following contributions:

1. We define a stack-free semantics of recursive programs that combines operational and

natural semantics (commonly referred to asfunction summaries). We call this semantics

mixed, which effectively removes call stacks while preservingstack-independentprop-

erties such as reachability and non-termination properties.

2. Based on mixed semantics, we describe algorithms for checking reachability and non-

termination of recursive programs over finite data domains.We also show how to com-

pute only the needed part of natural semantics, resulting inon-the-fly algorithms.

3. We show how to construct abstract versions of our reachability and non-termination anal-

ysis algorithms based on exact-approximating predicate abstraction. Its basis consists of

defining the abstract domains and sound abstract versions ofoperations needed for de-

riving the on-the-fly algorithms.

4. We implement these algorithms in YASM, and report on their performance on a collection

of reachability and non-termination benchmarks from BEBOP, VERA, and MOPED, for

cases where the property needs to be validated or refuted.

The rest of this chapter is organized as follows. We present preliminaries and fix our no-

tation in Section 4.2. We present a simple programming language PL and its natural, and

operational semantics in Section 4.3. We introduce mixed semantics in Section 4.4, and derive

on-the-fly algorithms for reachability and non-termination analysis of finite recursive programs

in Section 4.5. In Section 4.6, we describe abstract versions of the algorithms for handling pro-

grams with infinite data domain. Experiments are reported inSection 4.7. We discuss related

work in Section 4.8 and conclude this chapter in Section 4.9.
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4.2 Preliminaries

A valuationσ on a set of typed variablesV is a function that maps each variablex in V to

a valueσ(x) in its domain. We assume that valuations extend to expressions in the obvious

way. The domain ofσ is called avaluation typeand is denoted byτ(σ). For example, if

σ = {x 7→ 5, y 7→ 10} thenτ(σ) = {x, y}. The projection ofσ on a subsetU ⊆ V is denoted

by σ|U .

The set of all valuations overV is denoted byΣV , {σ | τ(σ) = V }. Note thatΣ∅ is

well-defined and consists of the unique empty valuation. A relation r on two sets of variables

U andV is a subset ofΣU × ΣV . The relational typeof r is U → V , denoted byτ(r). For

example, the type of an assignmentx′ = y, wherex′ refers to the value ofx at the next state, is

from y to x, that is,τ(x′ = y) = {y} → {x}. In this chapter, we use several simple relations:

true is thetrue relation,id is the identity relation (e.g.,id(x) , x′ = x), decl is a relation for

variable declaration, andkill — for variable elimination. Formally, they are defined as follows,

with the formatname‘,’ expression‘:’ type:

true(U → V ) , ΣU × ΣV : U → V

decl(V ) , true(∅ → V ) : ∅ → V

kill(V ) , true(V → ∅) : V → ∅

id(V ) , {(σ, σ′) ∈ ΣV × ΣV | σ = σ′} : V → V

Operations on relations are defined in Table 4.1, where∨, ◦ and× are asynchronous,

sequentialandparallel composition, respectively,assumeis a restriction of the identity relation

to a setQ of valuations,[·] is variable introduction, and(· → ·) is scope extension. Note

that × combines the outputs of two relations, and[·] extends the source of a relation with

new variables. Together these operators allow constructing complex relations from simple

ones. For example,[{x, y}](x′ = y)×[{x, y}](y′ = x) is the relation(x′ = y) ∧ (y′ = x)

with the type{x, y} → {x, y}. Directly composingx′ = y and y′ = x without variable

introduction, i.e.,(x′ = y)×(y′ = x), is invalid becauseτ(x′ = y) = {y} → {x} and
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Operation Assumption Definition Type

r1 ∨ r2 τ(r1) = τ(r2) λa, a′ · r1(a, a
′) ∨ r2(a, a

′) τ(r1)

r1 ◦ r2
τ(r1) = U → V

∧ τ(r2) = V → W
λa, a′ · ∨a′′ (r1(a, a

′′) ∧ r2(a
′′, a′)) U → W

r1 × r2

τ(r1) = U → V1

∧ τ(r2) = U → V2

∧ V1 ∩ V2 = ∅

λa, a′ · r1(a, a
′|V1

) ∧ r2(a, a
′|V2

) U → (V1 ∪ V2)

assume(Q) λa, a′ ·Q(a) ∧ id(τ(Q))(a, a′) τ(Q) → τ(Q)

[W ]r τ(r) = U → V λa, a′ · r(a|U , a
′) (U ∪W ) → V

(W → Z)r τ(r) = U → V ∧ U ⊆ W ∧ (Z \ V ) ⊆ W ([W ]r) × ([W ](id(Z \ V ))) W → Z

Table 4.1: Relational operations.

τ(y′ = x) = {x} → {y} have different source types. Scope extension extends a relation

by combining it with the identity on new variables. For example, ({x, y} → {x, y})(x′ =

x + 1) is (x′ = x + 1) ∧ (y′ = y). The assumptions for scope extension ensure that any new

variables introduced in the destination ofr must also be available in the source. For example,

the extension({x, y} → {x, z})(x′ = x + 1) is not allowed sincez is not available in the

source of the relation.

4.3 Programming Language and Semantics

We use a simple imperative programming language PL which allows non-determinism and

recursive function calls. We assume that

(a) functions have a set of call-by-value formal parametersand a set of return variables;

(b) each variable has a unique name and explicit scope;

(c) there are no global variables (they can be simulated by local variables); and
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(d) a type expression is associated with each statement and explicitly defines the pre- and

post-variables of the statement.

Syntax. Let var denote variables,func function identifiers,e expressions, andT valuation

types. The syntax of PL is defined as follows:

Atomic ::= skip | var+ := e+ | assume(e) | var var+ | kill var+ | (T → T )Atomic

Stmt ::= Atomic | Stmt ; Stmt | Stmt ‖Stmt | if(e) then Stmt elseStmt

| while(e) Stmt | var+ := func(var+) | (T → T )Stmt

Fdef ::= func(var+) : var+ Stmt

Prog ::= Fdef+

We use bold lower case letters to represent vectors, e.g., a statementx:=e means an assign-

mentx1, · · · , xn := e1, · · · , en. For a functionf with declarationf(p1, · · · , pn) : r1, · · · , rk,

we writepf andrf to denote the formal parameters and the return variables off , respectively.

var(e) denotes the variables ofe, and we assume that each program has a “main” functionf1,

not called by other functions.

Base Semantics.Let Σ denote the set of all valuations in a PL program. With eachatomic

statementS, we associatebase semanticsthat interprets the statement as a relation[[S]] ⊆ Σ×Σ

on valuations of program variables:

[[skip]] , id(∅)

[[var x]] , decl[x]

[[kill x]] , kill[x]

[[(U → V )(S)]] , (U → V )[[S]]

[[x := e]] , {(σ, σ′) | τ(σ) = var(e) ∧ σ′ = [xi 7→ σ(ei)]}

[[assume(e)]] , {(σ, σ′) | (σ, σ′) ∈ id(var(e)) ∧ σ |= e}

Note that for the type cast statement(U → V )S, we only consider those cases where the

assumptions for the scope extension are satisfied.
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(a)

1: f1() {

2: en1: skip;

3: var x,y;

4: x,y := 3,0;

5: x := f2(x);

6: skip;

7: while (x==2 && y<=0) {

8: y := f2(y);

9: }

10: kill x,y;

11: ex1: }

12: f2(z):z {

13: en2: skip;

14: while (z < 0) {

15: z := z+1;

16: }

17: z := z-1;

18: ex2: }

(b)

ex1

10

7 8

9

6

5

4

3

en1

ex2

17

14 15

16

en2

skip

var x,y

x,y:=3,0

skip [x = 2
∧y ≤ 0]

skip[!(x = 2 ∧ y ≤ 0)]

kill x,y

skip
[z<0]

z:=z+1
skip

[z ≥ 0]

z:=z-1

func-call
x:=f2(x)

func-call
y:=f2(y)

ret
x:=z

ret
y:=z

call
z:=x

call
z:=y

Figure 4.2: (a) A programEX1 and (b) its ICFG.

Interprocedural Control Flow Graph. A PL program is represented by anInterprocedural

Control Flow Graph(ICFG) [SP81]. An ICFG is a labeled graphG = 〈Loc,Edge, π〉, where

Loc is a finite set of locations,Edge ⊆ Loc × Loc is a set of edges, andπ labels each edge

with a program statement. For example, the ICFG for the program EX1 (see Fig. 4.2(a)) is

shown in Fig. 4.2(b). In ICFGs, (a) each function has a uniqueentry (en) andexit (ex); (b)

there is a self-loop atex of f1 to ensure existence of an infinite execution; (c) each function

call (func-call) is: acall edge, where the values of actual parameters of the callee function are

assigned to the formal parameters, a function body, and aret edge, where the return values are

assigned to the variables of the caller.

We assume thatcall andret edges are uniquely determined by each other. For acall edge

(k, en) and the correspondingret edge(ex, l), k is the call location,call(l) , k, andl is the

return location,ret(k) , l.
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Statementπ(〈k, l〉) Operational Semantics r〈k,l〉 Mixed Semanticsrm

〈k,l〉

func-call edge(U → U) x := f(a) ∅ (U → U) ([[pf := a]] ◦ [[f ]] ◦ [[x := rf ]])

call edgeS ≡ (U → x) x := e Γt = s ∧ (σk, σl) ∈ [[S]] [[S]]

ret edge(U → V ) x := r

let (c, σc).Γc = Γs in

Γt = Γc ∧ l = ret(c)

∧ σl = σc[{xi 7→ σk(ri)}]

∅

Intraprocedural : S Γt = Γs ∧ (σk, σl) ∈ [[S]] [[S]]

Table 4.2: The rules of operational and mixed semanics.U is the set of local variables in the

scope of the function call;[[f ]] is natural semantics,pf are the formals, andrf are the returns

of f .

Operational Semanticsof a programP = 〈Loc,Edge, π〉 is a boolean transition systemB =

〈S,R〉. Each state inS is a stack of activation records where each record is of the form 〈pc, σ〉,

wherepc ∈ Loc is a program counter, corresponding to a particular controllocation inP ,

andσ ∈ ΣV (pc) is the valuation for variables in the scope ofpc (denoted byV (pc)). For a state

s = (k, σk).Γ, the record(k, σk) is thetopelement ofs, denoted bytop(s). We use|s| and|Γ| to

denote the length ofs andΓ, respectively. For a pair of statess = (k, σk).Γs andt = (l, σl).Γt,

the transition relationR is defined asR(s, t) , 〈k, l〉 ∈ Edge∧ r〈k,l〉(s, t), wherer〈k,l〉 is a

deterministic (but not necessarily total) relation onS at the edge〈k, l〉, as defined in the 2nd

column of Table 4.2. An intraprocedural statement only modifies the top activation record, and

a statement on acall or aret edge pushes a new record or pops one, respectively. The transition

relations onfunc-call edges are empty, i.e., these edges are removed.

Natural Semantics[NN92] (a.k.a. big-step) of a block of codeS is a relation[[S]] ⊆ Σ × Σ

between the input and output ofS: i.e., (σ, σ′) ∈ [[S]] iff the execution ofS on σ terminates

and results inσ′. Natural semantics of a programP ≡ f1, · · · , fn is a set of relations, one per

function, i.e.,[[P ]] = 〈[[f1]], · · · , [[fn]]〉.
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The semantic rules for PL are defined compositionally on the syntax using the function

[[·]]ε, whereε is an environment mapping free fixpoint variables (used for loops and functions)

to relations with an appropriate type. Natural semantics for atomic statements is the same as

base semantics; the other cases are:

[[S1; S2]]ε , [[S1]]ε ◦ [[S2]]ε

[[µX · S(X)]]ε , lfp
(

λZ · [[S(X)]]ε{X 7→Z}

)

[[S1 ‖ S2]]ε , [[S1]]ε ∨ [[S2]]ε

[[x := f(a)]]ε , [[pf := a; Xf ;x := rf ]]ε

[[X]]ε , ε(X)

[[while(e) S]]ε , [[µXw · if(e) then (S; Xw)]]ε

[[if(e) then S1 elseS2]]ε , [[(assume(e); S1) ‖ (assume(¬e); S2)]]ε

where lfp denotes for least fixpoint,τ(ε(Xf )) = pf → rf and τ(ε(Xw)) = τ([[S]]ε). A

programP ≡ f1, · · · , fn induces the system of equations

ε(Xfi
) = [[Sfi

]]ε (1 ≤ i ≤ n) (nat)

Natural semantics ofP is the least fixpoint solution to this system.

For example, for the functionf2 in the programEX1, we use an additional fixpoint variable

Xw to model the loop by tail recursion, and the instance of equation (nat) is:

ε(Xf2
) = ε(Xw) ◦ [[z := z− 1]]ε

ε(Xw) = [[if(z < 0) then (z := z + 1;Xw)]]ε

The least solution to this system is computed as follows:

1. Following the base semantics ofz := z− 1, we have that[[z := z− 1]]ε = z′ = z − 1.

2. By induction, the least fixpoint forε(Xw) is ε(Xw) = (z > 0 ∧ z′ = z) ∨ (z ≤ 0 ∧ z′ = 0).

3. Finally,

ε(Xf2
) =

(

(z > 0 ∧ z′ = z) ∨ (z ≤ 0 ∧ z′ = 0)
)

◦
(

z′ = z − 1
)

= (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1)
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Therefore, natural semantics off2 is (z > 0 ∧ z′ = z − 1) ∨ (z ≤ 0 ∧ z′ = −1).

Since natural semantics of a function captures relation between input and output of termi-

nating executions of the function, every function call overthese executions returns.

Theorem 4.1. [NN92] LetP ≡ f1, · · · , fn be a program andB = 〈S,R〉 be its operational

semantics. For a pair of activation records〈k, σk〉 and〈l, σl〉, (σk, σl) is in [[fi]] iff there exists

a paths0, · · · , sm in B such thats0 = 〈k, σk〉.Γ0 andsm = 〈l, σl〉.Γm, such thatΓ0 = Γm, k

and l are en andex of fi, respectively, and for all othersj = 〈p, σp〉.Γj eitherΓj 6= Γ0 or p is

not ex of fi.

4.4 Mixed Semantics

We focus on reachability and non-termination properties ofrecursive programs in this chapter

because of their practical interest. In this section, we define a stack-free operational semantics,

calledmixedsemantics, for PL programs, which removes call stacks but preserves reachability

and non-termination properties with respect to operational semantics.

Reachability and Non-termination. Given a boolean transition systemB = 〈S,R〉, whereS

is a set of states andR ⊆ S × S is a transition relation. Letp be an atomic proposition, and

Sp , {s ∈ S | s |= p} be the set of states satisfyingp. Recall that areachabilityproperty

(EF p) is true at a states if there exists a path froms to a state inSp, and anon-termination

property (EG p) is true in a states if there exists an infinite path starting ats and contained in

Sp. The setRS of all states satisfyingEF p is the least solution to equation (reach), and the set

NT of all states satisfyingEG p is the greatest solution to equation (non-term):

RS = Sp ∪ pre[R](RS) (reach)

NT = pre[R∩ Sp](NT ) (non-term)

Reachability and non-termination of a recursive program canbe reduced to finding the

fixpoint solutions to the equation (reach) and (non-term), respectively, w.r.t. a transition system
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of operational semantics of a program. However, since operational semantics explicitly exposes

a potentially unbounded call stack at each state, these equations must be solved over an infinite

transition system (even when all program variables range over finite domains). Thus, the exact

fixpoint solution may not be computable.

However, many program properties depend only on the top of the call stack: i.e., they

arestack-independent. Analysis of such properties can be done usingstack-freeoperational

semantics in which everything except for thetopactivation record is abstracted away. We apply

this idea to the analysis of reachability and non-termination. In this chapter, a reachability

property is expressed asEF p wherep is a proposition that depends only on the top activation

record. Without loss of generality, we further assume thatp only depends on program locations,

i.e., it is of the formpc = x. We assume there is amain function in a program that is not

called by other functions. Theexit location of themain function is denoted byEND. The non-

termination property is expressed asEG (pc 6= END).

Mixed Semantics.We now define a stack-free operational semantics, called mixed semantics,

for PL programs which removes the call stack but preserves reachability and non-termination

properties w.r.t. operational semantics. Intuitively,mixedsemantics is a combination of opera-

tional and natural semantics, in which a program is executedas follows: an atomic statement

is executed as usual; a function callx := foo(y) is executed as anon-deterministicchoice be-

tween (a) executingfoo, i.e., updating the top activation record according to natural semantics

of foo, and (b) entering the body offoo, and forgetting all but the top activation record.

Upon reaching the end of the main function, the execution enters a self-loop indicating the end

of the program, and blocks at all other exit locations since it does not remember the origin of

the call. For example, consider mixed execution of the programEX1 starting from line 5 with

x = 3 andy = 0. At this point, the execution can either (a) move to line 6 anddecreasex by

one according to natural semantics off2, or (b) move toen2 (line 13), assign3 to z, and forget

aboutx andy. Within f2, the execution continues until it blocks atex2 (line 18) withz = 2.

Formally, mixed semantics of a programP = 〈Loc,Edge, π〉 is a boolean transition system
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Bm = 〈Sm,Rm〉, where each state is asingleactivation record〈pc, σ〉. For a pair of states

s = 〈k, σk〉 andt = 〈l, σl〉, the transition relation is

Rm(s, t) , (〈k, l〉 ∈ Edge) ∧ rm

〈k,l〉(σk, σl)

whererm

〈k,l〉 is a relation on valuations, as defined in the 3rd column of Table 4.2. Note thatrm

e

for ret edges is empty, which is equivalent to removing those edges from the ICFG.

Mixed semantics preserves reachability and non-termination properties w.r.t. operational

semantics. If an execution of a functionf reaches a states under the latter, then eithers is a

location withinf , or it is inside some other function thatf calls (directly or indirectly). The

non-deterministic treatment of function calls in the former ensures that both of these cases

are covered. Similarly, if there exists an infinite execution starting insidef , then either this

execution lies withinf , or f calls a function that does not return the control back tof . Again,

both cases are captured by mixed semantics.

In the remainder of this section, letB andBm be the operational and mixed semantics of a

given program, respectively.

Theorem 4.2.Letp be a propositional formula on control locations, ands be a single activa-

tion record. Then, the followings hold

(1) s satisfies EFp onB if and only if it satisfies EFp onBm;

(2) s satisfies EG(pc 6= END) onB if and only if it satisfies EG(pc 6= END) onBm.

We first provide the following lemmas that are used for the proof of this theorem.

Lemma 4.3. Lets be a single activation record. Then if there exists a path from s to a states′

in B, there also exists a path froms to top(s′) in Bm.

Proof:

We consider two cases of s′

(a) |s′| = 1, i.e., s′ is a single activation record.
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(b) |s′| > 1

Case (a): Let τ : s = s0, s1, ..., sn = s′ be the path from s to s′ in B. Since s′ is a single

activation record, we have n ≥ 0. We prove the result by induction on the length of τ , denoted

by |τ |.

Base case:|τ | = 0, is trivial.

Inductive case: Suppose the result holds for |τ | ≤ n. We show that the result also holds for

|τ | = n + 1, where τ : s = s0, s1, ..., sn, sn+1 = t. Consider the following two cases of sn:

(i) |sn| = 1, i.e., sn is a single activation record:

Let sn = (ln, σn) and sn+1 = s′ = (ln+1, σn+1).

Since (sn, sn+1) is in B, and both sn and sn+1 are single activation records,

by the operational semantics, the edge 〈ln, ln+1〉 is labeled with an intraprocedural

statement.

By the mixed semantics of intraprocedural statements, (sn, sn+1) is in Bm.

Furthermore, by inductive hypothesis, there exists a path from s to sn in Bm.

Therefore, there exists a path from s to sn+1 = s′ in Bm.

(ii) |sn| > 1, i.e., sn is not a single activation record:

Since sn+1 is a single activation record, by the operational semantics, the tran-

sition (sn, sn+1) corresponds to the execution along a ret edge (illustrated in Fig-

ure 4.3).

That is, we have sn = (ln, σn).Γn, and sn+1 = (ln+1, σn+1) such that ln is the

exit (ex) location of a function f , and the edge 〈ln, ln+1〉 is a ret edge from the ex

of f .

By the operational semantics, there exist sk and sk+1 (where 0 ≤ k ≤ n − 1) on

τ such that the transition (sk, sk+1) corresponds to the execution along a call edge

and matches the transition (sn, sn+1).
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Figure 4.3: Illustration of proof, whereΓk+1 = Γn = sk.

That is, we have sk = (lk, σk) and sk+1 = (lk+1, σk+1).Γk+1 such that lk+1 is the

entry (en) location of the function f , Γk+1 = Γn = sk, and 〈lk, lk+1〉 is a call edge

to the en of f .

By Theorem 4.1, (σk+1, σn) is in ||f ||.

Then, by the mixed semantics, (sk, sn+1) is in Bm, which corresponds to the

execution along a func-call edge of f .

Furthermore, since sk is a single activation record and k < n, by inductive

hypothesis, there exists a path from s to sk in Bm. Therefore, there exists a path

from s to sn+1 in Bm.

Case (b): In this case, s′ is not a single activation record. Let s′ = t.Γ, where t = top(s′). Let

τ : s = s0, s1, ..., sn = s′ be the path from s to s′ in B. We show that there exists a path from s

to t in Bm. We prove the result by induction on |τ |. Since s′ is not a single activation record,

|τ | ≥ 1.

Base case:|τ | = 1.

In this case, since s is a single activation record, but s′ is not, the transition (s, s′)

corresponds to the execution along a call edge to a function f .

That is, we have s = (l0, σ0) and t = top(s′) = (l1, σ1) such that l1 is the entry (en)

location of the function f , and 〈l0, l1〉 is a call edge to the en of f .
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By the mixed semantics, (s, t) is in Bm, which corresponds to the execution along

the call edge.

Inductive case: Suppose the result holds for |τ | ≤ n. We show that the result also holds for

|τ | = n + 1, where τ : s = s0, s1, ..., sn, sn+1 = s′ = t.Γ.

Let t = (ln+1, σn+1). Let sn = tn.Γn and tn = (ln, σn). Consider the following cases

of the edge 〈ln, ln+1〉 that corresponds to the transition (sn, sn+1) on τ .

(i) 〈ln, ln+1〉 is labeled with an intraprocedural statement, or is a call edge:

In this case, by the mixed semantics, (tn, t) is in Bm.

Furthermore, by induction hypothesis, there is a path from s to tn in Bm. There-

fore, there is a path from s to t in Bm.

(ii) 〈ln, ln+1〉 is a ret edge from a function f :

In this case, by the operational semantics, there exist sk and sk+1 (where 0 ≤

k ≤ n − 1) on τ such that the transition (sk, sk+1) corresponds to the execution

along a call edge to the function f and matches the transition (sn, sn+1).

Similar to the inductive case (2) in Case (a), let tk = top(sk), we have (tk, t) in

Bm that corresponds to the execution along a func-call edge of f .

Furthermore, since k < n, by induction hypothesis, there is a path from s to tk

in Bm. Therefore, there is a path s to t in Bm.

Lemma 4.4. Let s and t be two single activation records. If there exists a path froms to t in

Bm, then there exists a path froms to a states′ = t.Γ in B.

Proof:

Let τ : s = s0, s1, ..., sn = t be a path in Bm. We prove the result by induction on |τ |.

Base case:|τ | = 0, is trivial.
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Inductive case: Suppose the result holds for |τ | ≤ n. We show that it holds for |τ | = n + 1,

where τ : s = s0, s1, ..., sn, sn+1 = t.

By induction hypothesis, there exists a path from s to s′n = sn.Γn in B. Let sn =

(ln, σn) and t = (ln+1, σn+1). We show that there exists a path from s′n to s′ = t.Γ in B.

We consider the following cases of the edge 〈ln, ln+1〉 that corresponds to the transition

(sn, t),

(i) 〈ln, ln+1〉 is labeled with an intraprocedural statement:

Let Γ = Γn, i.e., s′ = t.Γn. By the operational semantics of intraprocedural

statements, (s′n, s′) is in B.

(ii) 〈ln, ln+1〉 is a call edge:

Let Γ = s′n, i.e., s′ = t.s′n. By the operational semantics for call edges, (s′n, s′)

is in B.

(iii) 〈ln, ln+1〉 is a func-call edge of a function f :

Let Γ = Γn, i.e., s′ = t.Γn. By the mixed semantics of func-call edges and

Theorem 4.1, there exists a path from s′n to s′ in B that corresponds to the execution

along a call edge to f , the function f , and a ret edge from f .

We now give the proof of Theorem 4.2

Proof:

(1) The proof that s satisfies EF p on B if and only if it satisfies EF p on Bm trivially follows from

Lemma 4.3 and Lemma 4.4.

(2) We show that s satisfies EG (pc 6= END) on B if and only if it satisfies EG (pc 6= END) on

Bm.

(⇒) Let τ : s = s0, s1, ... be an infinite path in B such that top(si) |= (pc 6= END) for any i ≥ 0.

We first define an infinite sequence τ ′ over the states in τ such that each pair in τ ′

corresponds to one or more transitions on τ . τ ′ is defined as follows:
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– The first element of τ ′ is s0, i.e., τ ′[0] = s0.

– For each i ≥ 0, suppose sk is the state in τ such that sk = τ ′[i]. Consider the

following cases of the transition (sk, sk+1) on τ :

(i) if (sk, sk+1) corresponds to the execution of an intraprocedural statement, then

τ ′[i + 1] = sk+1.

(ii) if (sk, sk+1) corresponds to the execution along a call edge and is not matched

by any transition along a ret edge on τ , i.e., ∀j ≥ k + 1 · |sj | > |sk|, then

τ ′[i + 1] = sk+1.

(iii) if (sk, sk+1) corresponds to the execution along a call edge and is matched by

a transition (sm, sm+1) (m > k+1) along a ret edge on τ , then τ ′[i+1] = sm+1.

Based on τ ′, we define an infinite sequence τm of single activation records such that

τm[i] = top(τ ′[i]) for any i ≥ 0.

By the definition of mixed semantics, every pair (τm[i], τm[i + 1]) is in Bm, which

corresponds to the execution of an intraprocedural statement (for case (i)), along a call

edge (for case (ii)), or along a func-call edge (for case (iii)).

Since s = s0 = τm[0], and τm[i] |= (pc 6= END) for any i ≥ 0, s satisfies EG (pc 6= END)

on Bm.

(⇐) The proof is symmetric to the one above. For each infinite path in Bm demonstrating that

s satisfies EG (pc 6= END), by Lemma 4.4, we can construct an infinite path to show the

satisfaction of the property at s on B as well.

When all variables of a given programP range over finite domains, mixed semantics ofP

is a finite boolean transition system. Theorem 4.2 implies the following analysis algorithm:

Step 1: compute natural semantics ofP by solving equation (nat);

Step 2: construct the structureBm following the rules of mixed semantics;

Step 3: solve equations (reach) or (non-term) onBm for reachability or non-termination,
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respectively.

While sound and complete, this algorithm is not efficient, since it relies on the (potentially

unnecessary) computation of “full” natural semantics of all functions (for Step 2) and the con-

struction of “full” mixed semantics before the analysis of the property can even begin. As a

trivial example, consider checkingEF(pc = 5) on the programEX1. Since reachability of line

6 is irrelevant for this analysis, there is no need to construct the transition relation correspond-

ing to func-call edge〈5, 6〉 and thus no need to compute natural semantics off2. Following

this observation, in the next section, we show that the threesteps of the above algorithm can be

combined into anon-the-flyalgorithm that only computes the necessary parts of mixed and nat-

ural semantics.

4.5 On-the-Fly Reachability and Non-Termination

We formalize the on-the-fly analysis of reachability and non-termination as equation systems

in Section 4.5.1 and Section 4.5.2, respectively.

4.5.1 On-the-Fly Reachability

Intuitively, the analysis ofEF p properties only needs the part of mixed semantics that is used

for solving equation (reach), and that, in turn, drives the computation of the necessaryparts of

natural semantics. To illustrate, consider checkingEF(pc = 8) on EX1. Natural semantics of

f2 is [[f2]] ≡ (z > 0∧ z′ = z − 1)∨ (z ≤ 0∧ z′ = −1). After a few iterations, the reachability

algorithm computes a pre-conditionQ ≡ x = 2 ∧ y ≤ 0 for reaching line 8 from line 6. To

determine a pre-condition forQ w.r.t. a function callx:=f2(x) at line 5, it needs to compute

pre[rm

〈5,6〉](Q) = (x = 3 ∧ y ≤ 0), where

rm

〈5,6〉 ≡ (y′ = y) ∧ ((x > 0 ∧ x′ = x− 1) ∨ (x ≤ 0 ∧ x′ = −1))
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is the instantiation of[[f2]] to the call site. However, instead of using the “full” version of [[f2]],

it is sufficient to compute a pre-condition thatassumesQ as a post-condition, i.e., to restrictrm

to x′ = 2 (the relevant part ofQ) yielding

r̂m ≡ y′ = y ∧ x = 3 ∧ x′ = 2

r̂m is an instantiation ofz = 3 ∧ z′ = 2 in the context of the call, obtained by (a) converting

Q to a postcondition off2 by taking its pre-image over theret edge (which eliminatesy and

renamesx to z), and (b) restricting[[f2]] to this post-condition:

[[f2]] ◦ (assume(z = 2))

≡ z = 3 ∧ z′ = 2

We now formalize the above intuition. Recall thatV (k) stands for the set of variables in

the scope of a locationk. Let l be the return location of a function call tofi, Q ⊆ ΣV (l) be a

set of valuations atl, and the correspondingret edge〈exi, l〉 be labeled withx := rfi
. Then,

function

prop(〈exi, l〉, Q) , pre[[[x := rfi
; (x → V (l))var (V (l) \ x)]]] (Q)

turnsQ into a post-condition offi. Here, the pre-image w.r.t.var undeclares (or removes)

all variables that are not changed by the call, and the pre-image w.r.t.ret edge turns the post-

condition onx into the one onrfi
.

Let RS : Loc → 2Σ map each locationk to a subset ofΣV (k), and, as in Section 4.3, let

ε be the semantics environment, mapping each fixpoint variable to a relation of an appropriate

type. The on-the-fly algorithm for reachability analysis isthe equation system (reach-otf):

RS(k) =















ΣV (k) if k |= p (k ∈ Loc)

RS(k) ∪
⋃

l∈succ(k) pre[r̂m

〈k,l〉] (RS(l)) otherwise

ε(Xfi
) = [[Sfi

]]ε ◦ assume
(

⋃

l∈succ(exi)
prop(〈exi, l〉, RS(l))

)

(i ∈ [1..n])

(reach-otf)
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wheresuccare the successors of a node in the ICFG,Sfi
is the body offi, and forS ≡ π(〈k, l〉),

r̂m

〈k,l〉 is defined as:

r̂m

〈k,l〉 =















(U → U) ([[pf := a]] ◦ ε(Xfi
) ◦ [[x := rf ]]) if S ≡ (U → U) x := f(a)

[[S]] otherwise

This system is a combination of (nat) and (reach), whereprop is used to propagate the

reachability information to the computation of natural semantics. Since reachability and natural

semantics are both least solutions to equations (reach) and (nat), respectively, we need the least

solution to the above equation as well.

For example, the following is an instance of the system (reach-otf) for checkingEF (pc =

8) onEX1 (for RS, only locations 5–7 are shown):

RS(5) = RS(5) ∪

pre[({x, y} → {x, y})(z′ = x ◦ ε(Xf2
) ◦ x′ = z)](RS(6)) ∪

pre[({x, y} → {z})z′ = x](RS(en2))

RS(6) = RS(6) ∪ pre[id({x, y})](RS(7))

RS(7) = RS(7) ∪

pre[assume(x = 2 ∧ y ≤ 0)](RS(8)) ∪

pre[assume(¬(x = 2 ∧ y ≤ 0))](RS(10))

ε(Xf2
) = [[µXw · if(z < 0) then (z := z + 1;Xw)]]ε ◦ [[z := z− 1]]ε ◦

(assume(prop(〈ex2, 6〉, RS(6))) ∪ assume(prop(〈ex2, 9〉, RS(9))))

Note thatRS(ex2) does not appear in the computation ofRS(6), becauseret edges are re-

moved in mixed semantics.

Below, we show a possible fixpoint computation. We use the notationRS(l)i to denote the

value ofRS(l) at theith step of the computation. We assume thatRS(l)i = RS(l)i−1 unless



CHAPTER4. REACHABILITY AND NON-TERMINATION ANALYSIS OF RECURSIVEPROGRAMS87

stated otherwise.

1. Initially,

RS(l)0 =















true if l = 8

false otherwise

2. Computing along the edges〈7, 8〉 and〈7, 10〉:

RS(7)1 = RS(7)0 ∪

pre[assume(x = 2 ∧ y ≤ 0)](RS(8)0) ∪

pre[assume(¬(x = 2 ∧ y ≤ 0))](RS(10)0)

= false ∪

pre[assume(x = 2 ∧ y ≤ 0)](true) ∪

pre[assume(¬(x = 2 ∧ y ≤ 0))](false)

= (x = 2) ∧ y ≤ 0

3. Computing along the edge〈6, 7〉:

RS(6)2 = RS(6)1 ∪

pre[id({x, y})](RS(7)1)

= false ∪

pre[x′ = x ∧ y′ = y](x = 2 ∧ y ≤ 0)

= (x = 2) ∧ y ≤ 0

4. To computeRS(5)3 along thefunc-call edge〈5, 6〉, we need the value ofε(Xf2
), which

is a partial natural semantics off2 w.r.t. thecurrentvalue ofRS(6). We first propagate
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RS(6)2 along theret edge〈ex2, 6〉:

prop(〈ex2, 6〉, RS(6)2) = pre[[[x := z; (x → {x, y})var y]]](RS(6)2)

= pre[x′ = z ◦ (x → {x, y})decl[y]](RS(6)2)

= pre[x′ = z ◦ (x → {x, y})decl[y]](x = 2 ∧ y ≤ 0)

= pre[x′ = z](x = 2)

= (z = 3)

SinceRS(9)2 is empty, the computation ofε(Xf2
) at this step is restricted only to the

post-conditionassume(z = 2).

ε(Xf2
) = [[µXw · if(z < 0) then (z := z + 1;Xw)]]ε ◦ [[z := z− 1]] ◦

assume(z = 2)

= [[µXw · if(z < 0) then (z := z + 1;Xw)]]ε ◦

(z = 3 ∧ z′ = 2)

= (z = 3) ∧ z′ = 2

This on-the-fly computation ofε(Xf2
) avoided computing the semantics of the loop

[[µXw · if(z < 0) then (z := z + 1;Xw)]]ε which is required for the “full” natural se-

mantics off2.

5. Computing along thefunc-call edge〈5, 6〉:

RS(5)3 = RS(5)2 ∪ pre[({x, y} → {x, y})(z′ = x ◦ ε(Xf2
) ◦ x′ = z)](RS(6)2) ∪

pre[({x, y} → {z})z′ = x](RS(en2)2)

= false ∪ pre[({x, y} → {x, y})(z′ = x ◦ ε(Xf2
) ◦ x′ = z)](x = 2 ∧ y ≤ 0) ∪

pre[({x, y} → {z})z′ = x](false)

= pre[x = 3 ∧ x′ = 2 ∧ y′ = y](x = 2 ∧ y ≤ 0)

= (x = 3) ∧ y ≤ 0

The above computation establishes that location 8 is reachable from location 5 whenx = 3

andy ≤ 0.
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The following theorem shows that the analysis based on equation system (reach-otf) is

sound, and computes only the necessary part of natural semantics.

Theorem 4.5.LetRS↓ andε↓ be the least solutions to equation system (reach-otf). Then,

(1) RS↓ is the least solution to the equation (reach) onBm;

(2) for eachi ∈ [1..n], ε↓(Xfi
) is a subset of[[fi]];

(3) for anyε, if RS↓ is the least solution to theRS equations in (reach-otf) w.r.t. ε, then∀i ∈

[1..n] · ε↓(Xfi
) ⊆ ε(Xfi

).

Proof:

The proof of (1) follows from the fact that the transfer function induced by the equation (reach-

otf) is less than that induced by the equation (reach); therefore, the least solution to (reach-otf)

is less than that to (reach). Note that RS↓ is also solution to (reach). Hence, RS↓ is the least

solution to (reach).

The proofs of (2) and (3) follow from the equation of ε(Xfi
) in (reach-otf) and the definition

of least solution, respectively.

Part (1) of Theorem 4.5 shows thatRS↓ is the solution for the reachability analysis; part (2) –

thatε↓ is sound w.r.t. natural semantics offi; and part (3) – thatε↓ only contains the information

necessary for the analysis.

Since we need the least solution for bothRS(k) andε(Xfi
) equations, it can be obtained

by any chaotic iteration [Cou77] and thus is independent of the order of computation ofRS

andε. Interestingly, the algorithm derived from (reach-otf) is a pre-image-based variant of

the post-image-based reachability algorithm of BEBOP [BR00], and is similar to the backward

analysis withwp described in [Bal04].

4.5.2 On-the-Fly Non-Termination

The derivation of the on-the-fly algorithm for the analysis of non-termination, (nt-otf), proceeds

similarly, and is a combination of systems (nat) and (non-term):
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NT (k) =















∅ if k 6|= p (k ∈ Loc)

⋃

l∈succ(k) pre[r̂m

〈k,l〉](NT (l)) otherwise

ε(Xfi
) = [[Sfi

]]ε ◦ assume
(

⋃

l∈succ(exi)
prop(〈exi, l〉, NT (l))

)

(i ∈ [1..n])

(nt-otf)

whereNT : Loc→ 2Σ maps each locationk to a subset ofΣV (k), andsucc, Sfi
andr̂m are the

same as those in (reach-otf). Since non-termination requires the greatest solution to(non-term),

and natural semantics – the least solution to (nat), in (nt-otf), we need the greatest solution to

NT (k), and the least solution toε(Xfi
) equations, respectively.

For example, the following is an instance of the system (nt-otf) for checkingEG(pc 6= ex1)

onEX1 (for NT , only locations 5–10 are shown).

NT (5) = pre[({x, y} → {x, y})(z′ = x ◦ ε(Xf2
) ◦ x′ = z)](NT (6)) ∪

pre[({x, y} → {z})z′ = x](NT (en2))

NT (6) = pre[(id({x, y})](NT (7))

NT (7) = pre[assume(x = 2 ∧ y ≤ 0)](NT (8)) ∪

pre[assume(¬(x = 2 ∧ y ≤ 0))](NT (10))

NT (8) = pre[({x, y} → {x, y})(z′ = y ◦ ε(Xf2
) ◦ y′ = z)](NT (9))

NT (9) = pre[(id({x, y})](NT (7))

NT (10) = pre[kill [{x, y}]](NT (ex1))

ε(Xf2
) = [[µXw · if(z < 0) then (z := z + 1;Xw)]]ε ◦ [[z := z− 1]] ◦

(assume(prop(〈ex2, 6〉, NT (6))) ∪ assume(prop(〈ex2, 9〉, NT (9))))

A fixpoint computation for this system is shown below.

1. Initially:

NT (l) =















false if l ∈ {ex1, ex2}

true otherwise
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2. Computing along the edge〈10, ex1〉:

NT (10)1 = pre[kill[{x, y}]](NT (ex1)0)

pre[kill[{x, y}]](false)

= false

3. Computing along the edges〈7, 8〉 and〈7, 10〉:

NT (7)2 = pre[assume(x = 2 ∧ y ≤ 0)](NT (8)1) ∪

pre[assume(¬(x = 2 ∧ y ≤ 0))](NT (10)1)

= pre[x = 2 ∧ y ≤ 0 ∧ id({x, y})](true) ∪

pre[¬(x = 2 ∧ y ≤ 0) ∧ id({x, y})](false)

= (x = 2) ∧ y ≤ 0

4. Computing along the edge〈6, 7〉:

NT (6)3 = pre[(id({x, y})](NT (7)2)

= pre[id({x, y})](x = 2 ∧ y ≤ 0)

= (x = 2) ∧ y ≤ 0

5. Computing along the edge〈9, 7〉:

NT (9)4 = pre[(id({x, y})](NT (7)3)

= pre[id({x, y})](x = 2 ∧ y ≤ 0)

= (x = 2) ∧ y ≤ 0

6. In order to computeNT (5)5 andNT (8)5, we needε(Xf2
) w.r.t. the current values of

NT (6) andNT (9), respectively. We first propagateNT (6)4 andNT (9)4 along theret
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edges〈ex2, 6〉 and〈ex2, 9〉, respectively:

prop(〈ex2, 6〉, NT (6)4) = pre[[[x := z; (x → {x, y})var y]]](NT (6)4)

= pre[x′ = z ◦ (x → {x, y})decl[y]](NT (6)4)

= pre[x′ = z ◦ (x → {x, y})decl[y]](x = 2 ∧ y ≤ 0)

= (z = 3)

prop(〈ex2, 9〉, NT (9)4) = pre[[[y := z; (y → {x, y})var x]]](NT (9)4)

= pre[y′ = z ◦ (y → {x, y})decl[x]](NT (9)4)

= pre[y′ = z ◦ (y → {x, y})decl[x]](x = 2 ∧ y ≤ 0)

= z ≤ 0

We then computeε(Xf2
) restricted toassume(z = 2) andassume(z ≤ 0):

ε(Xf2
) = [[µXw · if(z < 0) then (z := z + 1;Xw)]]ε ◦ [[z := z− 1]]ε ◦

assume(z = 2) ∨ assume(z ≤ 0)

= [[µXw · if(z < 0) then (z := z + 1;Xw)]]ε ◦

(z = 3 ∧ z′ = 2) ∨ (z′ = z − 1 ∧ z′ ≤ 0)

= (z = 3 ∧ z′ = 2) ∨ (z = 1 ∧ z′ = 0) ∨ (z ≤ 0 ∧ z′ = −1)

This partial semantics off2 does not include its behaviors for outputsz > 2 andz = 1,

but it is sufficient for continuing the computation ofNT (6)5 andNT (9)5.

The following theorem shows that the non-termination algorithm based on (nt-otf) is sound

and computes only the necessary part of natural semantics.

Theorem 4.6. LetNT↑ andε↓ be the greatest solution forNT and the least solution forε in

system (nt-otf), respectively. Then,

(1) NT↑ is the greatest solution to the equation (non-term) onBm;

(2) for eachi ∈ [1..n], ε↓(Xfi
) is a subset of[[fi]];
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(3) for anyε, if NT↑ is the greatest solution to theNT equations in (nt-otf) w.r.t. ε, then∀i ∈

[1..n] · ε↓(Xfi
) ⊆ ε(Xfi

).

Proof:

The proof is similar to that of Theorem 4.5.

As in Theorem 4.5, part (1) of Theorem 4.6 shows soundness of non-termination, and parts

(2) and (3) show thatNT↑ is sound and only contains necessary information for analysis,

respectively.

Unlike reachability, non-termination requires differentfixpoint solutions forNT and ε,

and thus the order of computation can influence the result. For example, consider checking

EG(pc 6= ex1) on EX1. Initially, lines 7, 8, and 9 are associated with all the valuations onx

andy, i.e., NT(7) = NT(8) = NT(9) = Σ{x,y}, andε(f2) is empty, which is not the partial

semantics off2 restricted toNT(9). If the computation ofNT proceeds along the function call

y:=f2(y) using the initial value ofε(f2), NT(8) is assigned∅. Eventually,NT(7) = NT(8) =

NT(9) = ∅, i.e., the algorithm incorrectly concludes that any execution starting at lines 7, 8 or

9 terminates.

The correct order for computing the solution is such that thepre-image of a setQ w.r.t. a

function call tof has to be delayed until the derivation ofε(Xf ) w.r.t. Q is finished. Nonethe-

less, since this order is only restricted tofunc-call edges, the order of the computation else-

where can be arbitrary. This can be used to avoid deriving “full” natural semantics. Going

back to the previous example, one can first computeNT along all edges except forfunc-call

edges, which will assignNT (9) with x = 2∧ y ≤ 0, and then compute natural semantics off2

restricted to the post-conditionz ≤ 0. Similarly, although initiallyNT (6) is assignedΣ{x,y},

NT (6) equals(x = 2 ∧ y ≤ 0) after the initial computation ofNT , which means that only

partial natural semantics off2 restricted to the post-conditionz = 2 is needed.

In this section, we have presented mixed semantics – a stack-free operational semantics of

PL, and showed how it can be used to check reachability and non-termination of programs with

a finite data domain. The mixed semantics combines both operational and natural semantics,
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allowing us to analyzing recursive programs without dealing with call stacks. Although the

basic idea of such combination has been used in other tools, e.g., BEBOP[BR00], we provided a

formalization of both reachability and non-termination analysis using equation systems, which

characterizes all the operations involved in the analysis.Such formalization enables a natural

way to combine the analysis with abstraction, which is described in the next section.

4.6 Abstract Analysis

We describe our approach for deriving abstract versions of the concrete analysis described in

Section 4.4, which follows abstract interpretation.

4.6.1 Abstract Domains and Operations

Abstract interpretation [CC77, CC92] is a theory for systematicderivation of abstract program

analysis. In particular, in order to approximate the fixpoint of a function over a concrete do-

main, according to this theory, we need to define an abstract domain and provide sound abstract

counterparts of the operations used in concrete fixpoint computation. The concrete analysis in

Section 4.4 computes fixpoints of functions defined by equations (reach-otf) and (nt-otf) over

the sets of states in2Σ and relations in2Σ×Σ. To derive abstract analysis, we require two ab-

stract domains: abstract setsAs whose elements approximate sets in2Σ, and abstract relations

Ar whose elements approximate relations in2Σ×Σ. These domains must be equipped with

abstract versions of all of the operations used in the equations (reach-otf) and (nt-otf). The

theory of abstract interpretation then ensures that the solution to an abstract equation is an ap-

proximation of the solution to the corresponding concrete equation. In what follows, we first

identify the necessary abstract operations onAs andAr, and then show how to adapt predicate

abstraction for our algorithm.

According to the equations (reach-otf) and (nt-otf), the domain of abstract setsAs must be

equipped with a set union∪ (used in the fixpoint computation) and equality (to detect the fix-



CHAPTER4. REACHABILITY AND NON-TERMINATION ANALYSIS OF RECURSIVEPROGRAMS95

point convergence). The domain of abstract relationsAr must be equipped with (a) a pre-image

operator to convert abstract relations to abstract transformers overAs, (b) asynchronous and

sequential compositions of abstract relations (used in natural semantics), (c) scope extension

(used to instantiate a function call using natural semantics of a function), and (d) equality (to

detect the fixpoint convergence). Furthermore, we need anassumeoperator that maps an ab-

stract set to a corresponding abstract relation; and, to apply the abstraction directly to the source

code, a computable version of abstract base semantics[[·]]α that maps each atomic statementS

to an abstract relation that approximates[[S]] (the concrete semantics ofS).

4.6.2 Predicate Abstraction

We now show how the domain of predicate abstraction [GS97, BPR03, GWC06a] can be ex-

tended with the necessary abstract operations to yield abstract reachability and non-termination

algorithms.

Abstract domains. Predicate abstraction provides domains for abstracting elements, sets, and

relations of valuations. LetV be a set of variables, andP be a set of predicates overV . A

monomialis a conjunction of literals ofP . Theelementarydomain of predicate abstraction

overP, denoted Mon(P), is the set of all monomials overP. The soundness relationρP ⊆

ΣV ×Mon(P) is defined s.t.(σ, a) ∈ ρP iff σ |= a, i.e., an elementa ∈ Mon(P) approximates

a valuationσ ∈ ΣV iff σ satisfies all literals ina. For example, ifP = {x > 0, x < y}, then

a1 = (x > 0) anda2 = (x > 0) ∧ ¬(x < y) are in Mon(P). A valuationσ = 〈x 7→ 2, y 7→ 2〉

is approximated bya1, and is also more precisely approximated bya2.

The elementary domain is lifted to abstract sets and relations to approximate the concrete

domains2ΣV and2ΣV ×ΣV , respectively. In exact-approximating predicate abstraction [GC06,

GWC06a] used by YASM, the abstract sets and relations are defined over4-valued logic, that

is, the abstract domainsAs andAr are4Mon(P) and4Mon(P)×Mon(P), corresponding to4-valued

sets and transition relations, respectively. The approximation relation between an abstract set

X ∈ 4Mon(P) and a concrete setQ ∈ 2ΣV is characterized by the information ordering on the



CHAPTER4. REACHABILITY AND NON-TERMINATION ANALYSIS OF RECURSIVEPROGRAMS96

(a) (b)

x > 0a1

true a3

x ≤ 0a2

t

dm

d

m

m

m

d

x > 0a1

true a3

x ≤ 0a2

Figure 4.4: (a) A4-valued transition relationr, and (b) a mixed transition relationr′ trans-

formed fromr, where solid and dotted lines representmustandmaytransitions, respectively.

truth domain, i.e.,X approximatesQ iff for any σ ∈ ΣV anda ∈ Mon(P), ρ(σ, a) ⇒ X(a) �

Q(σ). That is, ifa is inside (resp. outside) ofX, then all the concrete elements approximated

by a are inside (resp. outside) ofQ. The approximation relation between a4-valued relation

in Ar and a concrete relation in2ΣV ×ΣV is based on mixed simulation.

Abstract Operations. The exact-approximating abstract base semantics of an atomic statement

has also been defined in [GWC06a, GC06]. For example, letx be an integer variable and

P = {x > 0}. For the statementx := x + 1, a4-valued transition relationr approximating its

base semantics is shown in Figure 4.4(a), where the abstractstatesa1 anda2 approximate pos-

itive and negative integer numbers, respectively, anda3 approximates all the integer numbers.

Figure 4.4(b) shows the mixed transition relationr′ transformed fromr. The abstract transition

relationr (or, equivalently,r′) shows that ifx is a positive number,x + 1 is also positive; ifx

is a non-positive or an arbitrary number, the sign ofx+ 1 is unknown; andx+ 1 is always an

integer number for anyx. Such abstraction describes both possible and necessary behaviors ex-

pressed using the predicatex > 0, which is an exact-approximation of the concrete behaviors

defined byx := x + 1.

[GWC06a, GC06] also show that abstract versions of set union, set and relation equality,

and pre-image operations forAs andAr are defined in the same way as the ones over2ΣV and
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2ΣV ×ΣV except that the logical operations of conjunctions and disjunctions are interpreted over

4-valued logic. For example, ifX1, X2 ∈ 4Mon(P) are twoabstractsets that approximate sets

Q1, Q2 ∈ 2ΣV , their abstract unionX1 ∪α X2 , λz ·X1(z) ∨X2(z) approximatesQ1 ∪Q2.

For the missing abstract relational operationsassumeα, asynchronous (∨α), and sequen-

tial (◦α) compositions, we define them similarly using the corresponding definitions from Sec-

tion 4.2, e.g., ifr1 andr2 are abstract relations, then their abstract asynchronous composition is

r1∨αr2 , λs, t·r1(s, t)∨r2(s, t), where∨ is interpreted over4-valued logic. The soundness of

these operations follows from the soundness of the abstractsets and relations associated with

them [GWC06a].

Scope extension in concrete semantics is used to extend a relation to additional variables.

That is, if r is a relation of typeU → V , then(U → U)r is an extension ofr to variables

in U \ V . In the abstract semantics, relations are defined over predicates; thus, abstract scope

extension must extend a relation to additional predicates.To do this, we assume that the ele-

mentary abstract domain Mon(P) corresponding toU can be decomposed into two independent

abstract domains: one forV and the other – forU \V , i.e., Mon(P) is defined using predicates

that either range only overV , or only overU \ V . Then, abstract scope extension(· → ·)α,

defined as in Table 4.1, is a sound approximation of concrete scope extension.

In the context of our on-the-fly algorithms, the assumption on abstract scope extension

means that predicates that are used to abstract valuations at a return locationl of a function call

x := f(a) are either defined only overx, or only over other variables in the scope ofl. For

example, predicatesx = 2 andy ≤ 0 can be used to abstract valuations at line 6 in the program

EX1, but predicatex > y cannot. This is not a severe restriction in practice since a function can

always be extended to accept additional parameters and return them without modification.

We have described how to derive abstract domains and the necessary abstract operations to

obtain abstract reachability and non-termination analysis based on exact-approximating pred-

icate abstraction. This approach can be applied to over- andunder-approximating predicate
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int g;

void main(){

level_1();

if (g<0){

ERROR: ;

}

END: ;

}

void level_i(){

int t = 0;

g = -1 * g;

if (g<=0){

t = t+1;

} else {

level_i+1();

g = -1 * g;

level_i+1();

}

g = -1 * g;}

void level_n(){

int t = 0;

g = -1 * g;

if (g<=0){

t = t+1;

} else {

<stmt>

}

g = -1 * g;}

<stmt>:=

g = -1 * g;

<stmt>:=

level_n();

g = -1 * g;

level_n();

(a)

(b)

(c)

Figure 4.5: (a) The template for experiments. (b)<stmt> for templateT1(n). (c) <stmt>

for T2(n).

abstractions [BPR03] in a similar way with the difference thatAs andAr are now classical sets

and relations over the elementary abstract domain, and conjunctions and disjunctions are now

interpreted over Boolean logic. To summarize, both over- andunder-approximating predicate

abstractions can be used to soundly abstract reachability and non-termination analysis. The

choice depends on the desired algorithm. For example, over-approximation is necessary to

establish unreachability, whereas under-approximation –to establish non-termination. Since

exact predicate abstraction combines them, it can be used for both verification and refutation.

4.7 Experiments

The technique described in this chapter has been implemented in our symbolic software model

checker YASM [GWC06b]. YASM is written in JAVA ; it uses CVC Lite [BB04] to approximate

program statements and CUDD [Som01] as a decision diagram engine. We have also extended

our proof-based refinement approach [GC06] to handle naturalsemantics of functions. In
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T1(n) T2(n)

n EF (pc = ERROR) (reach) EG (pc 6= END) (non-terminate) ¬EF (pc = ERROR) (unreach)

20 6.5 4.9 4.3

50 11.7 8.9 6.3

100 20.3 20.3 11.1

200 36.7 25.2 27.6

300 47.6 34.4 42.1

400 68.1 43.2 64.5

500 105.2 60.6 86.6

Table 4.3: Experimental results: overall analysis time in seconds.

the rest of this section, we report on a preliminary evaluation of this implementation. All

of the experiments have been conducted on a 2xP4Xeon-3.6GHzserver, which demonstrate

YASM’s ability to analyze reachability and non-termination of recursive programs using exact-

approximation. In summary:

1. We run YASM on template programs similar to those in the BEBOPand MOPEDbench-

marks. The experiment shows that the analysis time forboth reachability and non-

termination increases linearly w.r.t. the number of functions in a program.

2. We show that abstract analysis based on exact-approximation supports both verification

and refutation.

3. We compare YASM with MOPEDand VERA (BEBOPdoes not do non-termination), and

show that YASM can prove non-termination of the original buggyQuicksort algo-

rithm, whereas MOPEDand VERA do not support non-termination analysis.

To evaluate the reachability algorithm, we have used the template programT1(n) which

is a variant of the one used for BEBOP in [BR00]. T1(n) is the result of replacing<stmt>

in the template shown in Fig. 4.5(a) with the statements in Fig. 4.5(b). It consists of amain

function andn sub-functions, wheremain callslevel 1, andlevel i callslevel i+1
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twice if the global variableg is positive. Sinceg is not initialized, its initial value is arbitrary.

Although this program has no recursion, inlining function calls increases its size exponentially,

making the analysis infeasible for a sufficiently largen. We checked the reachability property

EF (pc = ERROR) with values ofn ranging between 20 and 500, and measured theoverall

analysis time (including parsing, abstraction, model-checking, and refinement). The results

are shown in the second column of Table 4.3. Since our technique analyzes each function

separately, the analysis time increases linearly w.r.t. the number of functions (n), as expected.

In all these cases, YASM was successful in proving reachability, and discovered predicates

g < 0, g > 0 andg ≤ 0. While the templateT1(n) is similar to the one used in [BR00],

there is a fundamental difference: BEBOP assumes an over-approximating abstract semantics

of Boolean programs and cannotconclusively verifythat theERROR label is reachable with

these predicates. YASM uses exact-approximation which results in a conclusive analysis.

We also checked the template programT2(n), obtained by replacing<stmt> in the tem-

plate in Fig. 4.5(a) with statements in Fig. 4.5(c). Non-termination and unreachability results

are presented in the third and fourth columns of Table 4.3, respectively. As expected, the

analysis time increases linearly with the number of functions.

For non-termination, we have also applied YASM to several examples inspired by [CPR06a],

in particular, to programsAck andShift, shown in Fig. 4.6(a) and (b), respectively. YASM

was able to automatically prove non-termination ofAck in 2.1 seconds and discovered predi-

catesy > 0, n > 0, x > 0, mx > 0 andmy > 0. Analysis ofShift took 1.9 seconds and

yielded predicatesy < 0, x < 0, x > 3, x = 0 andx = 3. Finally, we have compared YASM

to MOPED [ES01] and VERA [ACEM05] on the buggyQuicksort example from [ES01]

in Fig. 4.6(c), wherenondet() represents non-deterministic choice. YASM has established

non-termination ofQuicksort in 10 seconds, finding 7 predicates. Note that both MOPED

and VERA only apply to programs with finite data domain, and the analysis in [ACEM05] and

[ES01] had to restrict the number of bits used by each variable, while YASM did not need any

such restriction.
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void main (){

int mx, my;

ack (mx, my);

END:; }

int ack (int x, int y){

int r1, n;

if (x > 0) {

if (y > 0) {

y = y - 1;

n = ack (x, y);

} else { n = 1; }

r1 = ack (x, n);

return r1;

} else {

r1 = y + 1;

return r1;

}}

void main(){

int x;

foo(x);

while(x!=0) {

if (x<0) {

x = -1 * x;

x = x+2;

} else {

x = -1 * x;

x = x+3;

}}

END: ;}

void foo (int y){

y = -1 * y;

if (y < 0) {

foo (y);

}}

void main (){

int mleft, mright;

quicksort (mleft, mright);

END:;}

void quicksort (int left, int right){

int lo, hi;

if (left >= right) return;

lo = left; hi = right;

while (lo <= hi) {

if (nondet()) {

lo = lo+1;

} else {

if(lo!=left || hi!=right)

hi = hi-1;

}}

quicksort (left, hi);

quicksort (lo, right); }

(a) (b) (c)

Figure 4.6: Non-terminating programs: (a)Ack; (b) Shift; (c) BuggyQuicksort.

4.8 Related Work

Recursive programs have been studied widely in the context ofinterprocedural program anal-

ysis. In general, there are two main approaches for this analysis, functionalapproach [SP81,

KS92] andoperationalapproach [SP81]. The function approach uses natural semantics to sum-

marize the computational effects of functions, which are applied at the locations of function

calls to update program states along the execution paths. The operational approach adopts the

operational program semantics that uses an unbounded call stack for recursive calls. In terms

of interprocedural program analysis, our approach isfunctionalsince it uses natural semantics

to handle function calls.

Most other model-checking approaches for recursive programs, (e.g., [BR00, ACEM05,
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BCP06, PSW05]) are functional as well. The input to BEBOP [BR00] and VERA [ACEM05]

is a finite recursive program, which is equivalent to a pushdown system. These tools apply

over-approximationwhen analyzing recursive programs on infinite domains. The reachabil-

ity analysis in them uses the RHS algorithm presented in [RHS95]. The RHS algorithms is

developed based on the functional approach in [SP81, KS92],providing a forward on-the-fly

summarization of functions using graph reachability techniques. Our reachability algorithm

can be seen as a pre-image-based (backward) variant of the RHSalgorithm. Function sum-

mary is also used in [BCP06, PSW05] to prove termination of recursive programs, where only

over-approximation is considered, and computation of function summary is not driven by prop-

erty analysis.

In the operational approach, MOPED [ES01] is developed based on a symbolic approach

to reachability analysis of pushdown systems [BEM97, EHRS00]. This approach relies on

the result that the set of reachable states in a pushdown system is a regular language. There-

fore, instead of computing the reachable states directly, which may not converge, the approach

defines a procedure to construct a finite automata that recognizes these states, which is guar-

anteed to terminate. MOPED accepts a finite recursive program as input, and also uses over-

approximation for infinite programs.

Both MOPED [ES01] and VERA [ACEM05] can detect cycles in programs withfinite data

domains, which can be used for non-termination checking. When used for analysis of programs

with infinite data domain, they assume an over-approximating semantics of finite abstractions

of original programs. Note that an ability to detect non-termination of over-approximating

boolean programs is of limited utility since over-approximation often introducesspuriousnon-

terminating computations. Thus, non-termination of an over-approximation says nothing about

non-termination of the concrete program1. It is unclear how to combine MOPED and VERA

with exact-approximation, whereas it is quite natural in our approach, resulting in both sound

1In [CH08], Charlton and Huth showed that using only over-approximating information they can prove reach-
ability in limited cases by exploiting the seriality and partial determinism of programs. It is possible to apply this
technique to prove non-termination in those cases as well.
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verification and refutation of the property over programs with infinitedata domain.

In [JS04], Jeannet and Serwe propose abstract analysis of recursive programs by different

abstractions of the call stack, which provides a method to combine the function and operational

approaches. Their method can be parameterized by an arbitrary data abstraction. However, the

authors restrict their attention to reachability (i.e., invariance) properties, and do not report on

an implementation.

The stack-free semantics we proposed in this chapter allowsus to analyze stack-independent

properties of recursive programs including reachability and non-termination. More general

properties of recursive programs require inspection of thestack. A decidable class of such

properties can be expressed by the temporal logic CaRet [AEM04] that allows for matching of

calls and returns of procedures. Properties expressible inCaRet can be analyzed usingvisibly

pushdown automata(VPA) [AM04]. VPA are a special class of pushdown automata where the

set of input symbols is partitioned into calls, returns, andlocal symbols, and the push and pop

operations on the stack are determined by the type of the input symbol. Exposing the matching

structure of calls and returns makes VPA an appropriate model for algorithmic verification of

recursive programs with respect to properties via stack inspection. We leave investigation of

combining exact-approximation and VPA for future work.

4.9 Conclusion

In this chapter, we have presented a technique for analyzingreachability and non-termination

properties of recursive programs. The technique is based ona stack-free mixed program se-

mantics that eliminates call stacks while preserving stack-independent properties. We showed

how to compute only the necessary part of function summary during the analysis, leading to on-

the-fly algorithms for analysis of reachability and non-termination of finite programs. We then

used the framework of abstract interpretation to combine our algorithms with data abstractions,

making them applicable to programs with infinite data domains as well. We have implemented

a combination of this approach with exact predicate abstraction in YASM [GWC06b] which
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supports both verification and refutation of properties. Our experiments indicate that YASM

scales to programs with a large number of functions and is able to analyze reachability and

non-termination of non-trivial examples.

Our interest in non-termination is motivated by the work ontermination(e.g., [CPR06a]).

A termination tool typically can prove termination of programs, but requires manual inspection

of non-terminating paths. We view our approach as complementary to that. As illustrated by

our experiments, YASM can prove non-termination of non-trivial programs. In the future, we

plan to investigate how the strengths of the two approaches can be combined together for better

analysis. The refinement strategies that are currently implemented in YASM were originally

developed for reachability analysis only. While they were sufficient for our non-termination

experiments, we would like to investigate strategies in thefuture that are specifically tailored

to the non-termination analysis.



Chapter 5

Analysis of Partial Modeling Formalisms

Partial modeling formalisms support abstract model checking of complex temporal proper-

ties by combining both over- and under-approximating abstractions into a single model. In

this chapter, we investigate three families of these modeling formalisms represented byKripke

Modal Transition Systems, Mixed Transition Systems, andGeneralized Kripke Modal Transi-

tion Systems. Following the two fundamental ways of using these partial transition systems for

abstracting concrete programs and for temporal logic modelchecking, we study the connec-

tion between semantic and logical consistency of partial transition systems, compare expressive

power of the three families of formalisms, and discuss the precision of model checking over

them.

5.1 Introduction

Partial models play a fundamental role in exact-approximation frameworks. A temporal prop-

erty is interpreted over a partial model in one of four ways:true or false, if the partial model

is precise enough to prove or disprove the property,unknown, if the model is imprecise, and

inconsistentotherwise. The modeling formalism of partial models, i.e.,partial transition sys-

tems(Page 31), usually have two types of transitions,mayandmust, representingpossible(or

over-approximating), andnecessary(or under-approximating) behaviours, respectively. There

105
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are three families of partial transition systems identifiedin the literature, represented byKripke

Modal Transition Systems(KMTSs) [HJS01],Mixed Transition Systems(MixTSs) [DGG97],

andGeneralized KMTSs(GKMTSs) [SG04] (Definition 2.9), respectively:

1. KMTSs are equivalent to3-valued Transition Systems[CDEG03],Modal Transition Sys-

tems[LT88], and Partial Kripke Structures[BG00]. KMTSs require that everymust

transition is also amay transition. They were introduced as computational models for

partial specifications of reactive systems [LT88] and then adapted for model check-

ing [BG00, HJS01, CDEG03].

2. MixTSs [DGG97] are equivalent to4-valued Transition Systems[GWC06a]. MixTSs

extend KMTSs by allowingmust onlytransitions (i.e., transitions that aremustbut not

may). MixTSs were introduced in [DGG97] as abstract models forLµ, and have been

used for predicate abstraction and software model checkingin [GC06].

3. GKMTSs [SG04] are equivalent toAbstract Transition Systems[dAGJ04] andDisjunc-

tive Modal Transition Systems[Lar91]. GKMTSs extend MixTSs by allowingmust

hyper-transitions, (i.e., transitions into sets of states).

In this chapter, we study these formalisms from two points ofview: a semantic one, using

partial transition systems as objects for abstracting concrete programs, and a logical one, using

partial transition systems for temporal logic model checking. A partial transition system is

semantically consistentif it abstracts at least one concrete program. A partial transition system

is logically consistentif it gives consistent interpretation to all temporal logicformulas. For

semantic consistency, note that we investigate partial transition systems from the perspective

of abstract model checking in this chapter, where a partial transition system and its concrete

refinement are related through the soundness relation of abstract and concrete states. The no-

tion of semantic consistency in this setting (formally defined in Section 5.4) is slightly different

from the notion ofimplementabilitywhere partial transition systems are used as specifications

of a system’s behavior. A discussion of this difference is given in Section 5.9. Specifically, in
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this chapter we first study the connection between semantic and logical consistency of partial

transition systems. We then compare the expressive power ofthe formalisms, i.e. what abstrac-

tions can be captured using them. Finally, we discuss the analysis power of these formalisms,

i.e., the cost and precision of model checking. This chapterincludes the following technical

contributions:

1. We definemonotonepartial transition systems, and show that they are as expressive as

their regular counterparts: for any partial transition system there exists a monotone one

such that both of them approximate the same set of concrete systems. The monotonicity

condition ensures that all information that can be derived from existingmayandmust

transitions is made explicit in the transition system, which allows for more effective

local reasoning about partial transition systems.

2. We show that while in general semantic and logical consistency of partial transition sys-

tems are not equivalent, they are equivalent over monotone ones. Thus, for every partial

transition system, there is an equivalent monotone one where semantic and logical con-

sistency coincide. For monotone transition systems, we also define a structural condition

that captures both notions of consistency.

3. We show that despite the structural difference, the threefamilies of partial modeling for-

malisms, KMTSs, MixTSs and GKMTSs, are equally expressive.That is, for any partial

transition system from one formalism, there exists a partial transition system in the other

such that the two partial transition systems approximate the same set of concrete sys-

tems . We prove the equivalence of these formalisms by defining semantics-preserving

translations from GKMTSs to MixTSs, and from MixTSs to KMTSs. Our results show

that both GKMTSs and KMTSs can be converted to semantically equivalent MixTSs of

equal or (possibly exponentially) smaller size.

4. We show that under the traditional inductive semantics oftemporal logic, which is re-

ferred to asstandard, a GKMTS can prove/disprove more properties than a MixTS ob-
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tained by semantics-preserving translation. However, directly applying symbolic model

checking over GKMTSs has been hampered by the difficulty of encoding hyper-transitions

symbolically. We then develop areducedinductive semantics that is more precise than

the standard one. We show that GKMTSs and MixTSs are equivalent with respect to the

reduced semantics, and give a symbolic model checking procedure for it. We apply this

algorithm to MixTSs constructed using predicate abstraction, and evaluate it empirically

against an algorithm for the standard semantics.

The rest of this chapter is organized as follows. Section 5.2presents preliminaries and fixes

the notation used in this chapter. In Section 5.3, we definemonotonepartial transition systems

and show that they are as expressive as their regular counterparts. In Section 5.4, we investigate

semantic and logical consistency of partial transition systems. In Section 5.5, we prove that

KMTSs, MixTSs and GKMTSs are equally expressive by developing semantics-preserving

translations from GKMTSs to MixTSs, and from MixTSs to KMTSs. In Section 5.6, we in-

troducereducedinductive semantics forLµ. In Section 5.7, we present a symbolic model

checking algorithm with respect to the reduced semantics inthe context of predicate abstrac-

tion. We report on our experience with this algorithm in Section 5.8. We discuss related work

in Section 5.9 and conclude this chapter in Section 5.10.

5.2 Preliminaries

Convention. In this chapter, we use the following naming convention. Roman capital letters de-

note transition systems (TSs), which are built out of statesand transitions:M for a MixTS,K

for a KMTS,G for a GKMTS, andB for a BTS. Subscripts indicate a particular transition sys-

tem. For example,M1 is a MixTS (see Figure 5.1), whereasG2 is a GKMTS (see Figure 5.2).

Script capital letters denote models, which extend transition systems with interpretations of

atomic propositions:M for a MixTS model,K for a KMTS model,G for a GKMTS model,

andB for a BTS (or a concrete) model. We use subscripts to indicate amodel corresponding
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to a particular transition system. For example,M1 is a model whose underlying transition

system is the MixTSM1 (see Figure 5.1). The letterL is used exclusively to indicate a labeling

function of a model.

Concrete and Abstract Statespace. Recall that for a concrete statespaceC, anabstractstates-

pace approximatingC is a set of statesS equipped with asoundnessrelationρ : C × S, acon-

cretizationfunctionγ(s) , {c | (c, s) ∈ ρ}. Abstract states are related with each other through

the concrete states approximated by them. In this chapter, we investigate partial models based

on the exploration of approximation abilities of abstract states. To this end, we assume thatS

is equipped with an approximation ordering�a s.t. s �a t ⇔ γ(s) ⊇ γ(t). That is,s �a t if

s is less precise(more approximate) thant. Following [CC92], we require that�a be a partial

order, that is, there are no redundant abstract states that approximate the same set of concrete

states. We also require that there exists an abstract state that gives the most precise approxima-

tion of a concrete state, i.e.,∀c ∈ C · ∃s ∈ S · (ρ(c, s)∧∀s′ ∈ S ·ρ(c, s′) ⇒ γ(s′) ⊇ γ(s)) . We

use anabstractionfunctionα : C → S to map each concrete element to its best approximation.

The image ofα is denoted byα[S] , {α(c) | c ∈ C}. We use the notation〈C, ρ, γ, α, S〉 to

denote that a concrete statespaceC is abstracted byS with ρ, γ, andα as defined above.

An abstract states ∈ S is consistentiff γ(s) 6= ∅. We require that any state labeling

functionL overS is locally consistent, i.e., for any consistent abstract states and proposition

p, at most one ofp and¬p belongs toL(s). We also require that any state labeling functionL

overS is monotonew.r.t. �a: s1 �a s2 ⇒ L(s1) ⊆ L(s2).

Predicate Abstraction. Letn be a natural number, andP = {p1, . . . , pn} be a set of quantifier-

free first-order boolean predicates. Recall that amonomialis a conjunction of literals ofP ,

and amintermis a monomial in which each variablepi appears exactly once (either positively

or negatively). We write Mon(P ) and MT(P ) for the set of all monomials and minterms

of P , respectively. The set Mon(P ) is the domain of predicate abstraction. The soundness

relationρP is defined s.t.(c, s) ∈ ρP iff c |= s, i.e.,c satisfies all literals ins; the abstraction

αP (c) , (
∧

c|=pi
pi) ∧ (

∧

c 6|=pi
¬pi); αP [Mon(P )] = MT(P ); and the approximation ordering
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is reverse implication,s �a t iff s⇐ t.

Semantics over Partial Models. This chapter discusses several semantics ofLµ. Let M be a

partial model over an abstract statespaceS, andϕ be anLµ formula. We refer the traditional

inductive semanticsLµ over partial models (Definition 2.10) as theStandard Inductive Seman-

tics (SIS), and use a subscripti to indicate this, e.g., the SIS ofϕ overM is denoted by‖ϕ‖Mi .

Recall thatC[M] is the set of all concrete refinements ofM (Page 35). Intuitively,C[M] is

the semantic meaning ofM. A thoroughsemantics ofϕ overM, denoted‖ϕ‖Mt , is defined

with repect to respect to the semantic meaning ofM.

Definition 5.1 (Thorough Semantics). [BG00] Let M be a partial model over an abstract

statespaceS. The thorough semanticsof anLµ formulaϕ overM is defined as‖ϕ‖Mt =

〈U,O〉, where

U = {a ∈ S | ∀B ∈ C[M] · γ(a) ⊆ U(‖ϕ‖Bi )}

O = {a ∈ S | ∃B ∈ C[M] · (γ(a) ∩ O(‖ϕ‖Bi )) 6= ∅}

In order to compare different semantics ofLµ, we introduce two ordering relations on the

space2S × 2S.

Definition 5.2 (Information and Semantics Orderings). Let S be an abstract statespace. Let

e1 = 〈U1, O1〉 ande2 = 〈U2, O2〉 be two elements in2S × 2S. e1 is less informativethane2,

written e1 �i e2, if and only if

U1 ⊆ U2 and O2 ⊆ O1

e1 is semantically less precisethane2, writtene1 �a e2, if and only if

γ(U1) ⊆ γ(U2) and γ(O1) ⊆ γ(O2)

Note that we use the same notation�a to denote the precision orderings, defined w.r.t.

concretization, for both the elements inS and the ones in2S × 2S.

Semantic Equivalence and Expressive Equivalence. We define semantic equivalence between

partial models (TSs) and expressive equivalence between modeling formalisms as follows.
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Definition 5.3 (Semantic Equivalence). Two partial modelsM andM′ aresemantically equiv-

alent, if and only if they have the same set of concrete refinements,i.e.,C[M] = C[M′]. Two

partial transition systems,M andM ′, are semantically equivalent, if and only if C[M ] =

C[M ′].

Definition 5.4 (Expressive Equivalence). Two partial modeling formalisms areexpressively

equivalentif and only if for every TSM from one formalism, there exists a TSM ′ from the

other, s.t.M andM ′ are semantically equivalent.

5.3 Monotone Partial Transition Systems

In this section, we definemonotonepartial TSs. We show that monotone partial TSs are expres-

sively equivalent (Definition 5.4) to their regular counterparts: for any partial TS there exists

an equivalent monotone one, i.e., they approximate the sameset of concrete systems. The

monotonicity condition simply ensures that all information that can be derived from existing

mayandmusttransitions is made explicit in the TS. As we show in later sections, this condition

allows us to perform local reasoning of partial TSs more effectively.

For simplicity, we present the results w.r.t. MixTSs. They can be easily adapted to GKMTSs

as well.

Definition 5.5. A MixTSM = 〈S,Rmay, Rmust〉 is monotoneiff

(a) ∀s, t1, t2 ∈ S · t2 �a t1 ⇒ ((s, t2) ∈ Rmay ⇒ (s, t1) ∈ Rmay)∧

((s, t1) ∈ Rmust⇒ (s, t2) ∈ Rmust)

(b) ∀s1, s2, t ∈ S · s1 �a s2 ⇒ ((s2, t) ∈ Rmay ⇒ (s1, t) ∈ Rmay)∧

((s1, t) ∈ Rmust⇒ (s2, t) ∈ Rmust)

A modelM = 〈M,L〉 is monotoneiff its MixTS componentM is monotone.

Intuitively, a transition system is monotone iff the information captured by its transition

relation is monotone with respect to the approximation ordering �a of its states. For example,



CHAPTER 5. ANALYSIS OF PARTIAL MODELING FORMALISMS 112

M1

a1

a2

a3

a4x > 0

x > 0
odd(x)

x ≤ 0

x ≤ 0
odd(x)

M2

a1

a2

a3

a4x > 0

x > 0
odd(x)

x ≤ 0

x ≤ 0
odd(x)

M3

a1

a2

a3

a4x > 0

x > 0
odd(x)

x ≤ 0

x ≤ 0
odd(x)

M4

a1

a2

a3x > 0 x ≤ 0

x ≤ 0
odd(x)

Figure 5.1: Four MixTSs:M1, M2, M3, andM4, whereM1 andM4 are monotone. Solid and

dashed lines representmustandmaytransitions, respectively.

let M be a transition system,s1 ands2 be two states ofM such thats1 �a s2. (1) Suppose

there is amay transition froms2 to some other statet. The meaning of this transition is that

any system that refinesM can have a transition from a state inγ(s2) to a state inγ(t). Recall

that we assumed thats1 �a s2; hence,γ(s1) ⊇ γ(s2). Thus, the same behavior is allowed from

the states inγ(s1). ForM to be monotone with this information, it must have amaytransition

from s1 to t. (2) Similarly, suppose there is amusttransition froms1 to some other statet.

Then, every state inγ(s1) must have a transition to some state inγ(t). Sinceγ(s1) ⊇ γ(s2),

the same is true for the states inγ(s2). Therefore, forM to be monotone with this information,

it should have amusttransition froms2 to t.

For example, the MixTSM3 shown in Figure 5.1 is monotone; the MixTSM1 in the same

figure is not monotone: for the statesa1 anda2, wherea2 is less precise thana1, we have

a2
must
−−→ a3, but there is nomusttransition froma1 to a3, and for the statesa3 anda4, wherea4
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is less precise thana3, we havea2
may
−−→ a4, but there is nomaytransition froma2 to a3.

In the rest of this section, we show that every partial TS (or model) can be translated

into a semantically equivalent (Definition 5.3) monotone one. We first define such translation

for MixTSs. The translation consists of two steps, DSTT (destination translation) and SRCT

(source translation), which produce a monotone transitionsystem preserving the behaviors of

the original one.

Definition 5.6 (Translation DSTT). LetM = 〈S,Rmay
M , Rmust

M 〉 be a MixTS. The result of trans-

lation DSTT(G) is a MixTSN = 〈S,Rmay
N , Rmust

N 〉, such that

Rmay
N , {(a, b) ∈ S × S | ∃b′ ∈ S · b′ �a b ∧ (a, b′) ∈ Rmay

M }

Rmust
N , {(a, b) ∈ S × S | ∃b′ ∈ S · b �a b

′ ∧ (a, b′) ∈ Rmust
M }

The translation DSTT checks the transition from each state in its input TS and adds missing

transitions derived from the approximation ordering over abstract states, ensuring that the result

satisfies the condition (a) of Definition 5.5. Amaytransition is added between statesa andb in

the resulting TS if the source TS has amaytransition between statesa and some stateb′ that is

less precise thanb. Similarly, amusttransition between statesa andb is added to the resulting

TS if the source TS has amusttransition betweena and some stateb′ that is more precise than

b. For example, for transition systems in Figure 5.1, the translation DSTT(M1) results in the

MixTS M2: sincea4 is less precise thana3 and there exists amay transitiona2
may
−−→ a4 in

M1, M2 contains amaytransitiona2
may
−−→ a3; furthermore, since there exists amusttransition

a2
must
−−→ a3 in M1,M2 contains amusttransitiona2

must
−−→ a4.

Lemma 5.7. LetM be a MixTS. The translationDSTT(M) results in a MixTS which satisfies

condition (a) of Definition 5.5.

Definition 5.8 (Translation SRCT). LetM = 〈S,Rmay
M , Rmust

M 〉 be a MixTS. The result of the
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translationSRCT(G) is a MixTSN = 〈S,Rmay
N , Rmust

N 〉, such that

Rmay
N , {(a, b) ∈ S × S | ∀a′ ∈ S · a′ �a a⇒ (a′, b) ∈ Rmay

M }

Rmust
N , {(a, b) ∈ S × S | ∃a′ ∈ S · a �a a

′ ∧ (a′, b) ∈ Rmust
M }

The translation SRCT ensures that its output,N , satisfies the condition (b) of Definition 5.5.

It guarantees that the transitions from more precise statesare more defined: for each statea, it

has amusttransition to a stateb in N if a less precise statea′ already has amusttransition to

b in its input,M ; it has amaytransition tob in N only when all the states that are less precise

than it already havemaytransitions tob in M . For example,M3 in Figure 5.1 is the result of

SRCT(M2): becausea2 is less precise thana1 and there aremusttransitionsa2
must
−−→ a3 and

a2
must
−−→ a4 inM2, twomusttransitionsa1

must
−−→ a3 anda1

must
−−→ a4 are added toM3; on the other

hand, themaytransitiona1
may
−−→ a2 is removed fromM3 becausea2 has nomaytransition toa2

in M2.

Lemma 5.9. LetM be a MixTS. The translationSRCT(M) results in a MixTS which satisfies

condition (b) of Definition 5.5.

We now define the monotone translation MONOT be the composition of the translations for

source and destination states, i.e., MONOT , SRCT ◦ DSTT. The following theorem shows

that MONOT translates a MixTS into an equivalent monotone one.

Theorem 5.10.LetM be a MixTS. The translationMONOT(M) results in a MixTS which is

monotone and semantically equivalent toM .

Proof:

(1) Let N1 = DSTT(M) and N2 = SRCT(N1). According to Lemmas 5.7 and 5.9, N1 and

N2 satisfy conditions (a) and (b) of Definition 5.5, respectively. To show that MONOT(M) is

monotone, we only need to show that N2 also satisfies condition (a). Proof of this follows from

the definition of SRCT.

(2) To prove that M and N2 are semantically equivalent, we show that any concrete BTS

B = 〈C, R〉 refines M iff it refines N . It is equivalent to showing that (i) the soundness relation
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ρ ⊆ C × S is a mixed simulation between B and M iff it is a mixed simulation relation between

B and N1; and (ii) ρ is a mixed simulation between B and N1 iff it is a mixed simulation relation

between B and N2. This follows from the definitions of DSTT and SRCT.

The translation MONOT can also be used to convert a partial model into its monotone

equivalent one.

Corollary 5.11. LetM = 〈M,LM〉 be a MixTS model,N = MONOT(M), andLN = LM .

Then the modelN = 〈N,LN〉 is monotone and semantically equivalent toM.

In this section, we have shown that monotone partial TSs are as expressive as their “regular”

counterparts. The monotone conditions make hidden transitions explicit, allowing us to do

better local reasoning about partial TSs, which is illustrated in the following sections.

5.4 Consistency

There are two alternatives for defining consistency of a partial TS: either based on satisfaction

of temporal logic formulas (logical consistency), or based on possible concrete refinements

(semantic consistency). While semantic consistency implies logical consistency,the converse

is not true. There exists a logically consistent TS that has no concrete refinements. In this sec-

tion, we investigate these two notions, show when they coincide, and provide a new structural

condition which is necessary and sufficient to ensure that a TS is consistent.

5.4.1 Logical and Semantic Consistency for Consistent Statespaces

Throughout this section, letC be a concrete statespace, andS be the corresponding abstract

statespace such that〈C, ρ, γ, α, S〉. In addition, in this subsection, we assume that every state

a ∈ S is consistent, i.e.,γ(a) 6= ∅. We extend our definitions to deal with inconsistent states in

Section 5.4.2.

A modelM is logically consistent if it gives a consistent interpretation, i.e., eithertrue,

false, or unknown, to every temporal formula. Formally,
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Definition 5.12. A modelM is logically consistentiff for everyϕ ∈ Lµ, U(‖ϕ‖i) ⊆ O(‖ϕ‖i).

Logical consistency naturally extends from models to transition systems: a transition sys-

temM is logically consistent iff for any labeling functionL the model〈M,L〉 is logically

consistent.

A transition systemM is semantically consistent iff there exists at least one BTS that refines

it:

Definition 5.13. A transition systemM is semantically consistentiff C[M ] 6= ∅.

Semantic consistency extends naturally from transition systems to models. A modelM =

〈M,L〉 is semantically consistent iff the transition systemM is semantically consistent. Be-

cause we require that the labeling functionL be monotone with respect to�a, this is equivalent

to requiring that the modelM has a consistent refinement.

Semantic consistency implies logical consistency:

Theorem 5.14.Any semantically consistent transition system is also logically consistent.

Proof:

Let M be a consistent transition system. We show that M is logically consistent by contradic-

tion.

Assume M is not logically consistent. Then, there exists a labeling function L and a tem-

poral formula ϕ such that ϕ is inconsistent in some state of the model M = 〈M, L〉. Formally,

there exists a state a of M such that a is in U(‖ϕ‖Mi ) \ O(‖ϕ‖Mi ).

Let B be a concrete (BTS) model refining M. Since M is semantically consistent, such B is

guaranteed to exist. By Theorem 2.14, γ(U(‖ϕ‖Mi )) ⊆ U(‖ϕ‖Bi ), and γ(O(‖ϕ‖Mi )) ⊆ O(‖ϕ‖Bi ).

Then, there exists a concrete state c ∈ γ(a) s.t. c ∈ U(‖ϕ‖Bi ) and c ∈ O(‖ϕ‖Bi ).

Since B is concrete, U(‖ϕ‖Bi ) = O(‖ϕ‖Bi ). Hence, c ∈ U(‖ϕ‖Bi ) and c ∈ C \ U(‖ϕ‖Bi ) — a

contradiction. Thus, M is logically consistent.

Interestingly, the converse of Theorem 5.14 is not true in general. We illustrate this on

an example. Consider the MixTSM2 in Figure 5.1. InM2, everymusttransition is matched
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by amaytransition, i.e.,Rmust ⊆ Rmay. Thus, by [HJS01, dAGJ04], it is logically consistent.

However,M2 is not semantically consistent as we show using a proof by contradiction. Assume

there is a BTSB that refinesM2. Let c1 : 〈x = 1〉 be a state ofB; c1 is approximated by both

a1 anda2. BecauseB refinesM2, andM2 has amusttransitiona2
must
−−→ a3, B has a transition

from c1 to a state approximated bya3, say,c2 : 〈x = −1〉. SinceM2 approximatesB, by the

definition of mixed simulation (Definition 2.11),a1 must have amaytransition to a state that

approximatesc2, i.e., eithera3 or a4. There is no suchmaytransition inM2, contradicting the

assumption. Thus,M2 is not semantically consistent.

Below, we show that monotone MixTSs is a class of systems for which logical and semantic

consistency coincide. Intuitively, the reason is that the approximation ordering,�a, of the

statespace of monotone MixTSs is “pushed” down to its transitions. This gives rise to the

following theorem:

Theorem 5.15.LetM be a monotone MixTS(S,Rmay, Rmust), and assume that every state in

S is consistent. Then, the following are equivalent:

(a) M is semantically consistent (Definition 5.13),

(b) M is logically consistent (Definition 5.12),

(c) ∀a, b1 ∈ S · a
must
−−→ b1 ⇒ ∃b2 ∈ S · b1 �a b2 ∧ a

may
−−→ b2.

Proof:

We show that (a) ⇒ (b), (b) ⇒ (c), and (c) ⇒ (a).

Part 1. (a) ⇒ (b) The proof follows from Theorem 5.14.

Part 2. (b) ⇒ (c) Let a and b1 be two states in S such that a
must
−−→ b1 is a transition in Rmust.

We show that (i) there exists a labeling function L, and (ii) there exists a formula ϕ, such that

ϕ is consistent in the state a of the model M = 〈M, L〉 only if M has a transition a
may
−−→ b2 for

some state b2 that is more precise than b1.
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(i) To define L, we partition the statespace S into sets S1, S2, and S3:

S1 , {s ∈ S | b1 �a s}

S2 , {s ∈ S | ∃t ∈ S1 · s �a t} \ S1

S3 , S \ (S1 ∪ S2)

S1 is the set of all states that are more precise than b1. S2 is the set of all states that are

not in S1, but are less precise than some state in S1. S3 contains all states that are neither in

S1 nor S2.

Let AP = {p}. L is defined as follows:

L(s) ,































{p} if s ∈ S1

{} if s ∈ S2

{¬p} if s ∈ S3.

L is consistent. We need to show that L is monotone, i.e., if s �a t then L(s) ⊆ L(t). Let

s and t be two states such that s �a t. Then, either s and t belong to the same partition or

s ∈ S2 and t ∈ S1 ∪ S3. In both cases, monotonicity follows trivially.

(ii) We define ϕ as the formula ♦p. Note that because of the must transition a
must
−−→ b1, a is

in U(‖♦p‖Mi ). And, because M is logically consistent, a ∈ O(‖♦p‖Mi ) as well. We use this fact

to show existence of b2, needed for condition (c) of the theorem.
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a
must
−−→ b1

⇒ (by the definition of L, ‖p‖Mi = 〈S1, S1 ∪ S2〉)

a
must
−−→ b1 ∧ b1 ∈ U(‖p‖Mi )

⇒ (by SIS of ♦p)

a ∈ U(‖♦p‖Mi )

⇒ (since M is logically consistent, ♦p is consistent at a)

a ∈ O(‖♦p‖Mi )

⇒ (by SIS of ♦p)

∃b2 ∈ S1 ∪ S2 · a
may
−−→ b2

⇒ (logic)

(∃b2 ∈ S1 · a
may
−−→ b2) ∨ (∃b2 ∈ S2 · a

may
−−→ b2)

In the first case, b2 ∈ S1. By definition of S1, b1 �a b2. This fulfills condition (c) of the

theorem.

In the second case, b2 ∈ S2.

∃b2 ∈ S2 · a
may
−−→ b2

⇒ (by the definition of S2)

∃b2 ∈ S2 · a
may
−−→ b2 ∧ ∃b′ ∈ S1 · b2 �a b′

⇒ (by assumption, M is monotone)

∃b′ ∈ S1 · a
may
−−→ b′

Hence, b′ fulfills the condition (c) of the theorem.

Thus, if M is logically consistent, then

∀a, b1 ∈ S · a
must
−−→ b1 ⇒ ∃b2 ∈ S · b1 �a b2 ∧ a

may
−−→ b2 .

Part 3. (c) ⇒ (a) The proof proceeds by constructing a concrete BTS B that refines M .

Let C be a concrete statespace approximated by S. Let ρ ⊆ C × S be the corresponding

soundness relation with the abstraction function α : C → S. Let B be a BTS 〈C, R〉, where

R , {(c, d) ∈ C × C | ∃b ∈ S · (α(c), b) ∈ Rmay∧ (d, b) ∈ ρ}
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We show that ρ is a mixed simulation relation between M and B, i.e., M �ρ B. Let c ∈ C, and

a ∈ S be two states such that (c, a) ∈ ρ. Recall that this implies that a �a α(c).

First, we show that ρ satisfies condition (a) of Definition 2.11. Let b be a state in M such

that there is a must transition a
must
−−→ b. Then,

(a, b) ∈ Rmust

⇒ (by assumption, M is monotone and a �a α(c))

(α(c), b) ∈ Rmust

⇒ (by assumption of condition (c) of the theorem)

∃b′ ∈ S · b �a b′ ∧ (α(c), b′) ∈ Rmay

⇒ (by the definition of B)

∃b′ ∈ S · ∃d ∈ C · b �a b′ ∧ (c, d) ∈ R ∧ (d, b′) ∈ ρ

⇒ (by monotonicity of ρ)

∃d ∈ C · (c, d) ∈ R ∧ (d, b) ∈ ρ

Second, we show that ρ satisfies condition (b) of Definition 2.11. Let d be a state in B such

that there is a transition c → d. Then,

(c, d) ∈ R

⇒ (by the definition of B)

∃b ∈ S · (α(c), b) ∈ Rmay∧ (d, b) ∈ ρ

⇒ (by assumption, M is monotone, and a �a α(c))

∃b ∈ S · (a, b) ∈ Rmay∧ (d, b) ∈ ρ

Thus, we have constructed a BTS B and produced ρ which is a mixed simulation between

M and B. Hence, M is semantically consistent.

In the rest of this section, we highlight some of the consequences of Theorem 5.15. First,

note that Theorem 5.15 does not extend to monotone partial models! For example, consider

a monotone MixTSM3 in Figure 5.1. By Theorem 5.15,M3 is inconsistent: there is amust

transitiona1
must
−−→ a3, but nomaytransitiona1

may
−−→ a to a statea such thata3 �a a. Let p be

an atomic proposition: “x is a prime number”. LetL3 be a labeling function: for any states

of M3, L3(s) = ∅. That is,p is unknown at all the states inM3. The modelM3 = 〈M3, L3〉
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is semantically inconsistent. But,M3 is logically consistent – there does not exists a formula

ϕ such thatU(‖ϕ‖M3

i ) \ O(‖ϕ‖M3

i ) 6= ∅. Intuitively, the labeling functionL3 is too coarse to

detect the inconsistency logically.

Second, part (c) of Theorem 5.15 gives a necessary and sufficient structural condition for a

monotone MixTS to be consistent. Let us compare it with the previously known condition to

ensure logical consistency [HJS01, dAGJ04]:

∀a, b ∈ S · (a
must
−−→ b) ⇒ (a

may
−−→ b) .

Our new condition is weaker. Thus, there is a consistent monotone MixTS which has amust

transition that is not amay transition. For example, consider the MixTSM4 in Figure 5.1.

Note that themusttransitiona1
must
−−→ a3 is not matched by anymaytransition. LetB be a BTS

(Z, R), whereZ is the set of integers, andR is defined as follows:

R , {(x, x′) ∈ Z × Z | (x > 0 ∧ x′ = −1) ∨ (x ≤ 0 ∧ x′ = x− 2)} .

B refinesM4. Thus, by definition,M4 is semantically consistent. By Theorem 5.14,M4 is

logically consistent as well.

Third, by definition, a KMTS always satisfies condition (c) ofTheorem 5.15. Existing work

on KMTSs [HJS01] often implicitly assumes that the abstractdomain is flat (i.e., the abstract

ordering�a on S is discrete). This assumption ensures that every KMTS is monotone. For

such TSs, semantic and logical consistency coincide. Yet the assumption about the flatness

of the abstract domain is too restrictive. For example, it isnot true in a typical application

of predicate abstraction (e.g., in [GC06]). By looking at a wider range of transition systems

and considering not only flat abstract domains, we have uncovered the subtle but important

differences between logical and semantic consistency.

5.4.2 Logical and Semantic Consistency for Arbitrary Statespaces

In Section 5.4.1, we have assumed that the abstract statespaceS does not contain any incon-

sistent states. That is, ifa is in S, then its concretizationγ(a) is non-empty. We now lift this
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restriction, i.e., we aim to redefine (i) logical consistency, (ii) semantic consistency and (iii) the

structural condition of Theorem 5.15.

(i) An inconsistent state does not abstract any concrete states, so a temporal formula can

have any value in that state, including being both satisfied and refuted. We thus strengthen

Definition 5.12 as follows:

Definition 5.16. A modelM is logically consistentiff for everyϕ ∈ Lµ

a ∈ (U(‖ϕ‖i) \ O(‖ϕ‖i)) ⇒ γ(a) = ∅ .

If the abstract statespaceS has no inconsistent states, this definition reduces to Defini-

tion 5.12.

(ii) Semantic consistency does not need a new definition: a transition system issemanti-

cally consistentiff there is a BTS that refines it, independently of the structure of the abstract

statespace.

(iii) We now need to strengthen the structural condition to match the new Definition 5.16.

Specifically, we add the requirement that everymusttransition from aconsistentstate must be

matched by amaytransition into aconsistentstate.

Under these conditions, we now restate Theorem 5.15 to handle inconsistent states:

Theorem 5.17. Let M = 〈S,Rmust, Rmay〉 be a monotone MixTS. Then, the following are

equivalent:

(a) M is semantically consistent (Definition 5.13),

(b) M is logically consistent (Definition 5.16),

(c)
∀a, b1 ∈ S · (γ(a) 6= ∅ ∧ a

must
−−→ b1) ⇒

(∃b2 ∈ S · b1 �a b2 ∧ γ(b2) 6= ∅ ∧ a
may
−−→ b2).

Proof:

The proof is similar to that of Theorem 5.15.
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In this section, we have investigated the connection between semantic and logical consis-

tency of partial models. Semantic consistency is importantfor when partial TSs are used as

objects for abstracting concrete TSs. Logical consistencyis important when partial models are

used to interpret temporal logic formulas. In the followingtwo sections, we first compare the

expressive power of the different TS formalisms, i.e., whatcan be modeled and what abstrac-

tions can be captured (Section 5.5). Second, we compare the analyzability of the formalisms,

i.e., the cost and precision of model checking (Section 5.6).

5.5 Expressiveness

We show that GKMTSs, MixTSs, and KMTSs are expressively equivalent (Definition 5.4).

The equivalence of the three formalisms is proved by definingsemantics-preserving transla-

tions from GKMTSs to MixTSs, and from MixTSs to KMTSs. Since GKMTSs syntactically

subsume KMTSs, the translation from KMTSs to GKMTSs is basically an identity map.

5.5.1 GTOM: Translation from GKMTSs to MixTSs

We present the translation GTOM that converts a GKMTS into a semantically equivalent

MixTS. First, we illustrate the translation on a GKMTSG1 in Figure 5.2.G1 is not a MixTS

because ofmusthyper-transitiona1
must
−−→ {a2, a3}. This transition ensures that in every con-

crete BTS refiningG1, all states inγ(a1), i.e., those satisfying(x ≤ 0∧ even(x)), must have

a transition to a state inγ({a2, a3}), i.e., satisfying(x > 0). No single state ofG1 represents

(x > 0). Thus, this requirement can only be captured either by a hyper transition (as done in

G1), or by extendingG1 with a new state, saya5, such thatγ(a5) = (x > 0). In the latter

case, themusthyper-transitiona1
must
−−→ {a2, a3} can be replaced by (regular)musttransition

a1
must
−−→ a5. The result is a MixTSM5 in Figure 5.2. Sincea5 replaces a “hyper-state”{a2, a3},

a5 needs to preserve itsmaybehaviours. This is done by addinga5
may
−−→ a4 anda5

may
−−→ a2

corresponding toa2
may
−−→ a4 anda3

may
−−→ a2, respectively. There are no outgoingmusttransi-
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G1

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0
evn(x)

x > 0
odd(x) M5

a1 a4a5

a3

a2

x ≤ 0
evn(x) x > 0

x ≤ 0
odd(x)

x > 0
evn(x)

x > 0
odd(x)

G2

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x) M6

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x)

Figure 5.2: Two GKMTSs:G1,G2, and two MixTSs:M5,M6, whereG1 andG2 are semanti-

cally equivalent toM5 andM6, respectively.

tions froma5 since the existingmusttransitions froma2 anda3 are sufficient.G1 andM5 are

semantically equivalent: any BTS that refinesG1 also refinesM5, and vice versa.

In our example, a new state was added to encode a hyper-transition by a regular one. This

isn’t always necessary. For example, TSsG2 andM6 in Figure 5.2 are semantically equivalent.

The hyper-transitiona1
must
−−→ {a2, a3} is encoded bya1

must
−−→ a3 in M6 since the hyper-state

{a2, a3} is equivalent to an existing statea3, i.e.,γ({a2, a3}) = γ(a3) = (x > 0).

In summary, a GKMTSG is translated to a MixTSM in two steps:

(i) everymusthyper-transitiona
must
−−→ U ofG is replaced by a regularmusttransitiona

must
−−→

b, whereb is a (possibly new) state s.t.γ(b) = γ(U);

(ii) maytransitions are added for every state introduced in the firststep, if any.

We formalize this below.
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Definition 5.18(GTOM). LetG = 〈SG, R
may
G , Rmust

G 〉 be a GKMTS. The translationGTOM(G)

is a MixTSM = 〈SM , R
must
M , Rmay

M 〉, such that

SM , SG ∪ S+

S+ , {a | ∃(s, U) ∈ Rmust
G · γ(a) = γ(U) ∧ (∀t ∈ SG · γ(t) 6= γ(U))}

Rmay
M , Rmay

G ∪ {(a, b) | a ∈ S+ ∧ b ∈ SG ∧ ∃s ∈ SG · (s, b) ∈ Rmay
G ∧ γ(s) ⊆ γ(a)}

Rmust
M , {(a, b) | a ∈ SG ∧ b ∈ SM ∧ ∃U ⊆ SG · (a, U) ∈ Rmust

G ∧ γ(b) = γ(U)}

The translation GTOM is semantics-preserving.

Theorem 5.19.LetG be a GKMTS, andM = GTOM(G). Then,M is a MixTS, andG and

M are semantically equivalent.

Proof:

(1) According to the construction in Definition 5.18, every must hyper-transition is replaced by a

regular one. Therefore, M is a MixTS. (2) To prove that G and M are semantically equivalent,

we show that any concrete BTS B = 〈C, R〉 refines G iff it refines M . It is equivalent to

showing that the soundness relation ρG ⊆ C × SG is a mixed simulation between B and G iff

the soundness relation ρM ⊆ C × SM is a mixed simulation between B and M . This follows

from the construction of transition relations given in Definition 5.18.

A corollary of Theorem 5.19 is that GKMTSs and MixTSs are equivalent w.r.t. thorough

semantics. LetLG be a labeling function forG. We extend the translation GTOM to a GKMTS

model〈G,LG〉 such that GTOM(〈G,LG〉) , 〈M,LM〉, whereM = GTOM(G), andLM is a

labeling function forSM defined as follows:

LM(a) ,















LG(a) if a ∈ SG

⋂

{s∈SG|γ(s)⊆γ(a)} LG(s) if a ∈ S+

That is, ifa is a state belonging to the original statespaceSG, the labels ona are the same as

before. For a new statea added by the translation, since the concrete states approximated bya

are theunionof the ones approximated by a set of states inSG, the labels ona are the literals
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that are true in all the concrete states; therefore,LM(a) is defined as the intersection of the

labels on the states inSG that are more precise thana.

Theorem 5.20.The state labelingLM above is well-defined and approximates the same la-

bellings asLG.

Proof:

The proof immediately follows from the approximation defined for state labeling and construc-

tion of LM .

As a result,〈G,LG〉 and〈M,LM〉 satisfy the same properties under thorough semantics.

Corollary 5.21. Let 〈G,LG〉 be a GKMTS model and〈M,LM〉 = GTOM(〈G,LG〉). Then,

〈G,LG〉 and〈M,LM〉 are equivalent w.r.t. thorough semantics.

Complexity. We show that the translation GTOM does not increase the size of the model. Let

G be a GKMTS with the statespaceSG, andM = GTOM(G). The size ofG is at most

|SG × 2SG |. Each new state added by GTOM corresponds to a subset ofSG, i.e.,|S+| ≤ |2SG |.

Furthermore, no transitions between the states inS+ are added. Thus, the size ofM is also at

most|SG × 2SG |.

Sometimes GTOM can reduce a GKMTS exponentially. For example, assume thatSG is a

disjunctive completion [CC92], i.e., for every subsetU of SG there exists an equivalent element

s in SG such thatγ(U) = γ(s). In this case, GTOM does not add any new states, i.e.,S+ = ∅.

This makes the size of the output MixTSs be|SG × SG|, which is exponentially smaller than

that of the input GKMTS.

5.5.2 MTOK: Translation from MixTSs to KMTSs

We present the translation MTOK that converts a MixTS into a semantically equivalent KMTS.

First, we illustrate the translation using a MixTSM7 in Figure 5.3.M7 is not a KMTS because

of the twomust onlytransitions,a1
must
−−→ a2 anda2

must
−−→ a4. One way to turnM7 into a KMTS
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M7

a1 a4

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

K1

a1 a4

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

K2

a1 a4a5

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

Figure 5.3: One MixTSs:M7, and two KMTSs:K1, K2, whereM7 andK4 are semantically

equivalent.

is to addmaytransitionsa1
may
−−→ a2 anda2

may
−−→ a4, resulting inK1 in Figure 5.3. This naive

transformation is not semantics-preserving, i.e.,K1 andM7 are not semantically equivalent.

For example, the concrete system

((y > 0) ∧ (x > 0) ∧ odd(x) ∧ x′ = x+ 1 ∧ y′ = y) ∨

((x > 0) ∧ odd(x) ∧ x′ = x ∧ y′ = −1 × x) ∨

((x > 0) ∧ ¬odd(x) ∧ x′ = x+ 1 ∧ y′ = −1 × x)

refinesK1, but notM7: the transition〈x = 1, y = 1〉 → 〈x = 2, y = 1〉 cannot be simulated

by anymaytransition ofM7.

Themust onlytransitiona1
must
−−→ a2 of M7 ensures that in any concrete BTS refiningM7,

all states inγ(a1), i.e., those satisfying(x > 0∧ odd(x)∧ y > 0), must have a transition

to a state inγ(a2), i.e., satisfying(x > 0). This is further restricted by themay transitions

from a1 that ensure that states inγ(a1) have transitions only to states inγ({a1, a3}). Hence,

in any BTS refiningM7, every state inγ(a1) must (and may) have a transition to a state in

γ(a2) ∩ γ({a1, a3}). That is, the restrictions posed by amust onlytransition froma1 are

further restricted by the set of all of themaytransitions froma1. In general, for abstract states

b0, . . . , bk, amust onlytransitionb0
must
−−→ b1, and a set ofmaytransitionsb0

may
−−→ b2, . . . , b0

may
−−→

bk ensure that every state inγ(b0) has a transition to a state inγ(b1) ∩ γ({b2, . . . , bk}).
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Themust onlytransitiona2
must
−−→ a4 inM7 is equivalent to a pair ofmayandmusttransitions

froma2 toa4, sinceγ(a4)∩γ({a1, a2, a3}) = γ(a4). Themust onlytransitiona1
must
−−→ a2 can be

equivalently represented by (a) adding a new statea5 such thatγ(a5) = γ(a2)∩ γ({a1, a3}) =

(x > 0∧ odd(x)), and (b) adding amustand amaytransition froma1 to a5. Moreover, since

a5 approximates some of the same states asa2, i.e.,γ(a5) ⊆ γ(a2), a5 inherits the transitions

from a2: a5
may
−−→ a1, a5

may
−−→ a2, a5

may
−−→ a3, a5

must
−−→ a4, a5

may
−−→ a4. The final result is the

KMTS K2 in Figure 5.3, which is semantically equivalent toM7.

In summary, a MixTSM is translated to a KMTSK in two steps:

(i) everymust onlytransitiona
must
−−→ b ofM is replaced by a pair ofmustandmaytransitions

a
must
−−→ â→ b anda

may
−−→ â→ b, whereâ→ b is a (possibly new) abstract state such that

γ(â→ b) = γ(b) ∩ γ(Rmay
M (a));

(ii) mayandmusttransitions are added for all states introduced in the first step.

We formalize this below.

Definition 5.22(MTOK). LetM = 〈SM , R
may
M , Rmust

M 〉 be a MixTS. The translationMTOK(M)

is a KMTSK = 〈SK , R
may
K , Rmust

K 〉, s.t.

SK , SM ∪ S+

Rmay
K , Rmay

M ∪ REPL∪ IM AY ∪ IMO

Rmust
K , (Rmust

M ∩Rmay
M ) ∪ REPL∪ IM UST∪ IMO,
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where

S+ , {â→ b | ∃(a, b) ∈ (Rmust
M \Rmay

M ) · ∀s ∈ SM · γ(s) 6= γ(â→ b)}

REPL , {(a, â→ b) | ∃(a, b) ∈ (Rmust
M \Rmay

M )}

IM AY , {(â→ b, b′) | ∃a, b, b′ ∈ SM ·

(a, b) ∈ (Rmust
M \Rmay

M ) ∧ (b, b′) ∈ Rmay
M ∧ â→ b ∈ S+}

IM UST , {(â→ b, b′) | ∃a, b, b′ ∈ SM ·

(a, b) ∈ (Rmust
M \Rmay

M ) ∧ (b, b′) ∈ (Rmust
M ∩Rmay

M ) ∧ â→ b ∈ S+}

IMO , {(â→ b, b̂→ b′ | ∃a, b, b′ ∈ SM ·

(a, b), (b, b′) ∈ (Rmust
M \Rmay

M ) ∧ â→ b ∈ S+}

In Definition 5.22, REPL denotes transitions that replacemust onlytransitions, and IMAY ,

IM UST and IMO denote transitions from newly added states inS+ that correspond tomay,

must, andmust onlytransitions of the original system, respectively. In our example of MTOK(M7),

we have

S+ = {a5},

REPL = {(a1, a5), (a2, a4)},

IM UST = ∅,

IMO = {(a5, a4)},

IM AY = {(a5, a1), (a5, a2), (a5, a3)}.

The result of the translation MTOK is a KMTS: everymust transition is matched by amay

transition.

Theorem 5.23.LetM be a MixTS, andK = MTOK(M). ThenK is a KMTS, andM andK

are semantically equivalent.

Proof:

(1) The construction in Definition 5.22 ensures that every must transition in K is matched

by a may transition. Therefore, K is a KMTS. (2) To prove that M and K are semantically

equivalent, we show that for any concrete BTS B = 〈C, R〉, the soundness relation ρM ⊆

C × SM is a mixed simulation between B and M iff the soundness relation ρK ⊆ C × SK is a
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mixed simulation between B and K. This follows from the construction of transition relations

in Definition 5.22.

A corollary of Theorem 5.23 is that MixTSs and KMTSs are equivalent w.r.t. thorough

semantics. LetLM be a labeling function forM . We extend MTOK to 〈M,LM〉 such that

MTOK(〈M,LM〉) , 〈K,LK〉, whereK = MTOK(M), andLK is a labeling function forSK

defined as follows:

LK(a) ,















LM(a) if a ∈ SM

⋃

{s∈SM |γ(a)⊆γ(s)} LM(s) if a ∈ S+

In this case, ifa is a new state added by the translation, the concrete states approximated bya

correspond to theintersectionof the concrete states approximated by a set of states inSG; the

labels ona are all the literals which are true on the concrete states. Therefore,LK(a) is defined

as the union of the labels on the states inSM that are less precise thana.

Theorem 5.24.The state labelingLK above is well-defined and approximates the same la-

bellings asLM .

Proof:

The proof immediately follows from the approximation defined for state labeling and the con-

struction of LK .

As a result,〈M,LM〉 and〈K,LK〉 satisfy the same properties under thorough semantics.

Corollary 5.25. Let 〈M,LM〉 be a MixTS model and〈K,LK〉 = MTOK(〈M,LM〉). Then,

〈M,LM〉 and〈K,LK〉 are equivalent w.r.t. thorough semantics.

Complexity. Let M = 〈SM , R
may
M , Rmust

M 〉 be a MixTS, andK be a KMTS such thatK =

MTOK(M). The size ofM is bounded byO(|SM × SM |). In the worst case, the translation

adds a new state for eachmust onlytransition inRmust
M \ Rmay

M . Thus, the number of new states

|S+| is bounded by|SM × SM |, and|K| is bounded byO(|SM × SM |2).

MixTSs are more succinct than KMTSs: over a fixed statespaceS, the set of MixTSs is

more expressive than the set of KMTSs. This holds becauseS+ may not be empty in some
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cases, i.e., new states have to be added by MTOK. The following theorem shows that ifS

is a powerset abstract domain [BHZ06], then MTOK does not add new states, and therefore,

MixTS and KMTSs overS are equally expressive.

Theorem 5.26.Let S be an abstract statespace satisfying the assumption of the existence of

best abstraction. For any abstract statea ∈ S and a subsetQ ⊆ S, there exists a subsetV ⊆ S

s.t.γ(V ) = γ(a) ∩ γ(Q).

Proof:

Let V , {b ∈ S | ∃c · c ∈ γ(a)∩ γ(Q)∧ b = α(c)}. The proof of γ(V ) ⊇ γ(a)∩ γ(Q) follows from

the definition of V . To prove γ(V ) ⊆ γ(a)∩ γ(Q), we show that for each b ∈ V , γ(b) ⊆ γ(a) and

γ(b) ⊆ γ(Q), which follows from the definition of abstraction function.

5.6 Reduced Inductive Semantics

GKMTSs and MixTSs are equally expressive: a GKMTS model and its equivalent MixTS

model satisfy the same properties under thorough semantics. However, thorough model check-

ing is expensive. In practice, model checking of partial models is done w.r.t. a more tractable

inductive semantics, SIS. GKMTSs are more precise than MixTSs w.r.t. SIS: for anyϕ ∈ Lµ,

model checkingϕ in a GKMTS modelG w.r.t. SIS is more precise than model checking it

in the MixTS modelM = GTOM(G). However, the direct use of GKMTSs in symbolic

model checkers has been hampered by the difficulty of encoding hyper-transitions into BDDs.

In this section, we propose a new semantics, calledreduced inductive semantics(RIS), that

is inductive while being strictly more precise than SIS. We show that GKMTSs and MixTSs

are equivalent w.r.t. RIS. In Section 5.7, we give a symbolic model checking procedure for

computing RIS over MixTSs. The outcome is an algorithm that combines the benefits of the

symbolic encoding of MixTSs with the better model checking precision of GKMTSs.

In Section 5.6.1, we illustrate the differences between GKMTSs and MixTSs w.r.t. SIS; de-

fine RIS in Section 5.6.2; and show how to effectively model check w.r.t. RIS in Section 5.6.3.
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5.6.1 Example

Let p andq denote predicates(x > 0) andodd(x), respectively. Consider the modelG1 =

〈G1, LG1
〉, whereG1 is shown in Figure 5.2, andLG1

is a labeling function that labels each

abstract state as follows:

LG1
(a1) = {¬p,¬q} LG1

(a2) = {p, q}

LG1
(a3) = {p,¬q} LG1

(a4) = {¬p, q} .

Let M5 = 〈M5, LM5
〉 be the model obtained fromG1 by GTOM, whereM5 is shown in Fig-

ure 5.2 andLM5
(s) , if s = a5 then {p} elseLG1

(s).

Compare the value ofϕ , ♦(q ∨ ¬q) under SIS onG1 andM5:

‖ϕ‖G1

i = 〈{a1, a2, a3}, {a1, a2, a3, a4}〉

‖ϕ‖M5

i = 〈{a2, a3}, {a1, a2, a3, a4, a5}〉

According toG1, in all states corresponding toa1, ϕ is true . According toM5, the value ofϕ

is unknown in exactly the same states. SinceM5 = GTOM(G1), G1 andM5 are semantically

equivalent. Thus, althoughM5 andG1 are semantically equivalent,M5 is less precise thanG1

for model checking w.r.t. SIS.

Let us reexamine the above example. First, there is no precision loss during the evaluation

of q ∨ ¬q:

e1 = ‖q ∨ ¬q‖G1

i =〈{a1, a2, a3, a4}, {a1, a2, a3, a4}〉 (⋆)

e2 = ‖q ∨ ¬q‖M5

i =〈{a1, a2, a3, a4}, {a1, a2, a3, a4, a5}〉

Sinceγ(U(e1)) = γ(U(e2)) andγ(O(e1)) = γ(O(e2)) = γ(∅), e1 ≡a e2. However, there is a

subtle difference betweene1 ande2. In statea5 ofM5, q∨¬q is unknown even though it is true

in botha2 anda3, andγ(a5) = γ(a2)∪ γ(a3). This minor imprecision is then magnified by the

♦ operator.

This loss of precision is not limited to tautologies. For example, a formulaµZ · (¬p∧ q)∨

♦Z, i.e,EF (¬p∧ q) in CTL, is true in statea1 of G1, but is unknown in the same state ofM5.
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5.6.2 Reduced Inductive Semantics for Partial Models

In this section, we define the reduced inductive semantics (RIS). The new semantics is inductive

and isstrictly more precisethan SIS. The key idea is to eliminate any local imprecision by using

a specialreductionoperator

Reduction Operator. Let S be an abstract statespace, ande, e′ ∈ 2S × 2S be two abstract

elements. Recall that in the information ordere is less thane′, i.e.,e �i e
′, if U(e) is contained

in U(e′), andO(e) containsO(e′). We define thereductionoperator as follows:

RED(e) , 〈REDU(U), REDO(O)〉

whereREDU(U) , {s | γ(s) ⊆ γ(U)} andREDO(O) , {s | γ(s) * γ(O)}. Intuitively, RED(e)

increasesU(e) and decreasesO(e) as much as possible without affecting the semantic meaning

of e. That is,RED(e) is the largest element w.r.t. information ordering that is semantically

equivalent toe. For example, considerRED(e2), wheree2 is as defined by (⋆) above. Then,

e3 = RED(e2) = 〈{a1, a2, a3, a4, a5}, {a1, a2, a3, a4, a5}〉 (⋆⋆)

e3 differs from e2 only in the addition ofa5 to U(e3). Sinceγ(U(e2)) = γ(U(e3)) and

γ(O(e2)) = γ(O(e3)), e2 ≡a e3; but e3 is more informative, sinceU(e2) ⊂ U(e3).

An elemente = 〈U,O〉 ∈ 2S × 2S is monotoneiff

s1 �a s2 ⇒ (s1 ∈ U ⇒ s2 ∈ U ∧ s1 /∈ O ⇒ s2 /∈ O)

The monotonicity of elements is preserved under propositional operations. That is, ife and

e′ are monotone elements, so are∼e ande ⊓ e′. Moreover,RED(e) is monotone for anye,

and commutes with propositional operations on monotone elements. That is, lete ande′ be

monotone elements of2S × 2S. Then,∼e ≡a ∼RED(e), ande ⊓ e′ ≡a RED(e) ⊓ RED(e′).

Reduced Inductive Semantics. RIS is defined by applying theRED operator before and after♦

to prevent it from propagating imprecision.
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Definition 5.27(RIS). LetM = 〈M,L〉 be a model, s.t.M = 〈S,Rmay, Rmust〉 andσ : V ar →

2S × 2S. Thereduced inductive semanticsof ϕ ∈ Lµ is defined as follows:

||p||Mr,σ , 〈{s | p ∈ L(s)}, {s | ¬p /∈ L(s)}〉

||¬ϕ||Mr,σ , ∼||ϕ||Mr,σ

||ϕ ∧ ψ||Mr,σ , ||ϕ||Mr,σ ⊓ ||ψ||Mr,σ

||♦ϕ||Mr,σ , RED(〈preU(REDU(U(||ϕ||Mr,σ))), preO(REDO(O(||ϕ||Mr,σ)))〉)

||Z||Mr,σ , σ(Z)

||µZ · ϕ||Mr,σ , 〈lfp⊑
(

λQ · U(||ϕ||Mr,σ[Z 7→Q])
)

, lfp⊑
(

λQ · O(||ϕ||Mr,σ[Z 7→Q])
)

〉

The only difference between RIS (Definition 5.27) and SIS (Definition 2.10) is the seman-

tics of ♦. Since we assume that state-labelings are monotone, applying RED to other operators

as well does not improve precision. We now show that RIS is sound.

Theorem 5.28.LetC be a concrete statespace approximated by an abstract statespaceS via

〈C, ρ, γ, α, S〉. LetB = 〈B,LB〉 be a concrete model overC, andM = 〈M,LM〉 be a partial

model overS. If M approximatesB, then, for anyLµ formulaϕ:

γ(U(‖ϕ‖Mr )) ⊆ U(‖ϕ‖Br ), and γ(O(‖ϕ‖Mr )) ⊆ O(‖ϕ‖Br ) .

Proof:

The only difference between RIS and SIS is the application of the RED operator before and

after ♦. Since RED is semantics-preserving, following Theorem 2.14, the result holds.

Returning to our running example, RIS ofϕ onM5 is computed as follows: RIS ofq, ¬q,

andq ∨ ¬q is the same as SIS. Thus,‖q ∨ ¬q‖M5

r = e2. To compute♦, recall from (⋆⋆) that

RED(e2) = e3; thus,‖ϕ‖M5

r = 〈{a1, a2, a3, a5}, {a1, a2, a3, a4, a5}〉. Hence,‖ϕ‖M5

r is more

precise than‖ϕ‖M1

i .

Theorem 5.29.RIS is more precise than SIS:‖ϕ‖i �a ‖ϕ‖r.

Proof:

The proof is by structural induction on ϕ. For the base case, it is obvious that for any atomic
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proposition p, ‖p‖i ≡a ‖p‖r. In the following, we show the inductive case for ♦ϕ; the proofs of

other cases are trivial.

We show that ||ϕ||i �a ||ϕ||r ⇒ ||♦ϕ||i �a ||♦ϕ||r, which is equivalent to proving the

following two statements:

(a) ||ϕ||i �a ||ϕ||r ⇒ γ(U(||♦ϕ||i)) ⊆ γ(U(||♦ϕ||r))

(b) ||ϕ||i �a ||ϕ||r ⇒ γ(O(||♦ϕ||i)) ⊆ γ(O(||♦ϕ||r))

The proof of (a) is as follows. First, note that for any two sets Q1, Q2, we have that

γ(Q1) ⊆ γ(REDU(Q2)) ⇒ Q1 ⊆ REDU(Q2) (P1)

This follows from the following derivation: suppose Q1 * REDU(Q2). Then there exists a state

s s.t. s ∈ Q1 and s /∈ REDU(Q2). By the definition of REDU, γ(s) * γ(Q2); on the other hand,

since γ(Q1) ⊆ γ(REDU(Q2)) = γ(Q2), γ(s) ⊆ γ(Q2), reaching a contradition.

We then have the following:

||ϕ||i �a ||ϕ||r

⇒ (by the definition of �a)

γ(U(||ϕ||i) ⊆ γ(U(||ϕ||r))

⇒ (by the definition of REDU, γ(Q) = γ(REDU(Q)))

γ(U(||ϕ||i) ⊆ γ(REDU(U(||ϕ||r)))

⇒ (by (P1))

U(||ϕ||i)) ⊆ REDU(U(||ϕ||r))

⇒ (by monotonicity of pre )

preU(U(||ϕ||i)) ⊆ preU(REDU(U(||ϕ||r)))

⇒ (by monotonicity of γ)

γ(preU(U(||ϕ||i))) ⊆ γ(preU(REDU(U(||ϕ||r))))

⇒ (by the definition of REDU, γ(Q) = γ(REDU(Q)))

γ(preU(U(||ϕ||i))) ⊆ γ(REDU(preU(REDU(U(||ϕ||r)))))

⇒ (by the definitions of SIS and RIS)

γ(U(||♦ϕ||i)) ⊆ γ(U(||♦ϕ||r))
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Proof of (b) is dual of the one above.

The previous example illustrates another important point:GKMTSs and MixTSs are equiv-

alent w.r.t. RIS. For example,‖ϕ‖M5

r is equivalent to‖ϕ‖G1

r . The following theorem formalizes

this.

Theorem 5.30.LetG be a GKMTS model, andM = GTOM(G). Then,G andM are equiva-

lent w.r.t. RIS:∀ϕ ∈ Lµ · ‖ϕ‖Gr ≡a ‖ϕ‖Mr.

Proof:

The proof is by structural induction on ϕ. For the base case, according to the definition of LM ,

‖p‖Gr ≡a ‖p‖Mr for any atomic proposition p. In the following, we show the inductive case for

♦ϕ; the proofs of the other cases are trivial.

We show that ‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ ‖♦ϕ‖Gr ≡a ‖♦ϕ‖Mr , which is equivalent to proving the

following two statements:

(a) ‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ γ(U(‖♦ϕ‖Gr )) = γ(U(‖♦ϕ‖Mr ))

(b) ‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ γ(O(‖♦ϕ‖Gr )) = γ(O(‖♦ϕ‖Mr ))

The proof of (a) is as follows. First, note that for any concrete state c and a set of abstract

states Q,

c ∈ γ(REDU(Q)) ⇔ ∃a ∈ Q · c ∈ γ(a) (P2)
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We then have that, for any concrete state c,

c ∈ γ(U(‖♦ϕ‖Gr ))

⇔ (by the definition of RIS)

c ∈ γ(REDU(preG
U
(REDU(U(‖ϕ‖Gr )))))

⇔ ( (⇒) let a be the abstract state in (P2),

(⇐) since γ(Q) = γ(REDU(Q)))

c ∈ γ(a) ∧ a ∈ preG
U
(REDU(U(‖ϕ‖Gr )))

⇔ (by the definition of preU)

c ∈ γ(a) ∧ ∃Q ⊆ REDU(U(‖ϕ‖Gr )) · Rmust
G (a, Q)

⇔ (by the definition of GTOM)

c ∈ γ(a) ∧ ∃b · γ(b) ⊆ γ(REDU(U(‖ϕ‖Gr ))) ∧ Rmust
M (a, b)

⇔ (since ‖ϕ‖Gr ≡a ‖ϕ‖Mr , γ(U(‖ϕ‖Gr )) = γ(U(‖ϕ‖Mr )))

c ∈ γ(a) ∧ ∃b · γ(b) ⊆ γ(REDU(U(‖ϕ‖Mr ))) ∧ Rmust
M (a, b)

⇔ (since γ(Q) = γ(REDU(Q)), by the definition of REDU)

c ∈ γ(a) ∧ ∃b ∈ REDU(U(‖ϕ‖Mr )) · Rmust
M (a, b)

⇔ (by the definition of preU)

c ∈ γ(a) ∧ a ∈ preM
U

(REDU(U(‖ϕ‖Mr )))

⇔ ( (⇒) since γ(Q) = γ(REDU(Q)),

(⇐) let a be the abstract state in (P2))

c ∈ γ(REDU(preM
U

(REDU(U(‖ϕ‖Gr )))))

⇔ (by the definition of RIS)

c ∈ γ(U(‖♦ϕ‖Mr ))

The proof of (b) is similar to the one above, based on the observation that for any concrete

state c and a set of abstract states Q, c ∈ γ(REDO(Q)) ⇔ ∃a ∈ Q · c ∈ γ(a).

Our new semantics RIS is both inductive and precise enough to make GKMTSs and MixTSs

equivalent. However, the definition ofRED operator is based on concretization,γ, of abstract

elements. In practice, reasoning directly about concrete elements may be undecidable or inef-

ficient. We address this limitation next.
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5.6.3 Reduced Inductive Semantics for Monotone Models

We study the reduction operatorRED of RIS in the context of monotone models. As shown

in Section 5.3, monotone models are as expressive as their regular counterparts. Furthermore,

models built by automated predicate abstraction [GC06] are monotone by construction. Thus,

restrictingRED to monotone models is neither a theoretical nor a practical restriction.

Note that in any monotone model and any formulaϕ, ‖ϕ‖r is a monotone element. This

holds because of the monotonicity of the state labeling and the transition relation. For mono-

tone elements,RED can be computed effectively, as we show below.

For a states ∈ S, theupsetof s is defined as

↑s , {t ∈ α[S] | s �a t} .

Thus,↑s is the set of all those states inα[S] that are more precise thans. For example, letS1 be

the statespace ofM5 shown in Figure 5.2. Then,α[S1] = {a1, a2, a3, a4}, and↑a5 = {a2, a3}.

A states and a set↑s approximate the same set of concrete states, i.e.,γ(s) = γ(↑s). For

example,γ(↑a5) = γ(a5) = (x > 0).

We now show that the↑s computes a canonical representation of an elements of the abstract

statespace.

Theorem 5.31.LetS be an abstract statespace,e = 〈U,O〉 be a monotone element of2S ×2S,

ands ∈ S. Then,γ(s) ⊆ γ(U) iff ↑s ⊆ U andγ(s) 6⊆ γ(O) iff ↑s 6⊆ O.

Proof:

First, we show that γ(s) ⊆ γ(U) ⇔ ↑s ⊆ U . The (⇐) direction follows directly from the

definition of γ. We prove the (⇒) direction by contradiction. Let C be the concrete statespace
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approximated by S. Suppose that ↑s * U . Then,

↑s * U

⇒ ∃a ∈ S · a ∈ ↑s ∧ a /∈ U

⇒ (by the definition of ↑s, a ∈ α[S])

∃a ∈ S · s �a a ∧ a /∈ U ∧ ∃c ∈ C · a = α(c)

⇒ (since s �a a, γ(a) ⊆ γ(s); since γ(s) ⊆ γ(U))

∃a ∈ S · a /∈ U ∧ ∃c ∈ C · a = α(c) ∧ c ∈ γ(U)

⇒ (by the definition of γ)

∃a ∈ S · a /∈ U ∧ ∃c ∈ C · a = α(c) ∧ ∃b ∈ U · c ∈ γ(b)

⇒ (by the definition of α)

∃a ∈ S · a /∈ U ∧ ∃b ∈ U · b �a a

⇒ (by monotonicity of e, a ∈ U )

∃a ∈ S · a /∈ U ∧ a ∈ U

⇒ false

The proof of γ(s) 6⊆ γ(O) ⇔ ↑s 6⊆ O is dual of the one above.

We now define a new operatorred for monotone elements. Lete = 〈U,O〉 be a monotone

element of2S × 2S. red is defined as

red(e) , 〈redU(U), redO(O)〉

whereredU(U) , {s | ↑s ⊆ U} andredO(O) , {s | ↑s * O)}. A corollary of Theorem 5.31

is thatred andRED are equivalent.

Corollary 5.32. Let S be an abstract statespace, ande be a monotone element in2S × 2S.

Then,red(e) = RED(e).

For example, the elemente2 defined in (⋆) is monotone. We have thatred(U(e2)) =

{a1, a2, a3, a4, a5} since↑a5 = {a2, a3} ⊆ U(e2), andred(O(e2)) is the same asO(e2) since

O(e2) is empty. Therefore,red(e2) andRED(e2) are equal. Note thatred can be computed

effectively since it does not reason about concrete elements directly.
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In this section, we have introduced a new inductive semantics RIS, and shown that it is

more precise than SIS, and that GKMTSs and MixTSs are equivalent w.r.t. RIS. RIS can be

computed effectively on monotone models, which is not a limitation since monotone models

are as expressive as their non-monotone counterparts.

5.7 Symbolic Model Checking of RIS using BDDs

In this section, we describe a symbolic algorithm RIS that implements the RIS semantics

for monotone models constructed using predicate abstraction. These are the models used by

existing software model checkers [GWC06b].

Our implementation is based on the following observation. LetS be an abstract statespace.

Then, for any monotone element of2S × 2S, there exists asemantically equivalentelement in

2α[S] × 2α[S]. For example, the monotone elemente2 defined in (⋆) is semantically equivalent

to 〈{a1, a2, a3, a4}, {a1, a2, a3, a4}〉.

Theorem 5.33.Lete1 = 〈U1, O1〉 be a monotone element of2S × 2S, ande2 = 〈U2, O2〉 be in

2α[S] × 2α[S]. If U1 ∩ α[S] = U2 andO1 ∩ α[S] = O2, thene1 ≡a e2.

Proof:

This is proved by showing that RED(e1) = RED(e2); since RED is semantics-preserving, the result

holds.

This theorem allows us to restrict the algorithm to computing sets overα[S] instead of sets

overS. Another consequence of Theorem 5.33 is that the transitionrelations can be simplified

as well, since we only need the result of the pre-image in the states ofα[S].

Theorem 5.34.LetRmay ⊆ S×S andRmust⊆ S×S be themayandmusttransition relations

of a monotone MixTS, respectively, ande = 〈U,O〉 be a monotone element of2S × 2S. Define

Û , U ∩α[S], Ô , O ∩α[S], R̂must , Rmust∩ (α[S]×S), andR̂may , Rmay∩ (α[S]×α[S]).

Then,

〈pre[Rmust](REDU(U)),pre[Rmay](REDO(O))〉 ≡a 〈pre[R̂must](REDU(Û)),pre[R̂may](Ô)〉
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Proof:

By the definition of ≡a, the theorem is equivalent to proving that the following results hold:

(a) γ(pre[Rmust](REDU(U))) = γ(pre[R̂must](REDU(Û)))

(b) γ(pre[Rmay](REDO(O))) = γ(pre[R̂may](Ô))

(1) We first show that (a) holds. The proof of γ(pre[Rmust](REDU(U))) ⊆ γ(pre[R̂1](REDU(Û))) is

shown below. For any concrete state c,

c ∈ γ(pre[Rmust](REDU(U)))

⇒ ∃a ∈ S · c ∈ γ(a) ∧ a ∈ pre[Rmust](REDU(U))

⇒ (by the definition of pre)

∃a ∈ S · c ∈ γ(a) ∧ ∃b ∈ REDU(U) · Rmust(a, b)

⇒ (let a′ = α(c); by the definition of α)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃a ∈ S · a �a a′ ∧ ∃b ∈ REDU(U) · Rmust(a, b)

⇒ (by monotonicity of the transition relations)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(U) · Rmust(a′, b)

⇒ (by the definition of R̂must)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(U) · R̂must(a′, b)

⇒ (since e is a monotone element, γ(U) = γ(Û))

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(Û) · R̂must(a′, b)

⇒ (by the definition of pre)

c ∈ γ(a′) ∧ a′ ∈ pre[R̂must](REDU(Û))

⇒ c ∈ γ(pre[R̂must](REDU(U)))

The proof of γ(pre[Rmust](REDU(U))) ⊇ γ(pre[R̂must](REDU(Û))) follows from the definitions of

R̂must and Û .

(2) We now show that γ(pre[Rmay](REDO(O))) = γ(pre[R̂may](Ô)). The proof of
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γ(pre[Rmay](REDO(O))) ⊆ γ(pre[R̂may](Ô)) is shown below. For any concrete state c,

c ∈ γ(pre[Rmay](REDO(O)))

⇒ ∃a ∈ S · c ∈ γ(a) ∧ a ∈ pre[Rmay](REDO(O))

⇒ (by the definition of pre)

∃a ∈ S · c ∈ γ(a) ∧ Rmay(a) ⊆ REDO(O)

⇒ (let a′ = α(c); by the definition of α)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃a ∈ S · a �a a′ ∧ Rmay(a) ⊆ REDO(O)

⇒ (by monotonicity of the transition relations)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃a ∈ S · Rmay(a′) ⊆ Rmay(a) ⊆ REDO(O)

⇒ (by the definition of R̂may, Rmay(a′) ∩ α[S] = R̂may(a′))

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ (REDO(O) ∩ α[S])

⇒ (since e is a monotone element, ∀s ∈ α[S] · s ∈ REDO(O) ⇔ s ∈ O )

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ (O ∩ α[S])

⇒ (by the definition of Ô)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ α[S] \ Ô

⇒ (by the definition of pre)

c ∈ γ(a′) ∧ a′ ∈ γ(pre[R̂may](Ô))

⇒ c ∈ γ(pre[R̂may](Ô))

The proof of γ(pre[Rmay](REDO(O))) ⊇ γ(pre[R̂may](Ô)) is similar to the one above.

The algorithm RIS is shown in Figure 5.4. It uses BDDs to symbolically represent and

manipulate sets of states and transition relations. Functions that are prefixed with “BDD” are

the standard BDD operations. The algorithm works recursively on the structure of the input

formulaϕ. The fixpoints are computed as usual, by iterating until convergence. We describe

the details of the implementation below.

Let P = {p1, . . . , pn} be a set ofn predicates. Recall that Mon(P ) denotes the set of

monomials overP , and MT(P ) — the set of minterms overP . Furthermore,α[Mon(P )] =

MT(P ). The input to the algorithm is a MixTS model〈M,LM〉, s.t. M = (S,Rmay, Rmust),

S = Mon(P ), andLM(s) = Lit(s), and anLµ propertyϕ. Without loss of generality, by
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1: global var Rmay, Rmust : BDD

2: func RIS(Exprϕ) : BDD

3: match ϕ with

4: ATOMIC(p) : return ABSV(BDDVAR(“p” ),

BDDVAR(“p” ))

5: ¬ψ : return ABSNOT(RIS(ψ))

6: ψ1 ∧ ψ2 : return ABSAND(RIS(ψ1),RIS(ψ2))

7: ψ1 ∨ ψ2 : return ABSOR(RIS(ψ1),RIS(ψ2))

8: ♦ψ : return ABSPRE(Rmay, Rmust,RIS(ψ))

9: µψ : return RISlfp(ψ)

10: νψ : return RISgfp(ψ)

11:

12: func ABSV(BDD u, BDD o) : BDD

13: sel := BDDVAR(“sel”)

14: return BDDITE(sel, u, o)

15:

16: func ABSO(BDD v) = v[0/sel]

17: func ABSU(BDD v) = v[1/sel]

18: func ABSAND(BDD v1, BDD v2) = BDDAND(v1, v2)

19: func ABSOR(BDD v1, BDD v2) = BDDOR(v1, v2)

20: func ABSEQ(BDD v1, BDD v2) = BDDEQ(v1, v2)

21:

22: func ABSNOT(BDD v) : BDD

23: o := ABSO(v), u := ABSU(v)

24: return ABSV(BDDNOT(o), BDDNOT(u))

25:

26: func ABSREDU(BDD v) : BDD

27: if (BDDISCONST(v)) return v

28: b := BDDROOTVAR(v), h := UVAR(b)

29: T := ABSREDU(v[1/b]), F := ABSREDU(v[0/b])

30: tmp := BDDITE(b, T, F )

31: return BDDITE(h, BDDAND(T, F ), tmp)

32:

33: func ABSPRE(BDD Rmay, BDD Rmust, BDD v) : BDD

34: o := ABSO(V), u := ABSREDU(ABSU(V))

35: return ABSV(BDDPRE(Rmust, u), BDDPRE(Rmay, o))

Figure 5.4: The RIS algorithm and its supporting functions.

Theorem 5.34, we assume that the transition relations are restricted s.t.Rmay ⊆ MT(P ) ×

MT(P ), andRmust⊆ MT(P ) × Mon(P ).

The algorithm uses the following sets of BDD variables:B = {bi | pi ∈ P} – the current

state Boolean variables,B′ = {b′i | bi ∈ B} – the next state Boolean variables,H = {hi | pi ∈

P} – the current state unknown variables, andH ′ = {h′i | hi ∈ H} – the next state unknown

variables. In what follows, we do not distinguish between the BDDs and the corresponding

propositional formulas.

A set of mintermsX ⊆ MT(P ) is encoded by a propositional formula overB, as usual. For

example, letP = {p1, p2, p3}. Thenb1 ∧¬b2 encodes the set{p1 ∧¬p2 ∧ p3, p1 ∧¬p2 ∧¬p3}.

A set of monomialsX ⊆ Mon(P ) is encoded by a formula overB ∪ H. Intuitively, for a

monomialm, a variablehi indicates whetherpi is present inm, and a variablebi specifies the
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polarity of the occurrence. Formally, the encoding is

∨

m∈X

(

(
∧

pi∈Lit(m)

¬hi ∧ bi) ∧ (
∧

¬pi∈Lit(m)

¬hi ∧ ¬bi) ∧ (
∧

pi∈P\Lit(m)

hi)

)

For example,(¬h1 ∧ b1) ∧ (¬h2 ∧ ¬b2) ∧ h3 represents a singleton set{p1 ∧ ¬p2}.

An abstract valuee = 〈U,O〉 is encoded in a single BDD by a formula(sel∧U)∨(¬sel∧

O), wheresel is a designated BDD variable. This encoding is implemented byfunctionABSV.

TheU andO elements of valuee are extracted usingABSU andABSO, respectively. Abstract

intersection (ABSAND), union (ABSOR), and equality (ABSEQ) are done using the correspond-

ing BDD operations. Abstract negation (ABSNOT) is implemented following its definition on

Page 33.

The may transition relationRmay ⊆ MT(P )×MT(P ) is encoded by a formula overB∪B′

as usual. Similarly, the must relationRmust ⊆ MT(P ) × Mon(P ) is encoded by a formula

overB ∪ B′ ∪ H ′, where the primed variables are used to encode the destination state. For

example, amusttransition from a state(p1 ∧ p2 ∧ p3) to a state(p1 ∧ ¬p2) is represented by

(b1 ∧ b2 ∧ b3) ∧ ((¬h′1 ∧ b
′
1) ∧ (¬h′2 ∧ ¬b′2) ∧ h

′
3).

FunctionABSREDU implements theredU reduction operator of Section 5.6.3. It takes a

set of minterms as input, and returns a set of monomials for the computation of pre-image

overmusttransitions. A monomial is added to the output iff its upset is contained in the input.

The implementation ofABSREDU uses the following observation: letQ ⊆ MT(P ) be a set of

minterms, anda ∈ Mon(P ). If a ∈ MT(P ), then↑a = {a}, and↑a ⊆ Q⇔ a ∈ Q; otherwise,

some predicatep is not present ina, and in this case↑a ⊆ Q iff ↑(a∧p) ⊆ Q and↑(a∧¬p) ⊆ Q.

For example, supposeP = {p1, p2, p3} andQ = {p1∧p2∧p3, p1∧p2∧¬p3}. For the monomial

a = p1 ∧ p2, we have that↑a ⊆ Q because↑(a ∧ p3) = ↑(p1 ∧ p2 ∧ p3) = {p1 ∧ p2 ∧ p3} ⊆ Q

and↑(a ∧ ¬p3) = ↑(p1 ∧ p2 ∧ ¬p3) = {p1 ∧ p2 ∧ ¬p3} ⊆ Q. FunctionABSREDU applies this

reasoning recursively on the input diagram, using functionUVAR to find a variablehi ∈ H

for each variablebi ∈ B. FunctionABSPRE implements the pre-image computation based on

Theorem 5.34.
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Theorem 5.35. For a monotone MixTSM and ϕ ∈ Lµ, algorithm RIS(ϕ) in Figure 5.4

returns the symbolic representation of‖ϕ‖Mr .

Proof:

The proof follows from Theorem 5.32, Theorem 5.33, and Theorem 5.34. In particular, The-

orem 5.33 is used to show that in the interpretation of ♦ϕ in Definition 5.27, removing the

application of RED after preU and preO does not affect precision.

The main difference between the symbolic implementations of SIS and our RIS is the

extraABSREDU operation in functionABSPRE (line 29 in Figure 5.4).ABSREDU is similar

to existential quantification (BDDEXISTS) of BDDs, with one exception:BDDEXISTS uses

BDDOR in each iteration, butABSREDU uses oneBDDAND and twoBDDITE operations. Thus,

ABSREDU has the same complexity asBDDEXISTS, and symbolic implementations of RIS and

SIS also have the same complexity. This means that the extra precision of RIS comes “for free”,

without a penalty in complexity.

5.8 Experiments

To empirically evaluate the cost and performance of RIS versus SIS, we have implemented

symbolic algorithms for computing both of them using the CUDD[Som01] library, and ana-

lyzed reachability and non-termination properties over a realistic model. While our algorithm

in Figure 5.4 can analyze anyµ-calculus formula, our experiments considered just reachability

and non-termination properties because of their practicalinterest.

For the model, we used a template programProg1 based on an example from [SG04],

which usesn (n is a natural number) integer variables{x[0], x[1], . . . , x[n− 1]}, and is built

out of a sequence ofn blocks. Figures 5.5(a) and 5.5(b) show the code for each of the first

n− 1 blocks, and the code for the last block, respectively. The method of [GC06] was applied

to build an abstract MixTS using the set of predicates

{x[0] > 0, x[1] > 0, . . . , x[n− 1] > 0} ∪ {odd(x[0]), odd(x[1]), . . . , odd(x[n− 1])}
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if (x[i]>5)

x[i]=x[i]+1

else if (x[i]>0)

x[i]=x[i]+2

else

x[i]=x[i]-2

while (x[i]>0)

if (odd(x[i]))

x[i]=-1

else

x[i]=x[i]+1

if (x[n-1]>5)

x[n-1]=x[n-1]+1

else if (x[n-1]>0)

x[n-1]=x[n-1]+2

else

x[n-1]=x[n-1]-2

while (x[n-1]>0)

if (odd(x[n-1]))

x[n-1]=-1

else

x[n-1]=x[n-1]+1

L:

while (x[n-1]<=0)

x[n-1]=x[n-1]-1

END:

if (nondet)

x[i]=x[i]+1

if (nondet)

x[i]=x[i]+1

else

x[i]=x[i]*x[i]-10

else

x[i]=x[i]*x[i]-10

if (x[i]>0)

x[i]=x[i]+1

else

x[i]=x[i]-1

(a) (b) (c)

Figure 5.5: Code examples for experiments.nondet denotes non-deterministic choice.

We model checked the following reachability (least fixed-point) and non-termination (greatest

fixed-point) properties w.r.t. the standard and the reducedsemantics:

Prop1 : EF (pc = L)

Prop2 : EG(pc 6= END)

Prop3 : EG(pc 6= END ∧ (x[0] > 0 ∨ x[1] > 0 ∨ · · · ∨ x[n− 1] > 0)).

For both SIS and RIS, we measured the size of the abstract models using the number of BDD

nodes, the total analysis time, the number of iterations of the fixpoint computation, and the

time spent in theABSREDU operation for RIS. To compare the precision of the results, we

considered two sets of initial states

I1 : (x[0] ≤ 0 ∧ x[1] ≤ 0 ∧ · · · ∧ x[n− 1] ≤ 0)

I2 : (x[0] > 0 ∧ x[1] > 0 ∧ · · · ∧ x[n− 1] > 0) .
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n SIS RIS

M
od

el

S
iz

e

100 370,070 216,689

200 1,460,270 853,389

250 2,275,196 1,329,215

Prop. n Analysis (sec.) Iter. I1 I2 Analysis (sec.) ABSREDU (sec.) Iter. I1 I2

P
r
o
p
1

100 2.20 301

t m

3.60 0.74 401

t t200 15.36 601 27.77 6.45 801

250 28.92 751 55.19 13.40 1001

P
r
o
p
2

100 3.60 203

t m

0.03 < 10−4 2

t t200 27.16 403 0.12 < 10−4 2

250 54.62 503 0.19 < 10−4 2

P
r
o
p
3

100 33.96 400

f f

21.24 4.5 400

f f200 395.24 800 258.72 42.44 800

250 1108.67 1000 546.88 101.20 1000

Table 5.1: Experimental results for SIS and RIS overProg1.

and checked whether conclusive results can be obtained overthem.

The results are summarized in Table 5.1, wheret, f andm denotetrue, false, andunknown,

respectively. The top part of the table shows that RIS models enjoy significantly smaller en-

codings than their SIS counterparts, due to restricted transition relations (see Theorem 5.34).

RIS is more precise than SIS: for the two sets of initial states, RIS produces conclusive re-

sults for both of them w.r.t. the three properties being checked, whereas SIS cannot decide

whetherProp1 andProp2 hold in I2. As expected, the extra precision of RIS does not cause

a complexity penalty: the experiments show that the increases of the analysis time w.r.t. the

size of the models for both RIS and SIS are comparable. In all ofthe cases, the time spent

in ABSREDU, which represents the main difference between the two semantics, comprises

roughly 20% - 25% of the total time.

Note that RIS and SIS may require different numbers of iterations of fixpoint computation:
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n SIS RIS

M
od

el

S
iz

e

100 245,584 145,284

200 971,062 570,462

250 1,513,796 888,046

Prop. n Analysis (sec.) Iter. I1 I2 Analysis (sec.) ABSREDU (sec.) Iter. I1 I2

P
r
o
p
4

100 0.48 603

m t

0.27 < 10−4 403

t t200 2.15 1203 0.97 < 10−4 803

250 3.46 1503 1.44 0.01 1003

Table 5.2: Experimental results for SIS and RIS overProg2.

in the above experiments, RIS required more iterations than SIS for the reachability property

Prop1, but less iterations than SIS for the non-termination property Prop2. These differences

are determined by the structure of the model and by the fixpoint type (least or greatest) being

computed.

As another example, we checked the reachability property ona different program,Prog2,

built of a sequence ofn blocks. The code for theith block is shown in Figure 5.5(c). An

abstraction of the template is built using the set of predicates

{x[0] > 0, x[1] > 0, . . . , x[n− 1] > 0}

The property checked wasProp4 : EF (pc = END), whereEND is the last location ofProg2.

model checking was evaluated on the same initial sets of states,I1 andI2. The results are

summarized in Table 5.2. In this case, while still more precise, RIS requires fewer iterations

than SIS.

These experiments suggest that using the more precise RIS semantics improves the overall

performance of model checking, making it a viable alternative to SIS in practice.
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5.9 Related Work

Consistency. In this chapter, we investigated partial TSs and models from the perspective

of abstract model checking. Partial TSs are also used as specifications of a system’s behav-

ior [LT88, LNW07]. In this case, semantic consistency is replaced by implementability. A

partial transition systemM is implementableiff there exists a BTSB that refinesM through

some mixed simulation. Such a BTS is calledan implementation. There is a subtle, but crucial,

difference between implementability and semantic consistency as defined in this chapter. We

assume that the statespace of an abstract transition systemis an abstract domain, and that it is

related to the concrete domain by a given soundness relationρ. In our case, a partial TSM is

semantically consistent iff there exists a BTS that refinesM via thisρ. On the other hand, the

definition of implementability leaves the choice of the mixed simulation relation open. Thus,

semantic consistency is stronger than implementability.

For example, the MixTSM2 in Figure 5.1 is not semantically consistent. It is, however,

implementable. LetB be a BTS(Z, R), whereZ is the set of integers, andR is defined as

follows:

R , {(x, x′) | (x > 0 ∧ odd(x) ∧ x′ = 2)} ∪

{(x, x′) | (x > 0 ∧ even(x) ∧ x′ = −3)} ∪

{(x, x′) | (x > 0 ∧ even(x) ∧ x′ = −2)} ∪

{(x, x′) | (x < 0 ∧ x′ = −3)} .

Then,B refinesM2 through the following mixed simulation relation:

{(c, a1) | c > 0 ∧ odd(c)} ∪ {(c, a2) | c > 0 ∧ evn(c)} ∪

{(c, a3) | c ≤ 0 ∧ odd(c)} ∪ {(c, a4) | c ≤ 0 ∧ evn(c)}

Note that in this case, no concrete state inB is approximated by botha1 anda2. Therefore, the

source of inconsistency discussed in Section 5.4 does not exist.
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In [HJS04], Huth et al. provided themix condition(MC) on MixTSs to ensure imple-

mentability. A MixTSM = 〈S,Rmay, Rmust〉 satisfies MC iff for all(a, b) ∈ Rmust, there exists

someb′ ∈ S such thatb′ refinesb, and(a, b′) ∈ Rmust∩ Rmay. For example, the MixTSM2 in

Figure 5.1 satisfies this condition, whereasM4 does not. However,M2 is semantically incon-

sistent, andM4 is consistent. Therefore, MC is neither sufficient nor necessary for semantic

consistency.

The complexity of deciding implementability of a partial transition system is EXPTIME-

complete [AHL+08, AHL+09, Ant08]. On the other hand, semantic consistency can be decided

in time polynomial in the size of the system; this is immediate from Theorem 5.17. This result

is not surprising since semantic consistency is stronger than implementability.

Huth et al. showed that the KMTS models are logically consistent [HJS01]. To ensure

logical consistency of GKMTSs, de Alfaro et al. defined the condition that requires that every

destination of amusthyper-transition intersects with the destination of amaytransition from

the same state [dAGJ04]. This can be viewed as an analogue of the conditionRmust ⊆ Rmay

required by KMTSs. In this chapter, we showed that such a condition is not necessary for

logical consistency. We fixed this problem by defining a relaxed structural condition which

captures both logical consistency and semantic consistency of partial models.

Other forms of partial model consistency, in addition to theone based on mixed simu-

lation, are possible, e.g. [LNW07]. For example, a partial model may be built for abstract

model checking of temporal logic properties without the next operator. Exploring connections

between semantic and logical consistency in this case and providing algorithms for deciding

them are interesting questions which we leave for future work.

Expressiveness. The work of Godefroid and Jagadeesan [GJ03], and Gurfinkel and Chechik [GC05]

showed that the models in the KMTS family have the same expressive power and are equally

precise for SIS. Dams and Namjoshi [DN05] showed that the three families considered in this

chapter are subsumed by tree automata. We completed the picture by proving that the three

families are equivalent as well. Specifically, we showed that KMTSs, MixTSs and GKMTSs
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are relatively complete (in the sense of [DN05]) with one another.

We did not consider Hyper TSs (HTSs) [SG06] which allow for both mustandmayhyper-

transitions. As pointed out in [SG06],mayhyper-transitions can be eliminated by increasing

the abstract statespace, making HTSs exactly as expressiveas GKMTSs.

Our results bring forth several interesting research directions. Since the three modeling

formalisms are equally expressive, it would be interestingto study how to relate the results of

model checking w.r.t. thorough semantics for one formalism, e.g., for KMTSs [BG00, GP09],

to the ones for another formalism. Another direction is formalizing our translations within the

abstract interpretation framework using Galois connections [CC92].

Reduced Inductive Semantics. Our reduction operatorRED is an instance of normalization

from Abstract Interpretation [CC92]. It is often used to provide a canonical representation

of equivalent abstract properties. The symbolic implementation ABSREDU is similar to the

semantic minimization of 3-valued propositional formulas[RLS02].

Regarding the ability to improve model checking results, thereduction operator is similar

to the focus and defocus operations defined in [DN04]. According to the definition ofRED, a

formula holds in an abstract statea if (i) γ(a) can be split into (i.e., focused) different parts

approximated by more precise states thana, and the formula holds in each of these states, or

(ii) γ(a) can be covered (i.e., defocused) by a set approximated by a state less precise thana,

and the formula holds in it. In particular, if the partial model is monotone, then the reduction

operator resembles the focus operation only.

For a partial modeling formalism, the ability to support themonotonic abstraction refine-

ment framework allows us to define a best model over an abstract statespace s.t. model check-

ing on it is more precise than on other models over the statespace. In the context of SIS, as

shown in [SG04], KMTSs is inappropriate for monotonic abstraction refinement — extramay

transitions required by the conditionRmust ⊆ Rmay introduce a loss of precision, and therefore,

a best KMTS model over an abstract statespace may not exist. However, this is not a problem

for MixTSs [DGG97, GWC06a] which support monotonic abstraction refinement by allowing
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must-only transitions. GKMTSs achieve the same goal by using musthyper-transitions [SG04],

which essentially ensure that no extramaytransitions are added. The following theorem shows

that our new inductive semantics, RIS, preserves the precision order of partials models w.r.t.

SIS. Therefore, the best abstract model for SIS is also the best one for RIS, and both MixTSs

and GKMTSs still support monotonic abstraction refinement under RIS.

Theorem 5.36.Let M = 〈M,L〉 andM′ = 〈M ′, L′〉 be two partial models, whereM =

〈S,Rmay, Rmust〉 andM ′ = 〈S,Rmay′, Rmust′〉 are two (underlying) transition systems defined

over the same abstract statespaceS. Then, ifM is less precise thanM′ under SIS, i.e.,

∀ϕ ∈ Lµ · ‖ϕ‖Mi �a ‖ϕ‖M
′

i , M, then is also less precise thanM′ under RIS.

Proof:

The proof is by structural induction. In particular, the inductive case for ♦ϕ follows from the

definition of RED and the monotonicity of preimage.

Regarding precision of model checking, one interesting areais the investigation of self-

minimizing temporal formulas whose inductive and thoroughsemantics coincide [GH05].

Through a semantic minimization process, everyLµ formula can be transformed into an equiv-

alent formula that is self-minimizing, but may be exponentially larger than the original one.

Several results along this line, based on the comparison of SIS and thorough semantics, have

been reported, e.g., [GH05, GC05, NGC06, AH06]. In this chapter, we have used a reduction

operator to improve precision of inductive semantics basedon the exploration of approxima-

tion ordering over abstract domain. Our approach is orthogonal to semantic minimization. For

example, consider the modelM5 defined in Section 5.6.1 (its transition systemM5 is shown

in Figure 5.2) and the formulaψ , EF (¬p ∧ q), wherep andq denote predicates(x > 0) and

odd(x), respectively.ψ is self-minimizing. However, its value ina1 is unknown under SIS,

but is true under RIS. We leave further investigation of the relation between RIS and semantic

minimization of temporal logic formulas for future work.

We have shown that symbolic model checking of RIS and SIS have the same complexity.

An interesting question left for future study is whether there exists an inductive semantics that
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is more precise than RIS, and whether it can be symbolically model checked with the same

complexity as RIS.

5.10 Conclusion

Several types of partial transition systems have been developed over the years to support ab-

stract model checking of complex temporal formulas. Some were claimed to be more pre-

cise; some had a more efficient decision procedure; some weremore succinct. In this chap-

ter, we have studied these formalisms, partitioned into three families – KMTSs, MixTSs and

GKMTSs. We have compared them w.r.t. two fundamental ways ofusing partial transition

systems: as objects for abstracting concrete systems, and as models for checking temporal

properties.

Specifically, we studied the connection between semantic and logical consistency of par-

tial transition systems, which is necessary to ensure meaningful abstract model checking. We

showed that these notions are not equivalent. However, we proved that they coincide for mono-

tone partial transition systems and provided an effective structural condition which is necessary

and sufficient to guarantee consistency.

We have also compared the expressive power of the three families of partial transition sys-

tems w.r.t. their ability to capture abstractions. We showed, by defining semantics-preserving

transformations between the formalisms, that while there are structural differences, all three

formalisms are equally expressive. Thus, neither hyper-transitions nor restrictions onmayand

musttransitions affect expressiveness. They do, of course, affect the succinctness of the result-

ing transition systems.

We then turned to looking at the power of these formalisms w.r.t. the cost and precision

of model checking. We have introduced a new inductive semantics, RIS, for partial transition

systems and showed not only that it is more precise than the standard semantics, SIS, but also

that model-checking under this semantics for MixTSs and GKMTSs has the same results. We
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have further described a symbolic implementation of model checking w.r.t. RIS. The outcome

is an algorithm that combines the symbolic encoding of MixTSs with the model checking

precision of GKMTSs. The symbolic algorithm was evaluated empirically, and our preliminary

experiments suggest that RIS should be a good alternative to SIS for predicate abstraction-

based model checkers. We leave further experimental comparisons between the two semantics

for future work.

We hope that the results of our investigation help clear out the confusion about the ex-

pressive power of the different partial transition systemsand enable their increasing usage as

underlying formalisms for abstract model checking.



Chapter 6

Conclusion

In this chapter, we summarize the contributions made in thisthesis, and discuss limitations of

our work and future research directions.

6.1 Summary of The Thesis

In this thesis, we have studied abstraction in model checking based on exact-approximation,

which combines over- and under-approximations, allowing us to verify and refute properties

in the same abstraction framework. Our work is driven by problems from both practical and

theoretical aspects of exact-approximation.

We started with symmetry reduction that exploits symmetry in programs for abstraction.

It can be seen as a strong exact-approximation technique, performing abstract model check-

ing using a symmetry-reduced structure that is bisimilar tothe original program. In Chapter

3, we studied symmetry reduction with respect to full virtual symmetry, addressing two chal-

lenges of effectively using it in practice, i.e., identification of virtually symmetry and support

for symbolic model checking. We first characterized symmetry reduction from the perspective

of abstraction. Based on that, we reduced identifying full virtual symmetry to satisfiability

of quantifier-free Presburger formulas built directly fromprogram specifications. This satisfi-

ability problem is NP-complete and can be solved by existingdecision procedures. We also
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extended counter abstraction to fully virtually symmetricprograms, which avoids the bottle-

neck problem of building orbit relations in symbolic symmetry reduction.

A software model checker often uses predicates over programvariables for data abstraction.

In our previous work, we have developed a software model checker YASM based on exact-

approximating semantics of predicate abstraction, which builds abstract models that are exact-

approximation of original programs, supporting proving and disproving properties with equal

effectiveness. In Chapter 4, we extended YASM to reachability and non-termination analysis

of recursive programs. To avoid explicitly dealing with call stacks, we proposed a stack-free

program semantics that effectively reduce to the analysis of reachability and non-termination

of recursive programs to that of non-recursive ones. This allows us to reuse existing abstract

analysis in YASM to handle recursive programs. We also developed on-the-fly algorithms that

improve the performance of the analysis.

Exact-approximation can be achieved using different partial modeling formalisms. Our

third study focused on the analysis of three families of partial transition systems for this, rep-

resented by KMTSs, MixTSs, and GKMTSs. In Chapter 5, we investigated these formalisms

from two fundamental ways of using them – as objects for abstracting concrete programs, and

as models for checking temporal properties. We first proved equivalence between semantic and

logical consistency of partial transition systems over theclass of monotone ones, and provided

a structural condition that is both necessary and sufficientto guarantee consistency. We then

developed semantic-preserving translations between KMTSs, MixTSs, and GKMTs, which

shows that despite the structural difference, the three families of formalisms have the same ab-

straction ability. We also defined a new inductive semanticsof temporal logic for them, which

is more precise than the standard one. Based on that, we developed an algorithm that com-

bines the benefits of a symbolic encoding of MixTSs with a better model checking precision of

GKMTSs.

Abstraction in model checking uses a smaller abstract modelto analyze properties of com-

puter programs. Exact-approximation provides a uniform abstraction framework for proving



CHAPTER 6. CONCLUSION 157

correctness and detecting errors. Choice of designing components for abstract model checking

depends on the programs and the properties being analyzed. In this thesis, we have inves-

tigated abstract analysis of virtually symmetric programsand extended exact-approximating

predicate abstraction to recursive programs, which increases the applicability of existing exact-

approximation techniques. We also reported the results of the analysis of partial modeling for-

malisms, which provides a better understanding of exact-approximating abstraction framework

and its application in practice.

6.2 Limitations and Future Work

In this section, we discuss the limitations of our work and point out future research directions.

6.2.1 Extended Symmetry Reduction

In this thesis, we have developed techniques for identification and counter abstraction of full

virtual symmetry. Extending them to handle industrial-sized programs is still a challenge. A

major limitation of our techniques is that the specificationlanguage is too restrictive, where

transition guards can only be expressed using counters of local process states. It is of practical

interest to investigate how to extend our techniques to moregeneral specification languages.

For example, counter abstraction has been applied to fully symmetric programs where pro-

cesses communicate using shared variables [EW03]. We plan toexplore this for full virtual

symmetry as well.

The symmetry reduction techniques we studied in this thesisis induced by a single per-

mutation group. We have shown that a program is symmetric with respect to this group if

and only if all the local transitions in the program are symmetric with respect to it. That

is, the symmetric relations between processes needs to be preserved on every local transi-

tion. Such restriction may be relaxed by consideringtransition dependentsymmetry reduction

(e.g., [SWZ07, Wah07]). In this case, symmetric relations between processes can dynamically



CHAPTER 6. CONCLUSION 158

change over local transitions. Therefore, we can apply different permutation groups to a pro-

gram, which enables better statespace reduction than the static one using a single group. We

leave further investigation of combining such symmetry reduction with virtual symmetry for

future work.

We have only investigated symmetry reduction techniques based on process symmetry,

where symmetry is induced by permutations of process indices. In practice, symmetry can also

be induced by data [ID96, EW05], where symmetry permutationsact directly on the values of

variables. For example, Murphi [ID96] defines a special scalarset data structure in its descrip-

tion language, and requires only symmetric operations overscalarset variables. This ensures

that permutations of these variables in all states correspond to an automorphism of the states-

pace. In the future, we would like to extend our investigation of virtual symmetry reduction to

data symmetry.

To ensure a bisimilar symmetry-reduced quotient, we have required that the transition sys-

tem of the program be invariant under symmetry permutations. An interesting extension of

this is only to require that the transitive closure of the transition system be invariant under

permutations, which is calledarchitectural symmetry[TW09]. Although the quotient structure

induced by architectural symmetry is not bisimilar to the original program, it preserves many

interesting properties, e.g., reachability. Architectural symmetry extends space reduction with

respect to the full symmetry group to programs that are not even fully virtually symmetric.

We would like to explore how to identify and apply counter abstraction to those programs.

Our techniques for full virtual symmetry are based on the analysis of individual transitions in

a program. Since architectural symmetry is defined based on the transitive closure of transi-

tion relations rather than individual transitions, we needto look for other directions to handle

architectural symmetry.

6.2.2 Termination and Non-Termination Analysis

We have developed abstract analysis of the non-terminationproperty of programs. Since exact-

approximation supports both verification and refutation, when non-termination checking fails,
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it means that the program terminates. However, our abstractanalysis is based on predicate

abstraction. It is known that, as a finite state abstraction,the ability of predicate abstraction

for proving termination is limited. The reason is that any computation of a program that is

longer than the number of abstract states results in an abstract computation containing a loop.

Therefore, we cannot always prove termination using predicate abstraction. Because of this

limitation, when analyzing non-termination of a program, our analysis may get stuck on the

terminating part of the program.

To overcome this limitation, it is necessary to develop solutions for both termination and

non-termination analysis. One approach is using abstraction framework that is complete for the

modalµ-calculus [DN04]. For example, Fecher and Huth proposed an abstraction framework

that extends predicate abstraction to ranked predicate abstractionin [FH06] so that liveness

properties including termination can be analyzed as well. They showed that ranked predicate

abstractions are increment and thus can be possibly integrated with counterexample-guided

abstraction refinement. It is an interesting future work to develop refinement heuristics that are

appropriate for termination and non-termination analysiswithin this framework.

Another approach is to synthesize the existing techniques for termination and non-termination

analysis. Recently, there has been a lot of work on termination analysis based on automatically

synthesizing ranking functions for a program [PR04, PR05, CPR06a, BCC+07]. These meth-

ods are biased towards proving termination. When termination analysis fails, they require users

to manually check where a program is non-terminating. We would like to develop techniques

to combine this analysis with non-termination analysis into a single framework so that the two

analysis can benefit from each other. One possible directionthat we intend to explore is based

on the approach used by TERMINATOR [CPR06a, CPR06b], where through a program transfor-

mation, termination of the original program is equivalently analyzed using over-approximating

predicate abstraction over a transformed program. This approach provides a way to combine

the termination analysis methods above with predicate abstraction. Following this approach,

we would like to develop analysis for both termination and non-termination by applying exact-
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approximation over the transformed program.

6.2.3 Partial Modeling Formalisms

In this thesis, we have defined a more precise reduced inductive semantics than the standard

one, and compared the performance of the two semantics over programs abstracted using the

same predicates that we provided manually. On the other hand, in software model checking, the

predicates for abstraction are usually computed through iterative refinement. Currently, we do

not know whether the more precise semantics always leads to better performance of the overall

abstraction refinement process, or whether the result depends on properties and programs being

analyzed. We would like to design experiments to find this out.

Fairness is often required for analyzing concurrent programs with interleaving semantics. A

fairness constraint associated with a transition system partitions the infinite computations in the

system into fair and unfair ones. In this thesis, we did not consider fairness in abstract analysis.

In particular, the partial modeling formalisms we studied are related with concrete systems

through mixed simulation that does not distinguish fair andunfair computations. The notion of

mixed simulation can be adapted to transition systems with fairness constraints [DN04]. In the

future, we would like to investigate partial modeling formalisms with fair mixed simulation,

and see how this will affect our results presented in this thesis.

6.2.4 Combination of Abstraction and Testing

Our work in this thesis has focused on abstract model checking that builds an abstract model

for property analysis. A drawback of this abstraction approach is that it does not handle large

programs with complex statements well, due to the difficultyof constructing precise abstract

models of these programs. As a dynamic analysis method, testing directly executes programs,

which is fast and easily scales to large programs. Recently, there has been a growing interest

in combining abstract analysis and testing [KGC04, PPV05, YBS06, GHK+06, BNRS08] to
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take advantage of the strength of both methods. For example,SYNERGY [GHK+06] provides

algorithms that combine over-approximation and testing, where testing results are used to ex-

plore program statespace and detect bugs, and abstract analysis results are used to guide the

generation of test inputs and prove correctness.

We intend to study such combinations over our exact-approximation framework. In par-

ticular, we would like to see how the additional under-approximation in the framework can

improve existing techniques such as the SYNERGY approach. Our observation is that although

testing can also be seen as a way to under-approximate program behaviors, it is different from

the abstract under-approximating analysis. The program behaviors discovered by testing are

restricted by the test inputs, whereas the abstract under-approximating analysis explores all

the possible program behaviors in an abstract way, which complements the ones explored by

testing. Moreover, unlike testing, which can only be executed in a forward way, the abstract

under-approximating analysis can be conducted backward. Such backward analysis can pro-

vide us more information about error-reachable states, which may be used to guide generation

of test inputs that lead to quick discovery of program bugs. We plan to work on implementation

of the above ideas in the future to obtain more efficient approaches for program analysis.
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