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Model checking is an automated technique for deciding wéreshcomputer program sat-
isfies a temporal property. Abstraction is the key to scatimaglel checking to industrial-sized
problems, which approximates a large (or infinite) programatsmaller abstract model and
lifts the model checking result over the abstract model hadke original program. In this
thesis, we study abstraction in model checking basedxat-approximationwhich allows
for verification and refutation of temporal properties witithe same abstraction framework.
Our work in this thesis is driven by problems from both pre&tiand theoretical aspects of
exact-approximation.

We first address challenges of effectively applying symynegduction tovirtually sym-
metric programs. Symmetry reduction can be seensiiagexact-approximation technique,
where a property holds on the original program if and only Halds on the abstract model.
In this thesis, we develop an efficient procedure for idgimtg virtual symmetry in programs.
We also explore techniques for combining virtual symmetith\wymbolic model checking.

Our second study investigates model checkingeotirsiveprograms. Previously, we have
developed a software model checker for non-recursive progibased on exact-approximating
predicate abstraction. In this thesis, we extend it to rehitity and non-termination analysis of
recursive programs. We propose a new program semanticsftbatively removes call stacks

while preserving reachability and non-termination. By dpiinis, we reduce recursive analysis



to non-recursive one, which allows us to reuse existingrabisanalysis in our software model
checker to handle recursive programs.

A variety of partial transition systems have been proposed for constructiorbstract
models in exact-approximation. Our third study conductgstesnatic analysis of them from
both semantic and logical points of view. We analyze the eotian between semantic and
logical consistency of partial transition systems, corapiie expressive power of different
families of these formalisms, and discuss the precisionadehchecking over them.

Abstraction based on exact-approximation uses a unifoaméwork to prove correctness
and detect errors of computer programs. Our results inleisi$ provide better understanding

of this approach and extend its applicability in practice.
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Chapter 1

Introduction

1.1 Model Checking and Abstraction

1.1.1 Model Checking

Computer systems are being used widely in our daily lives. Wenaely on hardware and
software programs to control safety critical, missionicait, or economically vital tasks. En-
suring the correctness of these programs thus has becompaamallenge in the computer-
dependent society. Formal methods provide us with teclesiguat support strict reasoning
about program correctness. In these techniques, a compuoigram is modeled by a mathe-
matical object, and the correctness of the program is fatedlusing mathematical specifica-
tion. A formal reasoning approach is then provided to dei@erwhether the program satisfies
its specification. Thanks to the underlying rigorous mathtral foundations, formal methods
are considered as a promising approach to increase our enoécibout computer programs.
Model checking [CE81, QS82] is a formal analysis techniqae ¢thecks behavioral prop-
erties of computer programs based on state-exploratichidmethod, a hardware or software
program is modeled using a finite state transition systenergvthe computational behaviors
of the program are given as paths in the transition systene desired program properties

are expressed using temporal logic formulas. TemporatIgnu77, CE81] provides tempo-
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ral operators such as “always” and “eventually” and quaersfover paths that capture a wide
range of behavioral properties of programs. A model chethken uses a statespace search
algorithm to determine whether the behavior described bgngporal property holds on the
model of the program. If the answer is true, the program feedishe property, i.e., the prop-
erty is verified; a false answer means that the program @sltte property, i.e., the property
is refuted. When an error is detected, the model checkerlysegalorts a counterexample for
debugging. An advantage of model checking is that the sedgchithm can be executed com-
pletely automatically. Furthermore, a model checker cotglan exhaustive exploration of all
possible program behaviors. Therefore, subtle errors obgram that often elude simulation

and testing approaches can be found in this way.

1.1.2 Fighting State-Explosion Problem

Despite the great success in checking hardware and sofpr@geams [BDEGWO03, IYGO05,
Kur08], scalability is still the primary challenge of applg model checking in the real world.
Since model checking is a state-exploration method, itsicted to analyzing programs that
can be modeled by finite state transition system of small $iwsvever, in practice, the state-
space of a program can be extremely large, which is knowneastétte-explosion problem
For example, in the design of communication protocols, the af the statespace of a program
often grows exponentially with the number of components.ddahecking such programs
would require a significant amount of memory and CPU time. [diware programs, the
existence of infinite data domain, e.g., integers, and cexngbntrol structures, e.g., recursion,
results in an infinite statespace, which makes direct mdustking impossible. Therefore, a
central issue in the research on model checking is dealitigthwe state-explosion problem.

Several approaches have been proposed to reduce the>gqilisi@n problem based on
symbolic representation, partial order reduction, contjmrsgl reasoning, induction, and ab-
straction. We introduce them below.

Symbolic model checkirjlyilcM93] uses binary decision diagrams (BDDs) [Bry92] to rep-



CHAPTER1. INTRODUCTION 3

resent program models, which allows for compact repretientaf the states and transition
relations of a program.Partial order reduction[GW94, CGMP99] reduces the size of the
statespace that needs to be searched by model checkinghatgor It takes advantage of the
commutativity of concurrent events, avoiding exploratcdmedundant interleaving behaviors
in asynchronous program€ompositional reasoninfPnu84, CLM89, GL91] exploits modu-
lar structures of a program to reduce the complexity of thel@hahecking task. It typically
follows the assume-guarantee paradigm where the corssctsfeeach component under an
assumption of its running environment implies the corresgnof the whole program. For pa-
rameterized protocols that define an infinite family of peogs, thenduction[WL89, KM95]
approach analyzes properties based on an invariant steuofuthe protocol. The results
in [EN95, EKOO] show that such invariants can be defined asi@nuof program instances
up to a finite cutoff boundAbstraction[Kur89, CGL94, ID96, CEJS98, KP0OQ] is arguably the
most fundamental approach to scale model checking to tiegh®grams, which is the theme

of this thesis and is discussed below.

1.1.3 Abstraction

Abstraction in model checking can be seen as an instanalestfact interpretatiofCC92] on
analyzing temporal properties over state transition systeln this case, when the model of
a program is too large to be directly handled by a model chregke build a smaller abstract
model of the program and analyze properties over it. The thgsis of abstraction techniques
is that for particular properties that we are interestednany aspects of the original program,
e.g., specific values of program variables and processiigsniare not necessary for the anal-
ysis. Therefore, we can abstract away these details of tgrgm and use the simplified model
to check properties.

Abstraction in model checking (Figure 1.1) starts from atdéirstate abstraction that col-
lapses sets of concrete program states into abstract onesiteAabstract modeM <, which

is smaller than the concrete model of the program, is built over the abstract states to de-
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Property——— ¢

Program M MC(M, ¢) concrete

approximation preservation

MY ———— MC(M%, ) abstract

Figure 1.1: Overview of abstraction in model checking, veh&t denotes the concrete model
of a program, MC\M, ¢) — the concrete model checkingyt® — the abstract model, and

MC(M? ¢) — the abstract model checking.

scribe the program behaviors in an abstract way. The cartgruof the abstract mode\1«

can be viewed as an interpretation of the program using teomdard semantics defined over
the abstract statespac#4 and M are related by an approximation relation that determines
how program behaviors are approximated. This results iopguty preservation relation that
defines how to lift abstract model checking results back ¢ocbncrete level. If the result is
conclusive, i.e., it allows us to determine whetheis satisfied overM, the abstract model
checking process is finished. Otherwise, additional refer@rateps are performed to produce

more precise abstract models for analysis.

In the following, we review the techniques for abstract matiecking using the following

steps: (a) abstraction of statespace, (b) constructiobsifact model, and (c) refinement.

Abstraction of statespaceibstract statespace is the basis for abstraction in mduiking.

It determines the information that an abstract model caresgmt and properties that can be
effectively analyzed over it. A simple abstraction of thatespace is calleldcalization re-
duction[Kur94, CGP99], where abstract states are defined over atsofgsegram variables

relevant to analysis of particular properties. Since liaesibn reduction does not reduce the
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domain of variable values, it cannot produce a finite modekdgram variables are defined
over an infinite data domaiata abstractiontraditionally used in program analysis to com-
pute abstract program invariants [CC92, NNHO05, Sch98], ifieghpo abstract model checking
in [CGL94, CDH"00, PDVO01]. An abstract statespace in data abstractionfiisetEbased on
simple data facts about program variables, e.g., parigy), r range. A limitation of data
abstraction is that it cannot capture relations betweegrpro variables, because the abstract
states only express independent attributes of them. Thigalion is avoided by usingredi-
cate abstractiofGS97]. First proposed by Graf and Saidi, predicate abstratias become
a popular technique used in abstract model checking [BPR01,"0€G1IJMS02, GCO06]. In
this case, an abstract statespace is defined based on a setlichfes. Concrete data values
are mapped to boolean variables represented by these geiat the abstract level, while the

original data variables are eliminated.

In practice, an appropriate choice of abstract statespagendis on the class of programs
and properties to be analyzed. For example, to analyze p&eamed programs, one can
choose a variant of predicate abstraction cafledronment abstractiofCTV06], where pred-
icates contain not only the information about individuabgesses, but also the relationship
between them. For shape analysis, predicate abstracpoesents points-to relations in shape
graphs of heap storage [SRW99, DNO3]. For programs compdseertical processes, ab-

stract statespaces can be defined as symmetric classegadmrstates [ES96, CJEF96].

Construction of Abstract ModelGiven an abstract statespace, we need to build an abstract
model over it for model checking properties. Researcomtimality[LGS*95, CIY95, DGG97,
Sch04, GWCO06a] defines structural conditions that charaeténe best abstract model, which
represents the most precise approximation of concretergmogehaviors. However, the op-
timal conditions are usually defined with respect to comctegnsitions in original programs.
Directly using them in the construction of abstract modetsid require first building the con-
crete model, which is often infeasible due to the large onit#istatespace. Therefore, in

practice, we look for approaches that compute abstract ilmddectly from the program text,
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where transitions between abstract states are constrbatst on evaluation of an abstract
semantics of programs. The resulting abstract model isllydeas precise than the optimal

one, but can be constructed more efficiently.

Building abstract models from program text is studied in [C@],.9vhere concrete states
are abstracted using data abstraction, and relationalrd@saf a program is represented by
first-order formulas derived from programs. An abstract etagl constructed by approximat-
ing the concrete semantics of the program. Automaticalipmating abstract models based
on predicate abstraction is suggested in [GS97], and is nstaradard technique in abstract
model checking of software programs [BMMRO01, BPR01, HIMS02, Ct4; GCO06]. Typi-
cally, this approach first translates a program into a baoteagram over the variables defined
by predicates. Each statement in the original program iscajppated by one or more state-
ments on the predicates in the boolean program, which deshow the values of the predi-
cates are changed when the concrete statement is executisdstdp is conducted based on
strengthening the weakest precondition for each predieiitethe aid of a theorem prover. An
abstract model is then constructed based on an approxgnsgimantics of the boolean pro-
gram. In [CKSYO05], an abstract model over predicates is caatpwith a SAT solver using

the similar approach as [CGL94].

Refinementlf an abstract model, e.qg., built by symmetry reduction9&SCIEF96], has be-
haviors equivalent to the original program, model checkesylts over it are conclusive. Oth-
erwise, loss of information introduced in the abstractioocpss may result in inconclusive
analysis, and a refinement step is necessary. Automatidmeafefinement process is called
abstraction refinemeniiKur94, BPR02, DamO03], which starts with a coarse initial edost

model of the program, iteratively refining it until the alagtr model contains sufficient details.
Completeness results of abstract model checking [KP0O, DRO5] show that for every

program and temporal property, there exists a finite alistnaclel such that satisfiability of
the property over it implies its satisfiability over the anigl program. However, in general

finding an appropriate abstraction for an infinite state paogis not computable. Otherwise,
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the program verification problem would be decidable. In fpca¢ heuristic methods are often
used to guide the refinement process.

In [NKOO, PPV05, YBS06], refinement is based on computing weeagrecondition, which
generates new predicates for more precise abstractios.approach is guided by precise up-
dates of existing predicates with respect to statementpriogtam. Recently, a counterexample-
guided refinement approach has been used widely in abstoatglrhecking [CGJ03, Bal04,
HIMSO02]. Typically, a&counterexamples an abstract program execution produced in a previous
model checking run, which is used to demonstrate the vanatif a property on the abstract
model. Because of imprecision introduced by abstractiosctiunterexample may be infea-
sible. That is, the counterexample does not correspond émerete execution of the original
program. A refinement process then tries to remove this @psiicounterexample by refining
the abstract statespace. This leads to a more precisedlmstdel for analysis. The new facts
for refinement, e.g., new predicates, can be discovered) usiferent ways. The approach
in [CGJ"03] uses symbolic algorithms to simulate a counterexamplae concrete program.
If the counterexample is spurious, a shortest feasiblexppéthe counterexample is identified,
and the last abstract state in the prefix, called a failurte sigsplit into more precise abstract
states to eliminate the spurious counterexample. Theliigsof a counterexample can also
be checked using a theorem prover [BR01, HIMMO04] or SAT solg&K02]. In this case,

a formula is generated such that it is satisfiable if and dnllga counterexample is feasible.
If the formula is not satisfiable, more predicates are pidkedefinement based on analysis of
the unsatisfiability proof of the formula. In [GC03, GWCO06b]aiaterexample is represented
as a proof of the property being analyzed. Steps in the prmoéspond to transitions between
abstract states. If a real counterexample exists, a coenptetf is produced. Otherwise, only
a part of the proof can be generated. In this case, by anglyaeproof steps that can not be

completed, new information is derived for refinement.

Abstraction is an essential approach for fighting the staesion problem in model

checking. We have presented an overview of the approachhelnéxt section, we introduce
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the class of abstraction methods and the problems invéstiga this thesis.

1.2 Scope of This Thesis

In this thesis, we focus on abstraction methods that sumtint verification and refutation of
program properties in the same framework, which we refestxact-approximatioh

In general, abstraction in model checking falls into thngees (illustrated in Figure 1.2),
depending on the approximation relations between conareteabstract models and property
preservation relations for temporal properties. In ¢her-approximatiorabstraction frame-
work [CGL94, LGS 95, KP0O, BPRO1], an abstract model contains more behaviarsttte
original program. Such abstraction is sound for provingersal temporal properties that hold
along all executions of the program. For example, if we cav@rabsence of error on an
abstract model, it implies that no error exists in the omadjiprogram either. This framework
is the one for verification, since traditionally correctme$ programs is often expressed using
universal properties. The dual of this frameworkuisder-approximatiorfPPV05, BKYO05,
GCO06, BKO7], which is also known as the framework for refutatién this case, an abstract
model contains less behaviors than the concrete one, whatbles us to prove properties that
hold along some executions of the program, e.g., presere®ag.

An obvious limitation of over- and under-approximationshiat they only preserve sound-
ness for fragments of temporal properties that are not dlaseer negation, i.e., the negation
of a universal (resp. existential) property is an exis&r(tiesp. universal) property. There-
fore, if a property fails to hold on the abstract model, wewnothing about the property
on the original program (depending on the property beinglde and the framework). For
example, if proving absence of error fails in an over-appnating abstract analysis, we do

not know whether an error exists in the original program. sTimitation can be avoided by

'Different terminology has been used to describe abstraétioboth verification and refutation, e.g@xact-
abstractionCGL94, PPV05, Eme08B-valued abstractiofBG99, HIS01, dAGJ04, SGO06], aBelnap abstrac-
tion [GWC06a, GWCO06h].
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Figure 1.2: lllustration of the three types of abstraction.

using theexact-approximatioframework [Kur89, BBLS92, CIY95, DGG97, BG99, HJS01].
An abstract model in this framework can be seen as a combimafiboth over- and under-
approximations. The abstract analysis based on such aebstaalels is sound for the full set
of temporal properties, that is, both true and false resukispreserved to the concrete level.
Therefore, exact-approximation supports both verificaéind refutation of temporal properties
with the same effectiveness.

Exact-approximation can be definedsiiongandweak according to the degree of preser-
vation of temporal properties. We investigate both of thenthis thesis. In the following,
we define the problems addressed by this thesis in the cootestrong and weak exact-

approximations, respectively.

1.2.1 Strong Exact-Approximation

In strong exact-approximation [Kur89, BBLS92, DGG97], moctetcking results are not only
preserved from the abstract level to the concrete levelalsatin the reverse direction. There-
fore, a property holds on an abstract model if and only if iidscon the concrete one. Ab-
stract models used for strong exact-approximation are buér classical boolean transition
systems. The relation between abstract and concrete medaistured by bisimulation equiv-

alence [Mil80, Par81], where both models can simulate edlclr's behaviors in a stepwise
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manner and thus satisfy the same set of properties. In thes ea abstract model can be seen
as a combination of the same over- and under-approximatibttse original program. The
advantage of strong exact-approximation is that we canya\gat conclusive model checking

results from abstract analysis.

In this thesis, we study a special strong exact-approxonatechnique, calledymme-
try reduction[CJEF96, ES96, ID96], which explores symmetric structurea program for
abstraction. Many concurrent programs or communicatianogols, e.g., mutual exclusion
protocol, consist of the coordination of several identmalcesses. The program behaviors are
unchanged under permutation of process identities. Swgihlbvel symmetry is reflected in
the program statespace, which can be used to avoid explibwnstates that are symmetric to
the ones that have been explored before. Based on this obsensymmetry reduction uses
equivalence classes of symmetric states as abstract, statebuilds a quotient structure over
them that is guaranteed to be bisimilar to the concrete prognodel. If the symmetry set is

large, the quotient structure is substantially smallenttie concrete model.

In practice, however, there exist many programs which atg@ouinely symmetric: they
are composed of many similar, but not identical processgs,readers-and-writers (a variant
of the mutual exclusion protocol). Although symmetry is ixtied in a large part of such pro-
grams, their global behaviors are not symmetric. To exteadtope of symmetry reduction to
such “almost” symmetric programs, Emerson et al. have megaoveaker notions of symme-
try, including near or rough symmetry [ET99] andvirtual symmetry [EHTOO]. In particular,
virtual symmetry is the most general notion under which ttegpam model is bisimilar to its
reduced quotient structure. While virtual symmetry incesas potential domain of problems
that can be symmetry reduced, its practical applicatioreddp on successful solutions to the

following questions:

Question 1: How to identify virtually symmetric program3he first step of using sym-
metry reduction is the identification of symmetry in a pragralo avoid construction of the

concrete model of the program, which is usually not feasibkeneed an efficient approach to
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detect this symmetry from the program description. Genaymemetry often exhibits certain
patterns in the design level, and can be identified from tleeifpation of the program. How-
ever, for virtually symmetric programs, asymmetric bebavimay arise for different reasons.
Lack of regularity in such programs makes it difficult to iti§nvirtual symmetry syntactically.
Question 2: How to combine virtual symmetry and symboliceholdecking effectively?
Symbolic model checking uses compact data structures tesept program models. Sym-
metry reduction reduces the size of program model basedata @bstraction. Since the two
approaches exploit different features of programs for iinghthe state-explosion problem, it is
desirable to combine them to obtain better model checkimppeance. This idea has been
investigated in the context of genuine symmetry [ET99, BAD2&/03]. In order to analyze a
wider class of programs, it is interesting to investigates o extend these results to virtual

symmetry as well.

Symmetry reduction is a strong exact-approximation teqnmthat uses a symmetry-reduced
structure for abstract model checking. A limitation of sigoexact-approximation is that
bisimulation-based abstraction is too restrictive. Ircfice, it is not always possible to find an
abstract model such as the symmetry-reduced one that hagibeshequivalent to the original
program and enables significant statespace reduction aathe time. The reason is that ab-
straction often introduces some loss of information, amnd tsome program behaviors become
unknown. Therefore, enforcing bisimulation restricts thmice of abstract models, which
is not helpful for reduction of model size. This problem candvoided usingveakexact-
approximation [CIY95, DGG97, BG99, GJ03, DN04] that allowsrtore general abstraction

by accommodating unknown information. We discuss it below.

1.2.2 Weak Exact-Approximation

Unlike strong exact-approximation, over- and under-apjpnating behaviors represented by
abstract models in weak exact-approximation may not be ahees The gap between them

represents the unknown behaviors caused by abstractiomefdfeto such abstract models as
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partial, since they capture an incomplete view of the original progbehaviors. The relation
between partial and concrete models is generalized frommbiation, describing approxima-
tion relations for over- and under-approximating behasjiocespectively. If a partial model has
enough information for proving or disproving a propertygikes conclusive results, i.e., true
or false, respectively, which are preserved to the conéegtd. Otherwise, an unknown result

is reported, and a refinement step is necessary.

We study weak exact-approximation from the following twpeds: (1) model checking

recursive programs and (2) analysis of partial modelinghidisms.

(1) Software model checking directly checks a program by lbaomg automated predicate
abstraction [GS97, BMMRO01] and counterexample-guided abstm refinement [CGD3].
Using a list of predicates over program variables, a soffvmaodel checker constructs a finite
abstract model of a program for property analysis. If thelltas inconclusive, counterexam-
ples are generated to find additional predicates for refiném&he process continues until
either the property is successfully proved or disprovedresources are exhausted. Tradi-
tional software model checkers [BMMRO1, HIMS02, CKSYO05] b@afdover-approximating
abstraction of the programs, and typically bias their asialyowards verification of proper-
ties. In our previous work, we have developed a software incltecker YAsm [GWCO06D],
which constructs an abstract model based on exact-appatirignsemantics of predicate ab-
straction [GWCO06a, GC06]. Therefore, it supports both vetiicaand refutation. In this

thesis, we extend such analysis ability ofSf1 by addressing the following problem:

Question 3: How to model check recursive program with exggir@ximation? Software
programs often involve significant use of recursion. A latidn of YASM is that it cannot
handle programs with recursive functions. A state in a r@earprogram is an unbounded
call stack of activation records, which introduces ano#wirce of infinity on the statespace
other than data domain. Since3M only uses predicate abstraction to abstract data aspects of
program states, it does not support abstract analysis witlstacks. A naive solution to this

problem requires the development of new abstract modelsénabine call stack and predicate
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abstraction, and subsequently, new algorithms for anadythese models. In this thesis, we
investigate how to avoid this problem and look for a simplprapch that allows us to reuse

existing abstract analysis inAgMm.

(2) Partial models play a fundamental role in weak exact@pmation. They support
a combination of over- and under-approximations withogumeng them to be the same. A
variety of modeling formalisms have been proposed for thiterature. In this thesis, we
conduct a systematic analysis of a set of partial modelimpétisms that are used widely
for exact-approximation [GHJO1, HJS01, DGG97, dAGJ04, CDEGSG04]. In general,
these modeling formalisms consist of two kinds of transitielations, one corresponding
to over-approximation, callethaytransitions, and the other — under-approximation, called
musttransitions. We call these formalisnpartial transition systemswhich can be classi-
fied into three families, represented Kyipke Modal Transition Systen(&MTSs) [HJS01]
with the requirement of evemnusttransition is also anaytransition,Mixed Transition Sys-
tems(MixTSs) [DGG97] with independemhayandmusttransitions, andseneralized Kripke
Modal Transition System&KMTSs) [SG04] withmusthyper-transitions. In this thesis, we
study these formalisms from two points of view: a semantie,arsing partial transition sys-
tems for abstracting concrete programs, and a logical asiegypartial transition systems for

temporal logic model checking. Specifically, we addresdalewing questions:

Question 4: What are the connections between semantic arahlagpnsistency of partial
transition systemsBemantic and logical consistency correspond to the seecnandi logical
view of partial transition systems, respectively: sen@otinsistency ensures that a partial
transition system does approximate some concrete progradhlogical consistency ensures
that a partial transition system gives consistent integpien to all temporal formulas, that is,
no formula can be interpreted both true and false at the samee Both notions of consistency
are required for meaningful abstract model checking. Wérdeeested in analyzing the equiv-
alence relation between semantic and logical consistéfleyalso want to find out if there is a

structural condition that can capture them.
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Question 5: Does the structural difference affect the esgix@ power of partial transition
systemsExpressive power measures the abstraction ability ofgddransition systems. The
three families of partial transition systems representgdMTSs, MixTSs, and GKMTSs have
similar but different structures, which have been intrastifor various reasons, e.g., to obtain
optimal abstraction and better refinement. It is intergstmm see whether these structurally
different formalisms have the same expressiveness. Dadnda@mjoshi have shown that all of
these formalisms are subsumed by tree automata [DNO5]. ¥oyweecomparison of expressive
power between them is still missing.

Question 6: How to use partial transition systems effegtiuepractical model checking?
In practice, model checking is often conducted based oncaatrke inductive semantics of
temporal logic. Based on this semantics, a GKMTS allows forenpyecise analysis results
than the semantically equivalent MixTS or KMTS, i.e., prayr disproving more properties.
However, while both MixTSs and KMTSs have been used in theldgwnent of practical sym-
bolic model checkers (e.g., [GC06, CDEGO03]), the direct uBKMTSs has been hampered
by the difficulty of encoding hyper-transitions symboligalTo obtain more precise symbolic
model checking using partial transition systems, it isreséing to investigate approaches that
allow us to combine both a symbolic encoding of MixTSs andtéebenodel checking preci-

sion of GKMTSs.

1.3 Contributions of This Thesis

The main theme of this thesis is the study of abstraction idehohecking based on exact-
approximation. In general, this thesis presents sevegatétical and practical contributions in

the following aspects:

e We study symmetry reduction on full virtual symmetry [WGCO3)e formalize the
connection between symmetry reduction and abstraction.edas that, we address

Question 1 by providing an efficient procedure for identifyifull virtual symmetry,
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and provide a solution to Question 2 by extending countetrattson to fully virtually

symmetric programs.

e We propose a novel approach for analyzing reachability amdtarmination properties
of recursive programs with exact-approximation [GWCO08], athprovides a solution
to Question 3. We accomplish this by using a mixed programasgios to remove call
stacks, which leads to a natural combination of analysieaiirsive program with exact
predicate abstraction. We also develop on-the-fly algarstho improve analysis perfor-

mance.

e We provide answers to Questions 4, 5 and 6 about partial nmgdermalisms [WGC09a,
WGCO09b]. We prove equivalence between semantic and logicaistency over a class
of partial transition systems, and provide a necessary affidient structural condition
to characterize them. We show that the three families of mogléormalisms, KMTSs,
MixTSs, and GKMTSs, have the same expressive power. We abtgpmpe a new induc-
tive semantics of temporal logic, which results in more mesymbolic model checking

using partial transition systems.

We give a more detailed overview of these contributionsuwelo

1.3.1 Full Virtual Symmetry Reduction

Our study of symmetry reduction in this thesis focuses omptioblems of identification and
symbolic model checking of fully virtually symmetric prans, i.e., programs that are vir-
tually symmetric up to exchanging the roles of processess fiinm of virtual symmetry is
interesting because symmetry reduction over these pragadi@n allows for exponential re-
duction in the model size.

Our solutions are based on a view of symmetry reduction flogrperspective of abstrac-
tion. Symmetry reduction is usually defined based on the p&tions of processes in pro-

grams. While this provides a natural way to understand symymetiuction from the design
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perspective, its connection with the general frameworklsftr@action is missing. We com-
plete this by formalizing symmetry reduction using the aon$ in abstraction. We define the
mapping between the components of symmetry reduction astlaation, which gives us an

alternative characterization of symmetry reduction.

Based on this characterization, we provide an efficient aggbreo identify full virtual sym-
metry from program specifications. The problem of identifyifull symmetry (the genuine
counterpart of full virtual symmetry) has been avoided bygispecification languages with
special restrictions on syntax [ET99, EWO03]. We show thak lafcregularity in asymmetric
programs makes it difficult to capture restrictions thatueadull virtual symmetry syntacti-
cally. We then provide an algorithmic approach to the pnobl&Ve show that identification
of full virtual symmetry can be reduced to satisfiability ofjaantifier-free Presburger for-
mula. This formula is built directly from the specificatioha program, and can be checked

automatically using existing decision procedures [BB04,32i.g.

Our solution to symbolic symmetry reduction of full virttymmetry is based on counter
abstraction. The bottleneck of symbolic symmetry redudsdhat the BDDs of orbit relations,
which define the equivalence between symmetric states) béee exponential size [CJEF96].
In [ET99, EWO03], Emerson et al. showed that for full symmethg problem of building
orbit relation can be avoided vieounter abstractiorfPXZ02]. The idea of this technique
is based on the observation that equivalence classes of syrarstates under full symmetry
can be generically represented using counters of locakgeostates. Then a fully symmetric
program can be abstracted into another one that operatesiatec variables. The model of the
translated program is isomorphic to the symmetry-reduterttsire of the original program,
and can be symbolically analyzed directly. In the thesissivaw that this technique can be
extended to handle full virtual symmetry as well. For thestation step, we identify several
cases of asymmetric transitions and provide procedurasumslate them to the ones defined

over counter variables. We report on experiments to ilstthe feasibility of our approach.
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1.3.2 Reachability and Non-Termination Analysis of Recursive Programs

We investigate abstract analysis of recursive programis mspect to reachability and non-
termination. These two properties are often used in praéticanalyzing software programs.
Our approach is based on a mixed program semantics thatsallsvto combine analysis of
recursive programs with exact predicate abstraction witk&plicitly dealing with call stacks.

We notice that reachability and non-termination propsrtiepend only on top activation
records of call stacks. To analyze these properties, wdajeaestack-free program semantics
where each state issingleactivation record. The stack-free semantics combines dyodina-
tional and natural semantics [NN92] that correspond to Xee@tions of single statements and
functions, respectively. It uses non-determinism at ¢abkg0 simulate the executions within
and outside of function bodies, which effectively elimemthe call-stack while preserving
stack-independent properties. Based on the stack-freensiesyave develop algorithms for
analyzing reachability and non-termination propertieseaiursive programs. Since there are
no call stacks involved in the stack-free semantics, we easa the existing exact predicate ab-
straction in our software model checkesdv [GWCO06b] to obtain abstract analysis of these
properties. To improve the performance of the analysis,ls@develop on-the-fly versions of
the algorithms, where computation of natural semanticsiottions, i.e., the summary of the
behaviors of functions, is driven by the analysis of patécproperties.

Our algorithms share many insights with techniques in othels for analyzing recursive
programs (e.g., [BR0O0, ACEMO05, BCP06, PSWO05]), i.e., they aretiomal [SP81] in terms
of interprocedural analysis, and apply only to stack-iredeent properties. However, all those
tools useover-approximatiorio analyze infinite programs. It is not clear how to combirenth
with exact-approximationThe novelty of our approach is that it separates the arsabysecur-
sive programs from abstraction of data domains. Theretmmbining the analysis algorithm
with different abstractions is trivial in our work. Moreay®ver-approximation makes it im-
possible to use the existing tools for detecting non-teatndm since over-approximation may

introduce spurious non-terminating computations, wheteis is not a problem in our case.
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We have implemented our approach in the software modelkelnesm. Our approach
allows us to reuse existing abstract analysis #sM to handle recursive programs. We exper-

imented on reachability and non-termination analysis eésd non-trivial C programs.

1.3.3 Analysis of Partial Modeling Formalisms

We investigate the three families of partial transitionteyss represented bgripke Modal
Transition System&MTSs) [HIS01]Mixed Transition SystenfMixTSs) [DGG97] andsen-
eralized Kripke Modal Transition SystefGKMTSs) [SG04], providing answers to Questions
4,5 and 6.

For the relation between semantic and logical consistehpgubial transition systems, we
show that while in general they are not equivalent, thereciass of partial transition systems
for which semantic and logical consistency coincide. Wetbéd classmonotonebecause of
the monotonicity condition imposed on the transition ielas. The class of monotone tran-
sition systems is as expressive as the class of all pariasition systems. That is, for every
partial transition system, there is an equivalent monotwree We also provide a structural con-
dition to capture both notions of consistency. We show thattegious requirement of “every
musttransition is also anaytransition” [HJS01, dAGJ04] is sufficient for logical costncy,
but not necessary. For semantic consistency, the requiteisi@either necessary nor suffi-
cient. Over the class of monotone transition systems wharestic and logical consistency
coincide, we define an alternative structural condition simolw that it is both necessary and
sufficient to guarantee consistency.

We compare the expressive power of the three families of disms, KMTSs, MixTSs,
and GKMTSs, and show that they are equally expressiveforeany partial transition system
expressed in one formalism, there exists another one inttiex such that the two transition
systems approximate the same set of concrete programsis] hatther hyper-transitions nor
restrictions ormay and musttransitions affect expressiveness. They do, howeverctatie

size of the models: GKMTSs and KMTSs can be converted to secady equivalent MixTSs
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of smaller or equal size. Dams and Namjoshi have shown tedhtiee families of formalisms
are less expressive than tree automata [DNO5]. Our resuttplete the picture by showing
the expressive equivalence between those formalisms.

While analysis of properties over the GKMTS using the stathdaductive semantics
is more precise than that over a corresponding MixTS (or KMd&tained by semantics-
preserving translations, the direct use of GKMTSs in synebrabdel checking has been ham-
pered by the difficulty of symbolic encoding of hyper-trdiwgis. To address this problem, we
develop a new semantics, calleiuced that is still inductive (and tractable) but more precise
than the standard one. We show that GKMTSs and MixTSs areaquot with respect to the
reduced inductive semantics, and give a symbolic appraarctoimputing the semantics. The
outcome is an algorithm that combines the benefits of the sliméncoding of MixTSs with
the better precision of GKMTSs. We implement our algorithmd avaluate it empirically over

MixTSs constructed using predicate abstraction.

1.4 Organization

The rest of this thesis is organized as follows. In Chaptere&set our notation and describe
temporal logic, model checking, and the abstraction fraomkvef exact-approximation. In
Chapter 3, we describe our work on symmetry reduction withviulual symmetry, reported
in [WGCO05]. In Chapter 4, we describe our approach for analyrgaghability and non-
termination properties of recursive programs, reportdg@WCO08]. In Chapter 5, we describe
our results of analysis of partial modeling formalisms,ameed in [WGCO09a] and [WGC09Db].
Finally, we conclude in Chapter 6 with a summary of this thasid a discussion of limitations

of our work and future research directions.



Chapter 2

Background

The work presented in this thesis is concerned with absbract model checking. This chapter
introduces the concepts and fixes the notation used in laggaters. In Section 2.1, we present
truth domains that are associated with concrete and abetmel checking results. In Section
2.2, we introduce model checking, including temporal lsgand models of computation. In
Section 2.3, we define an abstraction framework for modetkihg, and introduce strong and

weak exact-approximations.

2.1 Truth Domains

A truth-domainD is a collection of element®, referred to agruth values together with a
truth orderingC_ and a negation operater: D — D, such tha® = (D, C, —) is a De Morgan
algebra. The truth ordering orders the elements based onrilite content; thusg C b stands
for“a is less true thah”. The meet () and join (/) of the truth ordering are callegbnjunction
anddisjunction respectively.

The most known truth domain is the classical boolean I@giEigure 2.1(a)) with values
t (true) andf (falsg such thaf C t. Kleene logic [KIe52]3 (Figure 2.1(b)) extend® with an
additional elemenin, representing “unknown” information. The truth orderirfgloe logic is

extended a§ = m andm C t, and negation asm = m. We define an additional ordering

20
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(@) (b) © S

Figure 2.1: (a)-(c) Truth domains: (2)valued boolean logic, (3-valued Kleene logic, and

(c) 4-valued Belnap logic.

=, that relates values based on the amounnhfdrmation thusm < tandm =< f, so that
m represents the least amount of information. Belnap logic{Bet (Figure 2.1(c)) extends
3 with an additional element representing “inconsistent” information. The truth ondgris
extended so tha@t C d andd C t, and negation asd = d, i.e., d is equivalent tom with
respect to this ordering. Finally, the information ordgris extended by making be the

largest element, i.ef, < d andt < d.

2.2 Model Checking

Given a hardware or software program, model checking auioatly determines whether the
model of the program satisfies a temporal property. In thiti@e, we first introduce two tem-
poral logics, the modak-calculus [Koz83] and the Computation Tree Logic (CTL) [CES83]
We then describe the classical models of programs basedalaadwotransition systems, and

the semantics of temporal logics over them.

2.2.1 Temporal Logics

We begin by introducing the modatcalculus.

Definition 2.1 (Modal p-Calculus) Let Var be a set of variables, and P be a set of atomic
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propositions. The logi€ ,(AP) is the set of all formulas satisfying the grammar

o = plZl-elene|Op |z o(Z),
wherep is an atomic proposition i P, and Z is a fixpoint variable from irVar.

An occurrence of a variabl€ in a formulay is boundif it appears in the scope of a
guantifier and igreeotherwise. For examplé&; is free inp Vv ¢ Z, and is bound iz - p Vv O Z.
A formula ¢ is closedif it does not contain any free variables.

We define the following syntactic abbreviations:

VY = (0 A )
e=v = @V

Oy = =0y
vZ-p(Z) = —pZ-—p(~Z|Z)

wherep(1/Z) denotes the syntactical substitutionyofor free occurrences of in .

A p-calculus formula isyntactically monotoni and only if for every formula of the form
wZ-p(Z), all occurrences of the fixpoint variabtein ¢ fall under an even number of negations
in . From this point onwards, we consider syntactically monefe-calculus formulas only.

The modal operatop is typically interpreted as “an existence of an immediatarii’. For
example, »” means thap holds now, ‘Op” means that there exists an immediate future where
p holds, and p” means thap holds in all immediate futures. The quantifigrandr stand
for least and greatest fixpoint, respectively.

We often writeL, to denote the set gi-calculus formulas over some unspecified set of
atomic propositions. Every,, formula can be transformed to dn, formulaNNF(y), called
the negation normal fornof ¢, where negation is restricted to the level of atomic proposi
tions [DGGY97]. We say arl, formula isuniversal(resp. existentia) if the only allowed
modality in its negation normal form is (resp. ). We use1L,, and{$ L, to denote the uni-

versal and existential fragments bf, respectively.
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Computation Tree Logi€CTL) is a restricted subset df,, which is often used in the

specification and analysis of temporal properties.

Definition 2.2 (CTL). Let AP be a set of atomic propositions. The temporal logit L over

AP is is the set of all formulas satisfying the grammar
o = plop| EXe| ElpUe]| EGy
wherep is an atomic proposition iM P.

Additionally, we define the following syntactic abbrevais:

AX L2 “EX-p

AGyp £ —FE[trueU —¢)]
EFyp = SAG—p

AF¢ L2 -EG-yp
The meaning of the operatdf is that a property holds in next timé&] specifies that the first
property holds until the second property becomes true soraeh the future; The operators
F andG requires a property to hold eventually and globally respelst The universal and
existential path quantifierd and F specify that some property holds for all computational
paths and for some path, respectively.
CTL has a fixpoint characterization. Every CTL formula can bestated to ar,, formula

according to the following definition

EXe 2 Qp
ElpUy¢] & nZ-¢V(pA02Z)
EGyp L2 vZ-oNOZ

1This translation is based on the assumption that the tiansglations of CTL models are total. A translation
without this assumption can be found in [Bra91].
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The universal and existential fragmemt€'7', and ECT L [GL91] are the intersections of
CTL with OOL,, and$L,,, where only universal and existential path quantifiers #osvad,

respectively.

In the following, we define classical models of computatiod ¢he semantics of temporal

logics over them.

2.2.2 Models of Computation

A model of a program is built based on a state transition gystetransition systenof a pro-
gram describes the transition relations between progratasst Amodelextends a transition
system with a state labeling function, which is used to pretratomic propositions in tempo-
ral logic formulas. A transition system can be associatet different labeling functions for
model checking of different temporal properties. We refeatclass of transition systems as

modeling formalism
We first describe classical models of computatignipke structuresthat are built over
boolean transition systems

Definition 2.3 (Boolean Transition SystemsA boolean transition systeBTS) is a tuple

B = (S, R), where
e S is a set of states and
e R C S x Sis atransition relation.
For example, the picture in Figure 2.2 represents a BT @ith
o S5 = {81,82783},

° Rl = {(81, 82), (82, 83), (52, 82), (53, 83), (33, 81)}.
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51 52

Figure 2.2: An example of boolean transition syst8m

For a pair of states andt related by the transition relation, i.&?( s, t) holds, we say that
is a successor of, ands is a predecessor of and useR(s) to denote the set of all successors

of s. For a transition relatio®, we define the pre-image &, pre[R] : 2° — 2, as

pre[R|(Q) = {s € S| R(s) N Q # 0}

pre[R](Q) is a set of states that havesuccessors ify. For example, inBy, pre[R;]({s1}) =
{s3}, andpre[R:]({s2}) = {s1, 52}

Let B = (S, R) be a BTS, andd P be a set of atomic propositions. labeling function
L : AP — 2% is an interpretation of atomic propositions over a set ofestd such that
s € L(p) iff the atomic propositiorp is true at the state. The pairB = (B, L) defines a

classical computational model, calle&Kapke Structure

We now define the semantics of temporal logics over Kripkecstires. A semantics df,
is calledinductiveif it is defined inductively on the syntax of the logic. The uadive semantics

of L, over Kripke structures is defined as follows.

Definition 2.4 (L,, semantics over Kripke Structured)et 3 = (B, L) be a Kripke structure,
where B = (S, R) is a BTS. Letar be a set of fixpoint variables, and: Var — 2° be

an object assignment for free variables. Tihductive semanticéor interpretatiof of an L,
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formulay over3, denoted|||5, is defined as follows:

b2 L) 1Z1E 2 «(2)
ko Al 2 gl 0l gl 2 S\ ]joll?
Iz ellf 2 = (0@ lleliSsg)  I0glE 2 prefRI(Ill)

whereZ € Var is a fixpoint variableg[Z — Q] denotes the object assignment that is the

same as except that[Z — Q](Z) = @, and Ifp= f is theC-least fixpoint off.

For a closed.,, formulay, ||| = ||¢||5 for anye ande’. Thus, we writd ||| for that
value. When it is clear from context, we simply call the induetsemantics as the semantics

of L, and omit.

The semanticfy||® defines a mapping from the statggo a2-valued truth domain such

that for each state € S,

t if s llo||P

foifséllell®

el (s) =

If ||o||®(s) = t, that means is satisfied at, i.e., B, s = ¢; otherwisey is refuted ats, i.e.,

B, s = —o.

Given a modelB and a temporal property, model checking automatically determines
whethery is satisfied or refuted at the statesAnaccording to the semantic of . For the
BTS B; shown in Figure 2.2, lef P = {p, ¢} be a set of atomic propositions, and a labeling
function L, be defined ad,,(p) = {s1,s2}, andL,(q) = {s2}. We present several example

properties over the Kripke structulg = (B, Ly).

e Propositional propertyo £ p A q)). This property requires that bothandg are true at
the same time. According to the labeling functibn the propertyy is satisfied at the

statess.
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e Modal property(¢o 2 EX(pAq)). This property requires that a state has at least one
successor where bothandgq are true. Since A ¢ holds ats; andss, is a successor of;

ands,, the propertyp is satisfied at the states ands..

e Reachability propertyy = EF(pAq)). This property requires that a state can reach
some state satisfying A ¢ in zero or more steps. SingeA ¢ is satisfied atsy, the
property is satisfied at the states, s;, andss, which can reach, in 0, 1 and 2 steps,

respectively.

¢ Non-termination propertyp = EGp)). This property requires that there is an infinite
path from a state such thatalways holds on the path. Note thats true ats; ands;
in B;. Since there is a self-loop at, ands; is a predecessor 6, the propertyy is

satisfied ak; andss.

2.3 Abstraction Framework

Abstraction in model checking builds a smaller abstract @h¢a approximate a large or infi-

nite program, and uses the abstract model checking resd#rtee the one at concrete level.
An abstraction framework [CC92] formalizes the connectiotwleen concrete and abstract
model checking, which defines a class of modeling formalimabstraction, the approxima-

tion relation between concrete and abstract models, angréservation relation of temporal
properties.

Abstract model checking starts with an abstraction of spee. Let3 = (B, L) be a
Kripke structure representing the concrete model of a pmgmwhereB = (C, R) is a BTS.
The set of state€’ in B is called aconcretestatespace. Aabstractstatespace approximating
C'is a finite set of stated together with asoundnesselationp C C' x A, where(c,a) € p
means that: p-approximates: p induces aconcretizatiorfunctiony(a) = {c | (c,a) € p}.

That is,v(a) is the set of all concrete states approximated:byor a set) C A, we define

V(Q) £ UaEQ’Y(a) .
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The abstract states describe concrete states in an alws&actor the purpose of model
checking, other components Bfare lifted into the abstract world as well. An abstract model
M = (M, L,,) describes abstract program behaviors, consisting of aitiam systemi\/
over the abstract statespadeand a labeling functiorl,,; for A. Let a andc be an abstract
and concrete states, respectively, arapproximates. We distinguish three kinds of abstrac-
tion frameworks based on approximation of program behawaoid preservation of temporal

properties.

1. over-approximation Intuitively, an over-approximating abstract model consists of
“more” behaviors than the concrete one. Therefore, fiainersalproperty holds on the
abstract model, it also holds on the concrete one. Sinceagbshodel checking starts
from a notion of abstraction of states, the preservatioreofgoral properties is often

defined on the level of individual states. That is,
Vo eOL, - (M,a = p) = (B,c | ¢)

Note that over-approximation only preserves soundnesshimuniversal fragment of
temporal logic. Therefore, if an universal propegtys refutedat a, it does not imply

thatyp is refuted at as well.

2. under-approximationAn under-approximating abstract model consists of “less” be-
haviors than the concrete program. In this case, iéxistentialproperty holds on the

abstract model, it also holds on the concrete one. That is,
Vo € OL, - (M,a k= ¢) = (B,c =)

Similar to over-approximation, under-approximation optgserves soundness for a frag-

ment of temporal properties.

3. exact-approximationAn exact-approximating abstract modet combines both over-

and under-approximating abstract program behaviors, wdliows for verification and
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refutation ofarbitrary L, formulas in the framework. In this case,

VQOELM'(Mva):SD)j([iC):QO)

If the reverse direction also holds, that is, the valueg ofer M are eithetrue or false
theny is satisfied (resp. refuted) over the concrete model if arig ibnt is satisfied
(resp. refuted) over the abstract model. We refer to sucbte@proximation as being
strong More general exact-approximation frameworks, calledk allow for unknown
values of formulas over the abstract model. In this caseyrbgervation ofrue andfalse

results only hold from the abstract to the concrete level.

In the rest of this section, we describe modeling formalismd approximation relations

between concrete and abstract models in strong and weakaxaoximations, respectively.

2.3.1 Strong Exact-Approximation

In strong exact-approximation frameworks, we use boolearsitions system as the modeling
formalism, and represent abstract models using Kripkestras. The approximation relation

between abstract and concrete models is basdisimulation

Definition 2.5 (Bisimulation between BTSs)[Mil89] Let B, = (S, R1) and By = (S5, Rs)
be two BTSsH C S; x S, is abisimulationbetweenB; and B if for any (s1, s2) € H, the

following two conditions hold:

(CL) Vt, € 51 . (Sl,tl) € Ry = 3ty € SQ . (Sg,tg) € Ry A (tl,tg) c H

(b) Yty € Sy - (Sg,tg) € Ro=dt; €5 - (Sl,tl) € R A (tl,tg) € H
In this case, we sa¥g; and B, are H-bisimilar, written B, =y B,.

Definition 2.6 (Equivalence between Labeling Functiankpt AP be a set of atomic propo-

sitions. Letl; and L, be a labeling function for the statespacg&sand S, respectively. Let
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H C S x S, be arelation.L; and L, are H-equivalent denotedlL; =y L», if the following

condition hold:

V(81782> € H Vp c AP - S1 € L1<p) = S9 € Lg(p)

Note that Definition 2.5 and Definition 2.6 are defined over ecffr relation 4. The
reason for this is that in abstract model checking, we oftarsier the relationship between
concrete and abstract models with respect to the soundelesi®sm between concrete and ab-
stract statespaces, instead of an arbitrary one. A conanetan abstract Kripke structures are
bisimilar if the underlying transition systems and labeling funcsioespectively are bisimilar

and equivalent with respect to the soundness relation.

Definition 2.7 (Bisimulation between Kripke Structures)CGP99] Let p be a soundness
relation between a concrete statespaceand an abstract statespacé. Let AP be a set
of atomic propositions. Lef; = (By, L;) be an abstract Kripke structure ovet, and 3, =
(Bs, Ly) be a concrete Kripke structure ovéf, whereB; = (A, R;) and By = (C, R,) are the
abstract and the concrete BTS, respectiv8lyis bisimilarto B, iff B, =, B, andL; =, L,,

i.e., forany(c;,a;) € p, the following conditions hold:

(a) Vay € A-(ar,a3) € Ry = 3eg € C' - (c1,¢2) € Ry A (ca,az) € p
(b) Ve € C' - (c1,02) € Ry = Jag € A+ (a1,a2) € Ry A (c2,a2) € p

(c)Vp € AP -a € Li(p) & ¢ € Ly(p)

The following theorem shows that B, andB, are bisimilar, then for any abstractand a
concrete state approximated by, anL, formulay is satisfied (resp. refuted) atover 3, iff

it is satisfied (resp. refuted) abver,, i.e.,Vp € L, - (Bi,a = ) < (B2, ¢ = ¢).

Theorem 2.8. [CGP99] LetB, = (B4, L) be an abstract Kripke Structure that is bisimilar

to a concrete Kripke Structum, = (Bs, Ly), andy € L,,. Thenyy(||¢]5*) = ||o][P2.
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2.3.2 Weak Exact-Approximation

Weak exact-approximation uses more expressive modelingalesms than boolean transi-
tion systems to support combination of over- and under@pprations. These formalisms
typically have two types of transition relationsiay and must corresponding to over- and
under-approximating behaviors, respectively. We refahése formalisms ggartial transi-
tion systemsince they allow us to describe undefined behaviors of progr&artial transition
systems are equivalent maulti-valued transition systenwghere transition relations are defined

w.r.t. a multi-valued domain. We introduce both of them belo

Partial transition systemsWe start by introducing exact-approximation based ornigddaran-

sition systems.

A partial transition systenallows us to describe possible and necessary behavior®of pr
grams. In the following, we first we first define several tréoss systems. Each of them can

be referred to as a partial transition system.

Definition 2.9 (GKMTS, MixTS, and KMTS) [DGG97, BG99, HJS01, SG04]Beneralized
Kripke Modal Transition SysteiGKMTS) is a tupleM = (S, R™, R™ whereS is the
statespace, an®&™» C S x S, R™St C S x 2° are themay and musttransition relations,
respectively. AMMixed Transition SystenfMixTS) is a GKMTS s.tR™st C S x S. AKripke

Modal Transition SystertKMTS) is a MixTS s.tR™UStC R,

Intuitively, may and musttransitions represent possible and necessary behavessea-
tively. Examples of partial transition systems are showkigure 2.3(a)-(b). In this thesis,
we often writes =% ¢ for (s,t) € R™, s ™% ¢ ands ™% @ for (s,¢) € R™stand
(s,@Q) € R™=! respectively. Note that partial transition systems soiesBTSs: a BTS can be

seen as a special KMTS wheR&'® = pmust

The pre-image function in a partial transition system israfiover a pair of set$):, ()) €



CHAPTER 2. BACKGROUND 32

52 / \ 52

R \\
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S1 S1 O—»I ! S1
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Figure 2.3: (a)-(b) Examples of partial transition syst¢dudted lines representaytransitions
and solid -mus): (a) a MixTS M; and (b) a GKMTSM,, where the dashed ellipse denotes
the set of states that are the destination oftlusthyper-transition frons; ; and (c) a4-valued

transition systeni/s.

29 x 29, and takes into account the two types of transition relation

pre[(R™ R™)]((Q1, Q2)) £ (preu(Q1), preo(Q2))

where

must

{s|HeQ -s—>t} if M is aMixTS
A
prev(Q) =

must

(s|WCQ-s ™MLy} if MisaGKMTS

preo(Q)é{sﬁltEQ-s—an»t}

Let AP be a set of atomic propositions, ahd(AP) be a set of literals ofiP. A partial
labeling functionZ : S — 2(4P) assigns to each statea set of literals that are true at That
is, pis true ats if p € L(s), and false if-p € L(s); inconsistent ifp, =p € L(s); otherwise,
the value ofp at s is unknown. A pairM = (M, L) of a partial transition system/ and a
labeling L is called apartial model. The semantics of ab, formulay over M is given by a
paire = (U, O), whereU, O C S. Intuitively, U is the set of states that must satigfyandO
is the set of states that do not refute (may satigfy)The inductive semantics of over M,

denoted|y||, is defined as follows.
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Lete be a pairU, O). LetU andO denote the setS\ U andS \ O, respectively. We write

U(e) andO(e) to denotel/ andO, respectively. We define the operatersindr as follows:

~({U,0) £(0,U)

(U1,01) N {Uy, O3) 2 (U1 MUy, 0, N Oy) .

Definition 2.10 (Inductive Semantics of,, over Partial Models) [DGG97, BG99, HJSO01,
SGO04]. LetM = (M, L) be a partial model, M = (S, R™, R™SY Var a set of fixpoint

variables, and: : Var — 2° x 2%, The inductive semantics pfe L, is:

[I>

[Ip| |21 ({slpeLs)} {s|—p¢ L(s)})
|| =l ~|[e]|M

|l A | [l 124 71 [[op]] 21
[0wlI2 = (preu(U(|l¢l|2)), preo(O(]]¢l|21)))
1Z|IM £ e(2)

112 -l 2 (1= (AQ- Ulllellt.q)) 11 (M@ - OllglIY o))

whereZ € Var and Ifp is the least fixpoint.

The semanticHy||M defines a mapping from the stat&so a4-valued truth domain such

that for each state € S,

tif s e U(llel™) N Ol ™)

ey LI AL GRS
m if s € O(||e]|M)\ U(|le]|™)

d it s € U([lel™) \ O(lllI™)

\

If ||¢||™(s) ist orf, it means thap is satisfied or refuted at respectivelym means that the
value ofy is unknown at, andd denotes an inconsistent result since in this caseist satisfy

o (s € U(||o||™M)) and must refute (s ¢ O(||||™)) at the same time. For example, consider
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the MixTS M; shown in Figure 2.3(a). Let P = {p, ¢} be the set of atomic propositions and
the labeling function.; be defined ad;(s1) = {p,q}, L1(s2) = {p}, andLi(s3) = {q}.
Over the partial modeM,; = (M, L;), we have||p||™ = {({s1,s2}, {51, 52, 53}); that
is, p is true ats; ands,, and unknown aks; For the modal property £ Op, we have
l|||M = ({s1,52}, {s1,83}), that is, the property is true ats;, unknown ats;, and in-

consistent ats.

The approximation relation between a partial model and arede model (Kripke struc-

ture) is defined based onixed simulation

Definition 2.11 (Mixed Simulation between MixTSs]DGG97] Let M; = (S, R"™Y, R[™")
and My = (Sy, Ry, Ry™s') be two MixTSsH C S; x S is amixed simulatiorbetween\/;

and M, if for any (s, s2) € H, the following two conditions hold:

(a) vtg S SQ . (82,t2> c R?USI:> Eltl € Sl . (Sl,t1> € ernUSt/\ (tl,tz) c H

(b) Vt, € Sy - (Sl,tl) € RTay:> dte € S, - (Sg,tg) < ngy/\ (tl,tg) € H
In this case, we say/, H-simulatesM, written M, <y M;.

Intuitively, M, simulates\/; whenever\/; is less precise about its behaviour then. This

definition generalizes to GKMTSs [SGO04].

Definition 2.12 (Approximation between Labeling Functiond)et AP be a set of atomic
propositions. Letl; and L, be a partial labeling function for the statespaSe and S,, re-
spectively. Letd C S; x S, be a relation.L; H-approximated.,, denotedl.; <y Lo, if the

following condition hold:
V(Sl,SQ) c H- L1(51) g LQ(SQ)

Let C' and A be a concrete and an abstract statespace, respectivelyanithe soundness
relation, andy be the concretization function. A partial transition syst®/ over A approx-

imatesa concrete BTSB over C (or, equivalentlyB refinesM) iff M p-simulatesB, i.e.,
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M =, B. The set of all BTSs that refind1 is denoted byC[)]. Let L), and Lg be the
state labelings ford and C', respectively. L,, approximates.p iff L), p-approximates. g,
i.e.,Ly <, Lp. A partial modelM = (M, L,,) approximates concrete modd$ = (B, L)

(or, equivalently5 refinesM) iff M approximates3 and L, approximated. g.

Definition 2.13 (Approximation between Partial Models)DGG97] Let p be a soundness
relation between a concrete statespétand an abstract statespace LetM = (M, Ly,) be
a partial model overd whereM = (A, RY/”, RT'Y) is a MixTS. LeBB = (B, Lg) be a concrete
model ovelC whereB = (C, Rp¥, Ri's) is a BTS, i.e. R = RS\ M approximateds iff

M <, BandL,; <, Lg. Thatis, for any(c;,a,) € p, the following conditions hold:

(a) Vay € A-(a1,a5) € RIS = Fcy € C - (c1,¢0) € RESA (co,a0) € p
(b) Vey € C - (c1,¢2) € REY = Jag € A (ay,az) € Ry A (cg,a9) € p

(¢) Lu(ar) € Lp(ar)

This definition generalizes to partial models over GKMTS&(8]. We denote the set of
all concrete refinements dg#1 by C[M].

The following theorem shows that i1 approximates3, then for any abstract and a
concrete state approximated by, if an L, formulay is satisfied (resp. refuted) aover M,

then it is satisfied (resp. refuted)@bverB, i.e.,.Vpo € L, - (M,a = ¢) = (B,c = ¢).

Theorem 2.14. [DGG97, SG04] LetM = (M, L,,) be a partial model that approximates a
concrete modeB = (B, L), andy € L,.. Theny(U(|[l¢][|**)) € U(ll¢[|®), andy(O(ll¢[*))

< O([l#11%)-

Multi-valued Transition System&Ve now introduce exact-approximation using multi-valued
transition systems, which is based on extension of setsranditions to multi-valued truth
domains.

We first introducemulti-valuedsets. Given a collection of elemerisand a truth domain

D, aD-valuedsetX overC'is a total functionS — D. For example, 2-valued set is simply a
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boolean or a classical set, and-&alued set is a function froft to Belnap logict. Given a set
overC and an elementfrom C', the valueX (c) represents the degree to whichelongs ta”'.
For example X (s) = t means that is contained inX, f means that is not contained irC', m
means that may be contained iX', andd indicates an inconsistent case. A fuzzy set [Zad87]
is also a multi-valued set defined over fuzzy logic, wherdithth values are formed by the set
of all real numbers in the closed intenjal 1] such that) stands foffalse, 1 for true, and the
remaining values stand for degrees of truth. WeDSeo denote all thé>-valued sets ovef'.

Set ordering and operations are defined by pointwise extessletS;, S, € D¢ be two

D-valued sets. Then
Sl g SQ = Vo - Sl<$) E SQ(Z')

Sl U SQ = AT - Sl(l') V SQ(.I')
Sy 2 v -5 ()
S1NSy = Az-Si(x)ASy(z)

Note that the classical set theory is a special case wheteutiiedomain i2.

Definition 2.15 (Multil-Valued Transition Systems)A D-valued transition systens a tuple

M = (S, R, D), where
e S is a set of states,
e Dis atruth domain,
e R:S xS — Disatransition relation,

In the rest of this thesis, we only consider multi-valuedhsiion systems with truth do-
mains from the set of2, 3,4}, which are equivalent to the partial transition systems ise d
cussed previously. An example @fvalued transition system is shown in Figure 2.3(c), and
a BTS is simply &-valued transition system. For a relatiéh: S x S — D, we define the

preimageof a setQ) € D w.r.t. R as

pre[RI(Q) = As €S- V,es R(s,1) A Q1)
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Let AP be a set of atomic propositions. A labeling function asdedavith a multi-valued
transition system is a functiob : AP — 4°. A pair M = (M, L) of a multi-valued transition
systemM and a state labeling. is called amulti-valued Kripke structure The inductive
semanticof an L, formulasy over M, denoted |||, is a4-valued set ovelS, which is
defined in the same way as that over classical Kripke strest{iDefinition 2.4), with the only
difference that set operations are defined based on mliliegdruth domains.

Multi-valued Kripke structures are isomorphic to partiadaels w.r.t.L, formulas [GJO3,
GWCO06a]. For example, a labeling functian S — 244P) can be transformed to a function
L' : AP — 4% such thatl/(p)(s) istif p € L(s)and—p ¢ L(s),f—if —-p € L(s)andp ¢ L(s),

m —if p,—p ¢ L(s), andd —if p, =p € L(s). AMIXTS can be easily transformed tatavalued
transition system by assignimgayandmusttransitions the valug mayand notmust—m, must
and notmay—d, and empty transitionsf-e.g., the MixTS in Figure 2.3(a) can be transformed
to the4-valued transition system in Figure 2.3(c). Similarly, a KBland a GKMTS can be
respectively transformed to3avalued transition system andtavalued transition system with
extension of hyper-transitions.

The isomorphism lifts approximation relation from partmabdels to multi-valued Kripke

structures.

Definition 2.16 (Approximation between Multi-Valued Models)GJ03, GWCO06a] Let3 be
a concrete model over a statespaCe and M be a multi-valued Kripke structure over an
abstract statespacd. M approximateds iff the partial modelM’ that is isomorphic toM

approximateds.

In this case, the preservation of temporal properties cachbeacterized using the infor-

mation ordering on truth domains.

Theorem 2.17. [GJ03, GWCO06a] LetM be a multi-valued Kripke structure that approximates
a concrete modeB, andy € L,,. Then, for any abstract stateand a corresponding concrete

statec, [|o]|!(a) < [|][%(c).
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That s, if ||| (a) is true or falsg ||||?(c) is alsotrue or falsg respectively.

2.4 Summary

In this chapter, we have introduced temporal logics and edatpnal models used for model
checking, as well as the abstraction framework for strortjvagak exact-approximations.

We have described several modeling formalisms for abstnactel checking, which are
used throughoutin this thesis. Specifically, in Chapter 3stidy a strong exact-approximation
techniqgue — symmetry reduction, where symmetry-reducetttstres are represented using
boolean transition systems. In Chapter 4, we study softwardeinchecking of recursive
programs, and discuss abstract analysis based on muled/élansition systems, where multi-
valued logic provides a convenient way to define operatiges fior abstract analysis. In Chap-
ter 5, we study modeling formalisms for weak exact-appration based on partial transition
systems, where thmay and musttransitions allow for a natural way to understand abstract

behaviors.



Chapter 3

Full Virtual Symmetry Reduction

In this chapter, we investigate symmetry reduction, whila ispecial technique for strong
exact-approximation. Based on our characterization of sgtmymeduction from the perspec-
tive of abstraction, we provide the solutions to identifimatand symbolic symmetry reduction

of fully virtually symmetric programs.

3.1 Introduction

Symmetry is naturally exhibited in concurrent programs mtgcols that consist of synchro-
nization and coordination of several identical procesSesh symmetry can be seen as a form
of redundancy, and model checking can then be performedeosytimmetry-reduced quotient
structure that is bisimilar to, and often substantially kemahan, the original model of the
program [CJEF96, ES96]. To extend symmetry reduction to éalihsymmetric programs,
Emerson et al. [EHTOO] definedrtual symmetryas the most general condition under which
the transition system of a program is bisimilar to its symmeeduced quotient structure, and
thus symmetry reduction can be applied. Although virtuahsetry increases a potential do-
main of problems that can be symmetry reduced, its pracmalication depends on successful

solutions to the following questions:

39
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(1) How does one identify virtual symmetry without builditige transition system of the

program (which is typically infeasible)?

(2) How does one symbolically model check a virtually synmegirogram?

In this chapter, we answer these questionsfily virtually symmetric programs, i.e.,
programs that are virtually symmetric up to exchanging tiles of processes. This form of
symmetry typically arises in programs composed of simbat, not identical, processes. An
example of such a program is Readers-and-Writers (R&W): a vaofaanwell-known mutual
exclusion protocol (MUTEX), where writer processes areegia higher priority than reader
processes for entering the critical section [EHTO0O]. Likk $ymmetry, full virtual symmetry
often leads to an exponential reduction on the statespatte &ystem, which is the focus of
our study in this chapter.

Specifically, this chapter includes the following techhimantributions:

1. We provide a characterization of symmetry reduction ftbeperspective of abstraction.
We consider symmetry reduction as a special techniquerfongtexact-approximation,
where existential and universal abstractions over symmetuivalence classes coin-

cide.

2. We provide an algorithmic way to identify full virtual synetry. We first show that
virtual symmetry of a program is equivalent to virtual syntrpef local transitions of
processes, which reduces the problem of checking virtuahsstry, a global property
of a program, to a local property of each transition. Thesgldaon our characterization
of symmetry reduction, we further reduce identificationuf ¥irtual symmetry of local
transitions to satisfiability of a quantifier-free Preskairtiprmula built directly from the

description of the program.

3. We extend the counter abstraction technique to full alraymmetry, which avoids the

bottleneck problem of symbolic symmetry reduction. We acéithis by translating the
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description of a fully virtual symmetric program to the degtion of another program
over counter variables of local process states. The ragystiogram defines a transition
system isomorphic to the symmetry-reduced structure obtlggnal program, and can

be directly analyzed symbolically.

4. We evaluate our techniques of identification and symbsfimmetry reduction of full
virtual symmetry over two families of programs used in pi@gtwhere processes have

different proprieties and asymmetric permissions for asitg) resources, respectively.

This chapter is organized as follows. Section 3.2 reviewdsics of symmetry reduction
and fixes the notation used in this chapter. Section 3.3 fiwesgathe connection between
symmetry reduction and abstraction. Section 3.4 introslumg specification language for
asymmetric programs. Section 3.5 provides our approadddatifying full virtual symmetry.
Section 3.6 describes the extension of counter abstratdibandle fully virtually symmetric
programs. Section 3.7 reports our experimental resultside3.8 discusses related work, and

Section 3.9 concludes this chapter.

3.2 Preliminaries

Symmetry ReductionLet B = (S, R) be a transition system A permutations on S is a
bijections : S — S. LetG be a permutation group afi The group’ induces an equivalence
partition onS. The equivalence class of a states called the orbit of s underG, defined by
0a(s) = {s' € S| 3o € G-0(s) = s'}. We uséi(s) to denote the orbit of whend is clear
from the context. The extension &to a set of state§ C S is defined byd(Q) = Useq 0(5)-
The quotient structureof B induced byG is a transition systenB“ = (5S¢ R) where
S¢ 2 10(s)| s € S}, andVs,t € S-(0(s),0(t)) € RY < 3s' € 6(s)-3t' € 0(t)- (s, ') € R.

A permutation groug= is anautomorphism groufor B if it preserves the transition relation

LAbstract models in symmetry reduction are defined over tawoteansition systems. Therefor, we only con-
sider boolean transition systems in this chapter. For saityylwe call them transition systems.
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R, i.e,Vs,t € S-(s,t) € R = Yo € G- (0(s),0(t)) € R. A transition systemB is
called symmetricwith respect to a permutation grodp if GG is an automorphism group for

it. In this case,B is bisimilar to its symmetry-reduced quotient structuretw.the relation

pa = {(s,0(5))|s € S}.

Theorem 3.1. [CJEF96, ES96let B = (S, R) be a transition systent; be a permutation

group acting onS. Then,B =, B® if G is an automorphism group faB.

Therefore, model checking a), formulay on B can be reduced to model checkipgn

B¢, provided that the state labeling associated with atonopgsitions ofy are preserved by

PG-

Compositional Transition System&ymmetry reduction is often applied to a parallel com-
position of similar processes. Such a composition is mabbjea transition system whose
statespace is assignments of local states to each process.

Let I = [1..n] be the index set of processes which have the same set of local states
The composition of the processes is modeled bgrapositional transition syste = (S, R),
whereS = £". Then a global statein S is ann-tuple (14, ...,1,) € L". For each € I, we
uses(i) to denote the value df, i.e., the current local state of thth processp;, ats. Let
K C I be asetof processes. Tgp@up counteof a local statd. with respect tax is a function
#L[K] : L™ — [0..n] such that for any global state #L[K](s) = |{i € K | s(i) = L}|.
Thatis,#L[K](s) is the number of processes i whose current state atis L. In particular,
if K =1, we use#L todenote#L[I], and call#L thetotal counterof L.

The full symmetry groupf 7, i.e., the group of all permutations acting énis denoted
by Sym(I). A permutations € Sym([) is extended to act on a stateof a compositional
transition systenB as follows: Vi, j € [ - o(s)(i) = s(j) < o(i) = j. In the rest of the
chapter, we do not distinguish between a permutation group or /. A transition systenB

is calledfully symmetric if B is symmetric with respect t8ym(1).
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3.3 Abstraction and Virtual Symmetry

In this section, we formalize the connection between symyretuction and abstraction. We
then show how this connection can be used to establish aseyesd sufficient condition for
the application of symmetry reduction. This conditionereéd to by Emerson et al. astual
symmetryfEHTOO], generalizes the notion of automorphism-basedsgtry [CJEF96, ES96]
(see Theorem 3.1) and increases the applicability of symymeduction.

In this chapter, we only consider partition-based absstatespaces where the concretiza-
tion of abstract states partitions the concrete statespacthis case, the soundness relation
p associates each concrete state with exactly one abstadet sthich defines an abstraction
functiona such that for any concrete staten(s) is the unique: such thats, a) € p.

Given a transition system® = (S, R), let S, be a statespace that abstracts the concrete
statespace. Letp C S x S,, a: S — S,, andy : S, — 2° be the soundness relation,
abstraction, and concretization functions, respectivélgllowing [DGG97], we define two
transition systems ovef,, as follows. A relation?>2 C S, x S, is anexistential abstraction
of R where(a,b) € R} if and only if R has a transition betweesomeconcretizations of:
andb; R”7 is auniversal abstractionvhere(a, b) € R’ if and only if R has a transition from

everyconcretization of, to someconcretization ob:

RF 2 {(a,b) |35 € ~(a) -3t € y(b) - R(s,1)} (existential abstraction)

R7Z £ {(a,b) | Vs € ~(a) 3t €~(b) R(s,t)} (universal abstraction)
Accordingly, we defineB3? = (S,, R3%) and BY? = (S, R7) to be the existential and the

universal abstractions @, respectively.

Theorem 3.2. B is p-bisimilar to B if and only if B3? is isomorphic toB?": B} =, B <

33 _ pv3
B3 = B%,

Proof:

The proof of this theorem follows from the definitions of RY~, RZ7, and bisimulation. Note that

(67

the isomorphism between BY and B can be defined by the identity function id : S, — S,. O
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Abstraction Symmetry Reduction
abstract statespaces,, orbits induced by7: S¢
soundness relationg: mapping from states to orbitgg,
abstraction function & orbit functionfs: ag(s) = Oa(s)
concretization function % identity function:y¢ (05 (s)) £ 05(s)

existential abstraction d® : 227 | quotient of R with respect ta: R

abstract equivalence: orbit equivalence:

a(s) = a(t) O(s) =0(t) &doeG-s=o(t)

Table 3.1: A mapping between abstraction and symmetry temfuc

Symmetry reduction of a transition systétn= (S, R) with respect to a permutation group
G can be seen as a form of abstraction. FormallySfétthe set of orbits of, be the abstract
statespace, ang; be the soundness relation. Under this interpretation, tlodient 3¢ of B is
equivalent to the existential abstraction/®f A mapping between key concepts in abstraction
and symmetry reduction is summarized in Table 3.1.

Using this connection between symmetry and abstractiongimerpret Theorem 3.2 as a

necessary and sufficient condition for bisimilarity betwézand its quotienf3. Note that
RFP =R ifandonlyif (s,t)e R = Vs €v(a(s)) 3t €y(at)) (s,t)eR

In the context of symmetry reduction(a(s)), the abstract equivalence classspis simply
its orbit (s). Furthermores ands’ share an orbit, i.e5’ € 6(s) if and only if there exists
a permutationr € G such thats’ = o(s). By combining the above, we obtain the following

theorem.

Theorem 3.3.Let B = (.S, R) be a transition systend; be a permutation group acting o,
andpg = {(s,0(s)) | s € S}. Then,B =, BY if and only if

Vs,t€S-(s,t)e R=VoeG-3o' € G-(0(s),0'(t)) € R (3.1)
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Proof:
The proof follows from the reasoning in the previous paragraph. O
Note that Theorem 3.3 is a generalization of Theorem 3.lesthis no longer required to

be an automorphism group fét, and thusB is not necessarily symmetric with respectio

Definition 3.4. A transition systen®B is virtually symmetric with respect to a permutation

groupGifand only if B =, BC.

The problem of establishing a necessary and sufficient tondior a quotient3¢ to be
bisimilar to B has also been addressed by Emerson et al. [EHTO00]. Unlikéheg,do not
use abstraction, but proceed directly to show tBas virtually symmetric with respect t&
if and only if it can be “completed” to a transition systesh such thatB’ is both symmetric
with respect taz and bisimilar toB. Thus, Theorem 3.3 provides an alternative (and, in our
opinion, simpler) characterization of virtual symmetry1 the rest of the chapter, we show
how this new characterization leads to an efficient idemtiio of full virtual symmetry and

combination with symbolic model checking.

3.4 Specification Language

In this section, we define our specification language for soeat programs. We begin by
reviewing existing approaches for specifying fully symneeprograms in Section 3.4.1 and

then extend them to asymmetric programs in Section 3.4.2.

3.4.1 Specifying Symmetric Programs

Consider an asynchronous compositiomgfrocesse$P;, . .., P,} executing a common con-
current program. Each process is specified using a finitetéegraph, called synchroniza-
tion skeletofCE81]. Nodes in the graph represent states of the procedsdges, labeled
with boolean expressions callgdards represent guarded transitions. For example, a synchro-

nization skeleton of a process participating in MUTEX iswhan Figure 3.1(a). A MUTEX
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Lo=[] Ly,=[23]
I= [17 2, 3] g1, : (#C = O) A (#T[lw] = 0)

#C =0 gy : true 91, : #C =0

true @
@ o 1=1[1,2,3]

gy : true
Figure 3.1: (a) Synchronization Skeleton for MUTEX. (b) GS8r three-process R&W.

process has 3 states: Non-criticAl) Trying (7"), and Critical ('); it can enter stated and

T freely, but can only enter the statéif no other process is currently in staté

When all processes have identical synchronization skedetbieir asynchronous compo-
sition can be specified using a single skelefon This skeleton can be seen as a template
from which skeletons of each individual process are ingted. Thus, Figure 3.1(a) is also a

synchronization skeletaemplatefor MUTEX.

A synchronization skeleton templatedefines a compositional transition systéhP) in
which a (global) transition results from a local transitmfrsome process. For example, in the
three-process MUTEXB(P) has a transition froniN, N, T') to (N, N, C') because the third

process s, can move froni" to C.

Note that when each transition guardfhis invariant under any permutation of process
indices, the transition systef(P) is unchanged by any permutation of process indices; that
is, it is fully symmetric [ET99]. For example, the three-pess MUTEX is fully symmetric
since if the guard#C = 0) is true in a stats, it is also true in a state(s) for any permutation
o € Sym([1,2,3]). Symmetry reduction of a fully symmetric program can oftéeld/ an
exponential reduction in the number of states. In pracfidesymmetry of a synchronization
skeleton is ensured by restricting basic elements of thedgua the ones shown in the left
column of Table 3.2, whergé = L is true in a state if the ith process is in a statg, i.e.,

s(i) = L. The basic elements can be equivalently expressed usigtainters, as shown in

the right column of Table 3.2 [ET99].
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Basic Elements Predicates on Total Counters
Vi-l;=L,Yi-l; # L #L=n,#L =0
Y-l;=L,F-l; #L #L>1,#L<n-1
Ji#j-li=LANl;=L HL > 2

Table 3.2: Basic guard elements for ensuring full symmetry.

3.4.2 Specifying Asymmetric Programs

In this chapter, we are interested in applying symmetrycédn to asymmetric programs com-

posed of many similar, but not identical processes, such a& R& this case, since the con-

dition for entering the critical section is different bewvethe two groups of processes (writers
have a higher priority than readers), the program cannopéeifsed by a single synchroniza-

tion skeleton. Thus, for such asymmetric programs, we nedddmore general specification

formalism, and an approach to identify whether the progmufally virtually symmetric. To

address the first problem, we defingeneralized synchronization skeleton template

Definition 3.5. A generalized synchronization skeleton temp(&8ST) for an asynchronous
program withn processes is a tupl® = (£, R, I, 7), whereL is a finite set of (local) states,
R C L x L is a (local) transition relation] = [1..n] is the index set, and: R — [[ — G]is
a labeling function that labels each transition with a guaod €ach process. Heré&; : £ —

{true, false} is a set of transition guards.

We assume that for any local transitian— v € R, u # v, i.e., no self-loops are allowed

in a GSST.

Definition 3.6. A GSSTP = (L, R, I, 7) defines an asynchronous transition systB(r) =
(S, R), whereS = Ll is the global statespace, aitiC S x S is the global transition relation
defined as follows:

(a) for any local transitionu — v € R,

Ry—o(s,t) & 3i € I-(s(i) = unt(i) = vA(s = T(u — v) (D)) AY] #i5(j) = t(j))
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wheres = 7(u — v)(i) means that satisfies the guard for th&h process at the transition

u — v, and

(b) REU,cr R

Intuitively, R, _., is the set of all global transitions resulting from some psschanging
its state fromu to v. We say that — t € R is a result of firing a local transition — v if
s — tisin Ry,_.,.

For a local transition € R, the labeling function : R — [I — G] can be seen as: (a)
a partitionll, = {I;, ..., I;} of processes into process groups, (b) an index mappingifumct
7w : I — I, and (c) a function : II, — G assigning a guard to each process group, i.e., for
anyi € I, 7(r)(i) = n(n(i)). For example, in the GSST for the three-process R&W shown
in Figure 3.1(b), the guards for the local transitibn— C' are described by partitioning the
processes into two groups: = { P, } (readers) and,, = { P, Ps} (writers). Readers have the
guardg;, : (#C = 0) A (#T'[1,] = 0), and writersg;,, : #C = 0. Note that this allows us to
specify not only the static process partitioning, i¥e.," € R - II, = I1,., but a dynamic one
as well, that is, processes can be divided into differentiggat different local transitions.

Motivated by R&W, we restrict our attention to a counter-lzbsgntax of guards. Formally,
a guard for a transitiom — v is a boolean combination @roup counter constraintsn the
local stateu, i.e.,#u[l}] > b, ortotal counter constrainten any local states, i.€) . #L;) >
b, whereb is a positive integer, angk is one of{<, > =}. For example, in Figure 3.1(b),
#C' = 0 means no process is currently in the local stafevhereas#7'1,,] = 0 means that

no writer process is currently if'.

3.5 Identification of Full Virtual Symmetry

In this section, we address the problem of identifying futtwal symmetry. Notice that we
cannot simply use Condition (3.1) of Theorem 3.3 since it imegubuilding the transition

relation of the program, which may not be feasible. In Sec8i®.1, we discuss conditions that
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ensure that the specified program is fully virtually symneetand show how to decide these

conditions using constraints derived directly from thegsean description in Section 3.5.2.

3.5.1 Full Virtual Symmetry in Asynchronous Transition Systems

Let P be a GSST and be a transition inP. If all processes at belong to the same group,
i.e., |II,|] = 1, then the transition guard is defined on total counters ariddependent of
any permutation of process indices. Furthermore, if thihéscase for all transitions i,
then P is just a synchronization skeleton, and the underlyingsitaom systemB(P) is fully
symmetric (see Section 3.4.1). In general, wiieoontains a transition with |II,.| > 1, even
restricting guards to just total counter constraints issufficient to ensure thaB(P) is fully
virtually symmetric. For example, consider the GSST shawhigure 3.1(b) and assume that
we change the guarg. of the transitionl’ — C to (#C = 0) A (#7 = 2). In this case,
B(P) contains a global transition from= (N, N,T) tot = (N, N, C) corresponding to the
processP; entering stat€’. Leto € Sym([) be a permutation that switches process indices
1 and3. Then, the only two states reachable freis) = (7, N, N) aret, = (7,7, N) and

to = (T, N, T). Since neithet, nort, can be obtained by applying a permutatidre Sym(1)

to ¢, transitions of the forna(s) — o’(t) arenotin B(P) for any permutatiom’; hence,B(P)

is not fully virtually symmetric.

As illustrated by the example above, it is difficult to cagtuhe restrictions that ensure
full virtual symmetry syntactically. The difficulty comesoin lack of regularity in asymmetric
systems. Therefore, we seek an algorithmic way to idenyifgraetry. As mentioned before,
we cannot simply use Condition (3.1) of Theorem 3.3 sinceguires building the transition
relation of B(P).

Notice that in our example, full virtual symmetry is brokereaglobal transition resulting
from firing a local transition where the processes are jpamgd into several groups. We gener-
alize from this example and show that virtual symmetry ofaasition system is equivalent to

virtual symmetry of each transition relation subset defiogd local transition. This allows us
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to decompose the problem of identifying virtual symmetnaaystem alongpcal transitions.

Formally, we establish the following theorem.

Theorem 3.7.Given a GSSTP = (£, R, I,7) and a permutation group: C Sym(I), the
transition systenB(P) = (S, R), whereR £ |, R, is virtually symmetric with respect to
G if and only if each transition relation subsa. is virtually symmetric with respect @, i.e.,

RE =RZ evreR-(R)E = (R,)7

ag ag’

Before giving the proof of this theorem, we provide the follogylemma. LetB = (S, R)
be a transition system, and: S — S, be an abstraction function. We define a restriction of

R to a pair of abstract stat¢s, b) as

Ry = {(s;t) € R|se(a) At en(b)}

Note thatR = (J, ,cs. ), and the universal and the existential abstraction8 obincide

if and only if they coincide for eac,(, ;. The following lemma generalizes this observation.

Lemma 3.8. Let B = (5, R) be a transition systemy : S — S, be an abstraction function,
and R = U,y Ri such thatvi € [1..k] - 3D € S x S Ri = U, pep Ria(s)ay- Then,
RP=RFE s Vie[l.k (R)=(R)>.

Proof:

(«) Since RY? C RJ° always holds, we only need to show that RY? D RZ>. For any a,b € S,
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we have that
(a,b) € RZ3
= (by the definition of R37)
ds€y(a) It eyb)-(s,t) €R
= (since R = Ucpy. j Ri)
i e[l..k]-3s €v(a) -3t €~(b)-(s,t) € R;
= (by the definition of (R;)77)
Ji € [1..k] - (a,b) € (R
= (since (R;)3> = (R)7?)
Ji € [1..k] - (a,b) € (R;)7?
= (by the definition of (R;)77)
Ji € [1..k]-Vs € y(a)- 3t € y(b) - (s,1) € Ry
= (since R; C R)
Vs € y(a)-3t € 4(b) - (5,t) €R
= (by the definition of RY?)

(a,b) € R

(=) Since (R;)?? C (R;)7 always holds, we only need to show that (R;)7? D (R;)>? for any

i € [1...k]. For any (a,b) € (R;)37, we have that

(a,0) € (Ri)g
= (by the definition of (R;)Z7)
ds € y(a) - It € () - (s,t) € R;
= (by the assumption of R;)
s ey(a)- 3t eqb)-(s,t) € RiAT t' €S- (5,1) € Ri(a(s),a@))
= (since S, is a partition-based abstract statespace,
a(s) = a(s') =aand a(t) = a(t') = b)
Js € y(a) -3t € y(b) - (5,t) € Ri A (5,1) € Ry(ap)
= (by the assumption of R;)

Ryap) € Ri (%)
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Furthermore,
(a,b) € (R3]

= (since R; C R)

(a,b) € R23
= (since R2? = RY)

(a,b) € RY?
= (by the definition of R77)

Vs € y(a) I €(b) - (s,t) €R
= (by the definition of R, )

Vs € y(a)- 3t € y(b) - (5,1) € Ryap)
= (by (%): Ryap) € Ri)

Vs € y(a) - It €(b) - (5,1) € Ry
= (by the definition of (R;)77)

(a,b) € (R:)&

Based on Lemma 3.8, we now give the proof of Theorem 3.7.
Proof:
We prove this theorem by showing that each R, satisfies the precondition of Lemma 3.8. Recall
that in the context of symmetry reduction, ag(s) is equivalent to 4(s) (see Table 3.1). We only
need to show that R, = U(&t)eRr Ry9(s),011))- That is, we need to show that if a transition
s — tis a result of firing a local transition r, then for any permutations o,0’ € G, a transition

o(s) — o'(t) is a result of firing r as well. This follows from the following facts:
(1) two states s; and s, share an orbit only if they agree on total counters, and

(2) a global transition s — t is a result of firing a local transition v — v if and only if #u at
s is one more than that at ¢, #v at s is one less than that at ¢, and the total counters of

other local states at s and ¢ are the same.

O
Whend is the full symmetry grougpym(/), Theorem 3.7 can be simplified further since

here two states share an oribéind only if they agree on total counters. Note thaRjfis fully



CHAPTER3. FULL VIRTUAL SYMMETRY REDUCTION 53

virtually symmetric, i.e.(R,)}2 = (R,).., thenDom(R,) contains its orbit)( Dom(R,)),
which follows from the definitions of existential and unisal abstractions. On the other hand,
if Dom(R,) containsé(Dom(R,)), then for any pair of states and s’ in the same orbit,

if s — tisin R, for some state, then there exists a statesuch thats’ — t' is in R,.
Furthermore¢ andt’ agree on total counters, and thus belong to the same orbiice;idy
Theorem 3.3R, is fully virtually symmetric. Sinc&(Dom(R,)) always containdom(R,),

we obtain the following theorem.

Theorem 3.9.Given a GSSP = (L, R, I, 7), the transition system®(P) = (S, R) is fully

virtually symmetric if and only ifvr € R - (Dom(R,.)) = Dom(R,).

Proof:
The proof follows from the reasoning in the previous paragraph. O
Thus, we have reduced the problem of checking virtual symnwétRz, a global property

of the entire system, to a local property of each transitidrsstR, .

3.5.2 Constraint-Based Identification of Full Virtual Symmetry

In this section, we present a technique for identifying fattual symmetry based on The-
orem 3.9. Specifically, we construct Presburger formulasesenting sets of states directly
from the description of the GSST.

By Theorem 3.7, checking whether a transition syste(®) is fully virtually symmetric
is equivalent to checking whethé&. is fully virtually symmetric for each local transitionof
the GSSTP. Note that if all processes belong to the same group at a toaditionr, i.e.,
IIT.| = 1, thenR, is fully symmetric and no check is required. Otherwise, wHéf > 1,
by Theorem 3.9, we need to check whether the domaiR,.oDom(R,), is equal to its orbit,
6(Dom(R,)). In this section, we show that bothom(R,) andd(Dom(R,)) can be repre-
sented by Presburger formulas and their equivalence caadoeed to checking satisfiability

of a Quantifier Free Presburger (QFP) formula.
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Constraints Meaning
0<#NI[I,] 0<#T[I,] 0<#C|I,] each group counter
0 <#NI[I,|] 0<#T[I,] 0<#C[I,] IS a positive integer
#N[L]+#T[I,|+#C[I,] =1 there is one reader process
#N[IL,) +#T[I,) + #C[I,] =2 and two writer processes

Table 3.3: Invariant for the three-process R&W.

We illustrate the procedure on thié — (' transition of the R&W whose GSST is shown
in Figure 3.1(b). The counter-based syntax of the guardgigiee a compact representation
of a set of states in the transition systémP) using Presburger formulas on group counters.
The formulapr_.¢ representinddom(Rr_.¢) is constructed based on the transition guards in
the GSST as follows. According to the interleaving semanticstates is in Dom(Rr_.¢) if
and only if either a reader or a writer process can move ffota C' at s. In the first cases
must satisfy the guargh , and since the current local state of the reader procésssisatisfies
gr. N #T[I,] > 1; similarly, in the second case,satisfiesg;, A #71'[1,] > 1. Therefore,

Dom(Rr_c) can be represented by the formula_.c = vr—.c, V pr—c.1,, Where

or—cr1, 2 g, A#T[L] > 1 ANinvr_c

SOT_’CJw é 91, A #T[Iw] Z 1A Z.n'UT—>C

and the invarianinv_. ¢, defined as the conjunction of the constraints in the lefaiwol of
Table 3.3, represents the statespace of the system. Natetha is still defined only on
group counters sincgC' is equivalent to#C|I,] + #C|1,]. In general, for a local transition
r, the formulap, representingdom(R,.) is a disjunction of formulas representing subsets of
Dom(R,) with respect to each process group.

We now show how to derive a formula,. representing(Dom(R,)) from ¢,. For sim-
plicity, assume thaf’ contains only two local statesy andY’, and the processes are par-
titioned into two groups. LeDom(R,) and the invariant of the statespace be represented by

or( X1, X, Y71, Ys) andinv,. (X1, Xy, Y7, Ys), respectively. Thetp, representing(Dom(Rr—.¢))
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is defined as
Gr(X1, Xo,Y1,Ys) 2 3X!, XL Y] Y- (inv, (X1, Xo, Y1, Ya) A o (X), X5, Y, YY)
AN X+ Xo=X{+ X)) AN+ Y=Y +Y)))
That is, a state satisfiesp, if and only if there exists a staté satisfyingy,. (s € Dom(R,.))
ands ands’ agree on total counters, i.e., they are in the same orbiteSdam(R, ) is a subset

of (Dom(R,)), Dom(R,) = 6(Dom(R,)) if and only if the sentence
w = E|X17X27}/1>}/2 ' (@T A _‘901”)

is unsatisfiable. Since contains only existential quantifiers, this is equivalentihsatisfiabil-
ity of a QFP formula obtained from by removing all quantifiers, which can be checked using
any existing decision procedure for QFP [BB04, Pug92, WB95].

Note that while the satisfiability problem of a Presburgenfola has a worst-case super-
exponential complexity, satisfiability of a QFP formula iBfomplete [Pap81]. Furthermore,
the number of local transitions in a GSST that need to be dtkiskexpected to be small, since
we are interested in asynchronous systems in which prozesserelatively similar to one
another. Indeed, if the processes differ significantlyokslnot seem appropriate to consider
full virtual symmetry at all. In practice, the structure dietguards often leads to further
optimizations of the decision procedure. As illustratedeayperiments in Section 3.7, full
virtual symmetry can be identified efficiently when the gsaade defined on a small number

of local states.

3.6 Counter Abstraction for Full Virtual Symmetry

The naive way of constructing a symmetry-reduced quotigatsire requires a representative
function for choosing a state as the unique representatbra €ach orbit [CJEF96, ES96].
The abstract transition relation is then defined on the setpfesentatives. For symbolic
model checking, computation of the representative funatmuires building an orbit relation

which, for many groups, including the full symmetry groupshka BDD representation that is
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exponential in the minimum of the number of processes anduh&ber of local states in each
process [CJEF96], decreasing the effectiveness of symimaldel checking.

An alternative is to use aounter abstractio{or generic representatives) technique pro-
posed by Emerson at el. [ET99, EWO03], which avoids buildireydhbit relation. As we have
seen before, under the full symmetry group, states in the sabit agree on all total counters.
Thus, each orbit can be uniquely represented by values sé tb@unters. For example, in the
three-process MUTEX, the orb{t N, 7, T), (T, N,T), (T,T, N)} is represented by a tuple
(1,2,0) which corresponds to the counters of stated” andC'. In this section, we extend the
counter-based abstraction technique to handle a fullpadist symmetric structure specified
by a GSST. The key idea is that instead of using the orbiticglaa structure isomorphic to the
guotient structure is constructed on the statespace dfcimtaters directly from the GSST.

For the rest of this section, 16t = (£, R, I, 7) be a GSST of a fully virtually symmetric
program with local state§ = {L,..., L, } and process indices = [1..n]. A counter ab-
stractiona : S — S, on the structurd3(P) = (S, R) is constructed using a set of assignments
to a vectorx = (x4, ...,x,,) of m counter variables ranging ovfr..n|. Each variabler; cor-
responds to a total countgrL; of a local state;. Since there are processes, the sum of the

values ofx must always equal. Therefore,

Se 2 {(c1,...,cm) €[0.0)" | ch- —n}

The abstraction function : S — S, maps a state € S to an abstract state € S,, if and
only if for eachi € I, a(i) equals#L,(s). The concretization function : S, — 2° maps an
abstract state to an orbitd where states id agree witha on total counters. In what follows,

let R, denote the existential abstraction®fwith respect tav.

Theorem 3.10.Given a GSSP and a counter abstraction, the abstract structure
B(P)s = (Sa , Ra) is isomorphic to the quotient structufg( P)5vm) = (§Sym(D) - pym(l))

via a bijectionh : S, — S5¥™) whereVs € S - h(a(s)) £ 6(s).

Proof:
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The proof follows from the fact that the orbits and transitions in a fully symmetric program can
be characterized by total counters. O

The above definition o3(P), guarantees that the abstract transition relafigncan be
constructed directly fronP for a fully virtually symmetric program. Since existentiab-
straction distributes over union, aiétl = | J,. R, by Definition 3.6, it follows thatk, =
U,er (Rr)a- Therefore, we only need to show how to constifet),, for a local transitiorr.

We start by illustrating the construction in the case of aguanded local transition. If
r is of the formL;, — L;, thenr can be fired from a global stateif and only if s contains
a process whose current statelis in other words,Dom(R,) is #L; > 1. Furthermore, if
s — tisin R,, then the countergL; and#L, att are one less and one more than those at
s, respectively. From the definition of existential absti@tt for any abstract statesandb,
a transitiona — bisin (R,), ifand only if s — t € R, for somes € y(a) andt € ~(b).
Therefore,

(Rp)a = 2 > 1IN (=2 —1; zj:=x;+1)

which is a formula over counter variables. Generalizingrfthis example, we obtain that for

every local transitiom of the formZL; — L;,
(Rp)a = g N (=2 —1; zj:=x;+1)

whereg, is a formula defined over counter variablagpresenting the “existential” abstraction

of Dom(R,). Specifically,
al= g, < 3s€v(a)-s € Dom(R,)

SinceB(P), is isomorphic to the quotient structure, the above constmallows us to com-
bine symmetry reduction and symbolic model checking withoouiding the orbit relation. The
only remaining problem is the construction of the formgldor an arbitrary local transition.

In the rest of this section, we show how to do this for cases&hés guarded by (a) a single
guard on total counters, (b) multiple guards on total casnend (c) multiple guards on group

counters of the source statesond arbitrary total counters.
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Case (a)Letr be alocal transitiod; — L;. Suppose is guarded by a single guadi.e.,
III,| = 1. ThenDom(R,) can be represented by. = (#L;, > 1 A g), i.e.,s € Dom(R,) if
there is at least one process:a local statel; ands satisfieg). Let sub(v,.) denote a formula
obtained fromy),. by replacing each occurrence of a total counter with itseggronding counter
variable. For examplesub(#L; > 0) = (z; > 0) andsub(#L; > 1 AN #L; < 3) = (x; >
1 Ax; < 3). Sinceg contains only total counter constraints, we definé sub(#L; > 1A g).
Note that this procedure constructs a counter abstraatioa flully symmetric synchronization
skeleton, and is effectively equivalent to theneric representativespproach of Emerson and
Trefler [ET99].

Case (b). Suppose that is guarded by multiple guards, i.€Il.| = d > 1, but each
guard is expressed using only total counters. In this cBse;(R,) is represented by, =
\/ke[l..d}(#Li [Ix] > 1A g1, ), whereg,, is the guard for the process grofyp Sincey, depends
on group counters, we cannot simply defipeto be sub(v,.). However, R, is fully virtually
symmetric, saDom(R,) = §(Dom(R,)) by Theorem 3.9, and(Dom(R,)) is representable
by . = (#L: > 1A (Vkep.q 91.))- Thus, we defing, £ sub(i,).

Case (c).Finally, we look at the case where the guards depend on group counters. In
this casey), defined above still contains group counters. However, tliblpm can be solved
for cases where group counters in guards for a transitioh, — L; are defined only ovek,.

First, letQ) C S be some non-empty set of states given by some formhaafined only on

group counters of,;. That is,

Vo= Npep.a(ming < #Li[1] < maxy)

where{min,} and{max;} are positive integers. Then, the orb{tY) underSym(I) is given

by the formula

Y = (min < #L; < max)

where

2 ‘ = X

>

min
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For example, suppose there are only two local stdteand L., d = 2, and(Q is given by
b= (1<H#L[L] <4A)N1 < H#HL L) < 4)

Thend(Q) is ) = (2 < #L, < 8) since for any state in .S satisfyingy there exists a state
s"in S satisfyingt such thats ands’ agree on total counters d@f; and L., i.e., they are in
the same orbit. Furthermore, @ is encoded by a conjunctiaf’ A 9, wherey! and«¢ are
defined only on total and group counters, respectively, therorbit ofQ is given byt A ¢9.

Second, suppose a guajfgl contains group counter constraints. Lebm(R,); denote
the subset ofDom(R,) containing states in which the local transitiorof some process in
the group!;, can be fired. If the formula, ;, representingDom(R,);, can be decomposed
asy,, =P A ¥} 1., then a total counter formula representifi@om(R,)y, ) is computed
as described above. Otherwisg,;, can be converted to a DNF, and formulas corresponding
to the orbit of each clause are computed as above. Singe(R,) = U, g Dom(R,)r,,
andd distributes over union, i.e(Q; U Q,) = A(Q,) U 6(Q,), we can define), represent-
ing 0(Dom(R,)) as a disjunction of the clause formulas. Finally, depends only on total
counters; thus, we defing to besub(i),).

For example, the domain of the transitioh— C' of the R&W shown in Figure 3.1(b), is

the union of the domain for the readers and that of the writeos readers,

Dom(Rr_c);, = #T[L] >=1A#T[L,] =0A#C =0

H#T[L] =1 A#T[I,] =0A#C =0

since there is only one reader. Using only total counteespthitd(Dom(Rr—_.c)1,) is repre-

sented by, = (#T = 1 A #C = 0). Similarly, for the writers,

Dom(Ryr_c)1, = #T[I,) >1AN#C =0

and the orbit/( Dom(Rr_¢)y1,) is represented by, = (#T > 1 AN#C = 0). Finally, gr_.c
is defined bysub(v, V ¥,) = (#T > 1 A #C = 0).
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3.7 Experiments

In this section, we report on experiments of identifying futtual symmetry and perform-
ing counter abstraction-based symbolic model-checking.ugéd the Omega library [Pug92]
as the QFP solver to check for full virtual symmetry as désadiin Section 3.5, and used
NuSMV [CCGR99] as the model-checker for both the direct and thimter abstraction-based
analysis : we constructed NuUSMV programs to represent igaaf and the counter abstracted
programs and then run NuSMV to check properties.

The examples we used for experiments are two typical asyrmorgbgrams in practice
where processes share resources based on differentipsanijpermissions. The first example
is a generalized R&W (GR&W) [ET99], where we assumed that eaobgss hasn local
states{L,, ..., L}, whereL,, represents the critical section. Each process can be infone o
the local states, and must go throughto L,,_; before accessing the critical section. The
process can return frorh,, to L, freely. The processes are partitioned idtgroups, each of
sizeq, based on their priorities: a process cannot access theatsection if another process
with higher priority is waiting for it. For this example, wenfied the standard safety property
AG(#L,, < 1), which ensures that no two processes can access the csiictbn at the
same time. The second example is an asymmetric sharing amires (ASR) [EHTO0OQ]. In
this example, there are a setiofesources shared by processes. There is one non-critical
section (V) for all the resources, and for each resoutdbere is a tryingT;) and a critical ;)
section associated with it. The processes have differamipsions to access the resources,
and the number of processes that can be waiting for eachroesand using it is bounded. This
example is motivated by the drinking philosophers probl@wi84], where a set of bottles are
shared by a set of philosophers, and a philosopher can oimlig tom the bottles that are
assigned to him. For this example, we check the maximumrshafi the resources; that is,
we checked that whether it is possible for all the resourcdsetused at the same time, i.e.,
EF(Nicp.g(#Ci > 0)).

To experiment the scalability of our approach, we creatsthimces of the examples with
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varying values of the numbers of processes or shared resouiiche programs of these in-
stances are automatically generated using template cbbdeexperiments were performed on
a Sun Fire V440 server (4@1.3GHz, USPARCS3I, 16384M). The tesfithe direct JUSM\)
and the counter abstraction-bas8gfimetry Reduction with Counter Abstracj}ianalysis are
summarized in Table 3.4 (Page 65), where dashes indicatedhfication did not complete
due to either memory or time limits. Where appropriate, weassp the checking time into
identifying symmetry CkSymand checking the resulting reduced modéb@lelCR. For ASR,
we also reported the results of computing the set of reaetsdates first, before evaluating the

property (the- f option of NuSMV).

Since counter abstraction is based on full symmetry grahes,eduction of the statespace
can be exponential. It has been shown that counter absinagtiables significant reduction
of memory and CPU usage on model checking fully symmetric iarmg [EWO03]. From our
experiment results, we obtained the same observation dyiagpcounter abstraction to fully
virtually symmetric programs. Moreover, lebe the number of processes in a program, land
be the number of local states of each process. As shown indEz¢8unter abstraction reduces
a problem of worst case siZé that is exponential i, to one of worst case siz# that is
polynomial for a fixed number of local states. Therefores assumed that counter abstraction
is most useful in the case whdris a fixed constant angdis a parameter. From our experiment
results, we see that memory usage grows slowly with the nuwigrocesses, which shows

that the method is applicable for programs comprised ofgelaumber of processes.

In these examples, the time it took to identify full virtuginsmetry was relatively small.
One reason is that the guards depend only on a small numbeooégs groups and local
states. Otherwise, more specialized solvers may be usefuexample, identifying symmetry
of GR&W with d = 100 andg = 20 took us many hours with the Omega library and only 17

seconds with the pseudo-Boolean solver (PBS) [ARMSO02].
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3.8 Related Work

Concurrent programs are often composed of identical prese3e global transition relations
of such programs exhibit a great deal of symmetry, which @anded for statespace reduction.
The ideas of exploiting symmetry reduction in model chegkivere introduced in [CJEF96,
ES96, ID96]. Symmetry reduction techniques have been mmgfeed in model checking tools,
such as SMC [SGEOQO], Murphi [ID96], SymmSpin [BDHO02], andigeft [God97].

To extend symmetry reduction to asymmetric programs, Eomesad Trefler first proposed
“looser” notions ofnearsymmetry where asymmetric behaviors initiate only fromhhygym-
metric states, andbugh symmetry [ET99] where asymmetry arises from static propess
orities. They generalized these notationsvyual symmetry in [EHTOO], which applies to
a broader class of asymmetric programs. In this chapter,ieveed symmetry reduction as
strong exact-approximation, and give an alternative ataraation of virtual symmetry di-
rectly from the perspective of abstraction. Dams et al. [[@@[Ghave used existential and
universal abstractions to define over- and under-apprdaiomaof program behaviors, respec-
tively. We showed that symmetry reduction can be seen as stnagbon over symmetric
equivalence classes where existential and universaleasins coincide.

Identification of symmetry is a necessary step for applyyrmgmetry reduction. In prac-
tice, the problem of identifying genuine symmetry has beended by imposing restrictions
on the specification languages [ID96, SGEQO0, ET99, EWO03].ekample, the input program
in SMC [SGEO0Q] is divided into modules and each module specii set of processes that
are identical up to renaming. In particular, the countesdolasynchronization skeletons used
in [ET99, EWO03] guarantees that a program is fully symmethowever, as we showed in
this chapter, lack of regularity in asymmetric programs esak difficult to capture the restric-
tions that ensure full virtual symmetry syntactically. Bswn et al. proposed a combinatorial
condition for checking virtual symmetry based on counting missing transitions [EHTOO],
which seems to require the construction of the transitiatesy of a program. Based on our

characterization of symmetry reduction, we avoided thabfam by checking satisfiability of
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a QFP formula built from a program description.

Symbolic symmetry reduction was studied in [CJEF96], wheee duthors showed that
construction of the orbit relations is a bottleneck, beeahs BDDs of orbit relations for many
symmetry groups are exponential. To address this probleey, proposed to perform sym-
metry reduction in a coarse way by choosing multiple elesiémm each orbit. Emerson
et al. [ET99] showed that usinggeneric representativegchnique (also called counter ab-
straction [PXZ02]), symmetry-reduced structures can bectly constructed from a program
description translated from the original one. Therefdne, problem of computing orbit rela-
tions is avoided. This approach was later applied to fulljmsyetric programs on processes
communicating via shared variables [EWO03], and the experisnghow that it is superior to
that of the unique and multiple representatives. Our wotkreded the applicability of this
technique to fully virtually symmetric programs.

There are other approaches that combine symmetry redusmidsymbolic model check-
ing with different flavors. The dynamic symmetry reducticogosed by Emerson [EWO05]
avoids building the symbolic representation of the symyaegduced structure. Instead, they
provided a symbolic abstract transfer function that corptitansition images with respect to
the underlying symmetry groups. This function is embeddéal the model checking process,
used to compute fixpoints for temporal properties. Barner@nanberg proposed on-the-fly
symbolic model checking with symmetry reduction [BG02] tiadrementally explores the
reachable states. Symmetry is used there to avoid inclustatgs that are symmetric to the
ones explored before. This approach in general discoveestapthe reachable states, and

therefore, is mainly for refutation of universal propestie

3.9 Conclusion

In this chapter, we studied a strong exact-approximationrtigjue — symmetry reduction in the

context of full virtual symmetry. We formalized its conniect with abstraction, and provided
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an alternative characterization of symmetry reduction.efam this, we developed techniques
to address challenges of applying symmetry reduction iotme We first developed an effi-
cient approach to identify full virtual symmetry based otigebility of formulas built from
the program description. We then extended counter abistnafcr symbolic model checking
of fully virtually symmetric programs, which avoids the ptem of computing orbit relations.
We reported on experiments that illustrate the feasibdftgur approach.

We believe that our techniques have a potential to incréesscope of symmetry reduction,
and would like to investigate this in the future. Note thatwoark assumed that group counters
occurring in a guard are defined only on the source state @et@8 3.6). While this did not
pose a problem for examples we have tried, we do not know wigatdnsequences of this
restriction are, and would like to explore this further. @&rcounter abstraction abstracts away
process identities, it does not allow us to analyze the hehgroperties of an individual
process, e.g., the property stating that it is always traeifta process tries to access a shared
resource, it will be granted in future. In [PXZ02], countdistraction is extended to handle
properties of an individual process by abstracting all trecgsses in a program except for a
generic one. Since the generic process is left intact duhagbstraction, it can be used for
checking properties of an individual process. We would tikénvestigate how to extend this

technique to handle full virtual symmetry in the future.
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NuSMV Symmetry Reduction with Counter Abstraction
Parameter BDD Node§ Mem.| Time BDD Nodes Mem. Time (sec.)
Allocated | (MB)| (sec.) Allocated | (MB) CkSym‘ ModeICk‘ Total
d (g=20, m=10
5 51,778,281 931 241 25,146 7 0.07 0.27 0.34
10 - - - 31,772 8 0.83 0.53 1.36
15 - - - 38,927 8 5.09 1.26 6.35
% m (d=5, g=20)
§ 10 51,778,281 931 241 25,146 7 0.07 0.27 0.34
g 20 121,392,365 2,041 837 130,891 10 0.07 0.59 0.66
é 30 - - - 379,334 14 0.07 1.35 1.42
g (d=10, m=20
10 121,408,51% 2,040 742 131,010 10 0.80 0.58 1.38
30 - - - 187,469 12 0.81 24.14| 24.95
50 - - - 195,653 13 0.75 67.21] 67.96
n (r=2)
40 8,151,508 151 30.74 427,075 14 0.10 4.35 4.45
g 80 57,163,279 1,001 2928.8] 289,566 18 0.10 36.83] 36.93
g n (r=3)
5 40 44,877,253 782| 43108.92 390,715 17 0.15 9.68 9.83
g 80 - - - 420,347 20 0.15 80.61 80.76
% n (r=5)
g
- 40 - - - 67,060 19 0.30 28.31] 28.61
g 80 - - - 342,060 39 0.30| 279.89 280.19
2 n (r=10)
40 - - - 484,260 48 3.00| 251.87 254.87
80 - - - 671,318 153 3.00| 1409.53 1412.53
g n (r=2)
% 40 8,543,329 159 34.47, 10,165 7 0.10 0.15 0.25
% 80 57,375,594 1,006 528.25 18,611 7.2 0.10 0.25 0.35
g/ n (r=3)
@ 40 42,633,638 805/ 1614.32 21,647 7.3 0.15 0.21 0.36
% 80 - - - 38913 7.7 0.15 0.39 0.54
é n (r=5)
g 40 - - - 71,925 8.2 0.30 0.49 0.79
S 80 - - - 133034 95 030 103 133
UE; n (r=10)
2 40 - - - 394,722 14 3.00 2.55 5.55
80 - - - 404,477 18 3.00 6.13 9.13

Table 3.4: Experimental results for generalized R&W and asginic sharing of resources.



Chapter 4

Reachability and Non-Termination

Analysis of Recursive Programs

In this chapter, we propose an approach for analyzing rdsltlyaand non-termination prop-

erties of recursive programs. We first define a mixed progrmesitics that reduces recursive
program analysis to non-recursive one by removing calkstaBased on this semantics, we
develop a simple approach for reachability and non-tertiinanalysis of recursive programs,
which can be combined with exact-approximating predicatgraction that has been imple-

mented in our software model checkexsfu [GWCO6D].

4.1 Introduction

Software model checking is one of the prominent analysisrtiggies that enables checking
of program code. It combines automated construction of #@efiabstract model with au-
tomated analysis by model checking and iterative abstmaacefinement. Traditional soft-
ware model checking, e.g.,.L8v [BPRO03], relies on an over-approximating abstraction of
the program and thus is biased towards establishing cogestof safety properties. To ex-

ploit the bug detection ability of model checkers and to edtéhe scope of abstract model

66
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1. x=read(); y=read(); 1. p = *;
2. if(x>0){ 2. if(p){
(@ 3 whi | e(x>0) { (b) 3.  while(p) {
4 X=X+1; 4. p = p?true: *;
5. i f(x<=0) ERROR;} 5. if(!'p) ERROR;}
6. } else 6. } else
7 whi | e(y>0) y=y-1; 7. while(*) p = p;
8. END; 8. END,

Figure 4.1: (a) A prograrBX,, (b) its over-approximatiod(EX,) using predicate : = > 0.

checkers to richer properties, recent research has pro@dsstract analysis based on exact-
approximation [BG99, GHJO1, SG03, SG04, BKY05, GWCO06a, GCO06Jcoihbines both
over- and under-approximations, and therefore can be usguove and disprove proper-
ties with the same effectiveness. Although such an abgirabBs been shown to be effec-
tive in practice [GC06, GWCO06b], until now this line of resealtwds focused exclusively
on analyzing non-recursive programs. In this chapter, vap@se a novel approach to ex-
tend exact-approximating analysesegursiveprograms. We illustrate our approach on non-
termination and reachability analysis of several C prograimcluding the benchmarks from
BeBoP[BROO], VERA [ACEMO5], and MoPED[ESO01, BEM97], theAck program from [CPR06a]
and a buggy version @@ui cksort from [ESO1]. To our knowledge, this is the first time that

non-terminatiorof such C programs was established completely automaticall

As a motivation, we review an over-approximation-basedaggh for model checking of
non-recursive programs and its limitations. Assume we Wwacheck whether thERROR label
is reachable in the C programX, shown in Figure 4.1(a). This safety property is expressed in
CTL asy : AG (pc # ERROR). An over-approximating abstracti@df(EX,) of EX, using the

predicatep : x > 0 is shown in Figure 4.1(b), where " is interpreted as a non-deterministic
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choice,! p means thap is false, and the assignmgnt= p?t r ue: * means that if the current
value ofp is true, therp is true after execution of this statement; otherwise, tHeevaf p is
assigned non-deterministicall2(EX,) is a finitebooleanmodel which over-approximates the
original program: it contains all feasible and some infleles{or spurious) executions. For
example O(EX,) has an execution which gets stuck in thie | e( *) loop on line 7, bugX,
does not have the corresponding execution. Thus, if a lsav&mporal property, i.e., in the
one expressed in ACTL, holds 1(EX,), it also holds irEX,. For example, our property is
satisfied byO(EX, ), which mean&RROR is unreachable iEX,. However, when a property is
falsified byO(EX, ), the result cannot be trusted since it may be caused by aosigusehavior.
For example, consider checking whetli&y, always terminates, i.e., whether it satisfies
AF (pc = END). ¢ is falsified on our abstraction, but this result cannot bst&d due to the

infeasible non-terminating execution around e | e( *) loop on line 7.

The falsification (or refutation) ability of predicate atasition can be dramatically im-
proved by using annderapproximating abstraction, where each abstract behevsoimulated
by some concrete one. In this case, if a bug (or an execusgmeisent in the abstract model,
it mustexist in the concrete program. For example, the predicateistalways berue in the
whi | e( p) loop at line 3 (assumingnt is interpreted as mathematical integers). Thus, an

under-approximation based on predicaie sufficient to establish th&k, is non-terminating.

In our previous work, we have developed a software modell@redéasm [GWCO06b] for
checking non-recursive programs based on exact-appraxrignaredicate abstraction [GCO6]
that combines both over- and under-approximations. Ourigdais chapter is to extend its
analysis ability to recursive programs. One way to do thexiending pushdown systems to
support exact-approximation and developing analysisrdhgos for this new modeling for-
malism. In this chapter, we propose an alternative solutothis problem. The key to our
approach is to separate the analysis of recursion fromaadtsin of the data domain based
on a new semantics of recursive programs. By doing this, oproggh does not require the

development of new specialized types of pushdown systeonsigw specialized analysis algo-
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rithms, which allows us to reuse the existing abstract amsip YAswMm for analyzing recursive

programs. Specifically, this chapter makes the followingtgbutions:

1. We define a stack-free semantics of recursive programstmabines operational and
natural semantics (commonly referred td@sction summarigs We call this semantics
mixed which effectively removes call stacks while preservstgck-independergrop-

erties such as reachability and non-termination propertie

2. Based on mixed semantics, we describe algorithms for afgpckachability and non-
termination of recursive programs over finite data domaWis.also show how to com-

pute only the needed part of natural semantics, resultingithe-fly algorithms.

3. We show how to construct abstract versions of our reatityadond non-termination anal-
ysis algorithms based on exact-approximating predicatgadtion. Its basis consists of
defining the abstract domains and sound abstract versiomgevtions needed for de-

riving the on-the-fly algorithms.

4. We implement these algorithms im¥M, and report on their performance on a collection
of reachability and non-termination benchmarks froms®P, VERA, and MOPED, for

cases where the property needs to be validated or refuted.

The rest of this chapter is organized as follows. We presesiinpinaries and fix our no-
tation in Section 4.2. We present a simple programming lagguPL and its natural, and
operational semantics in Section 4.3. We introduce mixetbsgics in Section 4.4, and derive
on-the-fly algorithms for reachability and non-terminatanalysis of finite recursive programs
in Section 4.5. In Section 4.6, we describe abstract vesabdthe algorithms for handling pro-
grams with infinite data domain. Experiments are reporte8eation 4.7. We discuss related

work in Section 4.8 and conclude this chapter in Section 4.9.
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4.2 Preliminaries

A valuationo on a set of typed variablds is a function that maps each variahlén V' to
a valueo(z) in its domain. We assume that valuations extend to expressiothe obvious
way. The domain ob is called avaluation typeand is denoted by (o). For example, if
o ={z+— 5,y 10} thent(o) = {z,y}. The projection ot on a subset/ C V" is denoted
by o|u.

The set of all valuations ovér is denoted by, £ {0 | 7(¢) = V}. Note thaty is
well-defined and consists of the unique empty valuation. |Ati@n » on two sets of variables
U andV is a subset ok, x Xy. Therelational typeof r is U — V, denoted byr(r). For
example, the type of an assignmeht= y, wherex’ refers to the value of at the next state, is
fromy to z, thatis,7(z' = y) = {y} — {z}. In this chapter, we use several simple relations:
true is thetrue relation,id is the identity relation (e.gid(x) £ 2’ = ), decl is a relation for
variable declaration, andll — for variable elimination. Formally, they are defined asdafs,

(AR

with the formatname'=’ expression:.’ type

true(U — V) & YSyxXy:U—V

dec(V) £ true@ - V):0 -V
kill (V) 2 true(V —0):V — 0
id(V) 2 {(o,0)eXy xXy|o=0"}: V=V

Operations on relations are defined in Table 4.1, where and x are asynchronous
sequentiahndparallel composition, respectivelgssumes a restriction of the identity relation
to a set( of valuations,[-] is variable introduction and (- — -) is scope extensionNote
that x combines the outputs of two relations, apdextends the source of a relation with
new variables. Together these operators allow constigicdomplex relations from simple
ones. For exampld{z,y}|(2’ = y) x[{z,y}|(y/ = x) is the relation(z’ = y) A (¥ = x)
with the type{z,y} — {z,y}. Directly composing:’ = y andy’ = x without variable

introduction, i.e.,(z’ = y) x(y' = =x), is invalid because (' = y) = {y} — {z} and
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Operation Assumption Definition Type
LV T 7(r1) = 7(r2) Xa,d - ri(a,d’) V ry(a, a’) 7(ry)
- ) =U-=V Nayd N (r(a,a”) Arg(aa)) | U — W

AN T(re) =V =W
7(rm)=U—=V
TLX Ty A T(r) =U — Vs Aa,a’ - ri(a, d'lvy) Ara(a,dly,) | U — (ViU V)
AN VinVa=10

assuméy) Aa,d’ - Q(a) Nid(r(Q))(a.a) | T(Q) — T(Q)
[W]r r(r)=U—V Aa,d - r(aly,d) UUW)—V

W—=2Z)r |7(r)=U—->VAUCWA(Z\V)CW ([W]r) x ((W](id(Z \ V))) W —Z

Table 4.1: Relational operations.

m(y = z) = {x} — {y} have different source types. Scope extension extends @orela
by combining it with the identity on new variables. For exdeyg{z,y} — {z,y})(z’ =

x4+ 1)is (2’ = x4+ 1) A (¥ = y). The assumptions for scope extension ensure that any new

variables introduced in the destinationrofust also be available in the source. For example,

the extension({z,y} — {z,z})(2’ = = + 1) is not allowed since is not available in the

source of the relation.

4.3 Programming Language and Semantics

We use a simple imperative programming language PL whiadwallnon-determinism and

recursive function calls. We assume that

(a) functions have a set of call-by-value formal parametesa set of return variables;
(b) each variable has a unique name and explicit scope;

(c) there are no global variables (they can be simulated ¢l Mariables); and
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(d) a type expression is associated with each statementxqutidigy defines the pre- and

post-variables of the statement.

Syntax. Let var denote variablesiunc function identifiers,e expressions, and@l valuation

types. The syntax of PL is defined as follows:

Atomic == skip |vart :=e" | assumée) | var var™t | kill vart | (T — T)Atomic
Stmt = Atomic | Stmt; Stmt | Stmt || Stmt | if (e) then Stmt elseStmt

| while(e) Stmt | var™ := func(var™) | (T — T)Stmt
Fdef == func(var®):vart Stmt

Prog == Fdef*

We use bold lower case letters to represent vectors, e fgteargenk :=e means an assign-
mentzy,--- ,z, =€, ,e,. Forafunctionf with declarationf(py,--- ,pn) : 71, , ks
we write p; andr to denote the formal parameters and the return variablgsraspectively.
var(e) denotes the variables ef and we assume that each program has a “main” fungtipn

not called by other functions.

Base Semantics.Let 3 denote the set of all valuations in a PL program. With eaitimic
statemenf, we associatbase semantidhat interprets the statement as a relafishC X x %

on valuations of program variables:

[skip] 2 4d(0)
[var x] 2 decl[x]
[kill x] £ kill[x]

[(T—-WV)(S)] = (U—V)[Ss]
[x:= €]

[assume(e)]

(1>

{(0,0") | 7(0) = var(e) Ao’ = [x; — o(e;)]}

{(0,0") | (0,0") € id(var(e)) Ao = e}

[I>

Note that for the type cast statemdnt — V')S, we only consider those cases where the

assumptions for the scope extension are satisfied.
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f10) {
enl: skip;

var X,y;
X,y := 3,0;
x = f2(x); skip
skip; var x,ﬁ)
while (x==2 && y<=0) { T e
y 1= f2(y); e call | sKP

®
} func-call | z-=y 13 z<0 @
x: =12(x) Z: =z+1
kil ox,y; ® . ._,--.ret [z>0]
o oexl: } (b) o

© ® N o g K w0 N R

=
o

@)

[y
[N

12: f2(z):z {

13: en2: skip;

14: while (z < 0) {
15: z 1= z+1;

y: =f 2(y) :

________

16: }
17: z = z-1;
18: ex2: }

Figure 4.2: (a) A progrargX; and (b) its ICFG.

Interprocedural Control Flow Graph. A PL program is represented by &merprocedural
Control Flow Graph(ICFG) [SP81]. An ICFG is a labeled gragh= (Loc, Edge, ), where
Loc is a finite set of locationslZdge C Loc x Loc is a set of edges, andlabels each edge
with a program statement. For example, the ICFG for the progt®; (see Fig. 4.2(a)) is
shown in Fig. 4.2(b). In ICFGs, (a) each function has a uniepiey (en) andexit (ex); (b)
there is a self-loop atx of f; to ensure existence of an infinite execution; (c) each foncti
call (func-call) is: acall edge, where the values of actual parameters of the calletidarare
assigned to the formal parameters, a function body, astl@dge, where the return values are

assigned to the variables of the caller.

We assume thatall andret edges are uniquely determined by each other. Fallsedge
(k,en) and the correspondingt edge(ex, 1), k is the call locationgall(/) £ k, and! is the

return locationret(k) = [.
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Statementr ((k, 1)) Operational Semantics Mixed Semanticsry,
func-call edge(U — U) x := f(a) 0 (U—=U) (lpy:=alo[fle[x:=r/])
calledgeS = (U — x)x:=e Iy =sA (o 01) € [5] 151

let (c,0.).T.=T,in
retedge(U — V) x:=r Iy =T.Al=ret(c) 0

N oy = o [{x; = o(r;)}]

Intraprocedural : S Iy =T5 A (o, 00) € [9] 151

Table 4.2: The rules of operational and mixed semariitss the set of local variables in the
scope of the function call}f] is natural semanticg are the formals, and; are the returns

of f.

Operational Semanticsof a programP = (Loc, Edge, ) is a boolean transition systefh =
(S, R). Each state i5 is a stack of activation records where each record is of i fpc, o),
wherepc € Loc is a program counter, corresponding to a particular combr@dtion in P,
ando € Xy, is the valuation for variables in the scopepof(denoted byl (pc)). For a state
s = (k, o)., the record k, oy ) is thetop element ofs, denoted byop(s). We us€s| andT’| to
denote the length of andI’, respectively. For a pair of states= (k, oy).I's andt = (I, 0y).I';,
the transition relatiorR is defined ask(s,t) £ (k,l) € Edge Ary,(s,t), wherer, is a
deterministic (but not necessarily total) relation ®rat the edgek, (), as defined in the 2nd
column of Table 4.2. An intraprocedural statement only rfieslithe top activation record, and
a statement oneall or aret edge pushes a new record or pops one, respectively. Théditvans

relations orfunc-call edges are empty, i.e., these edges are removed.

Natural Semantics[NN92] (a.k.a. big-step) of a block of codeis a relation[S] C ¥ x X
between the input and output 6f i.e., (o,0’) € [S] iff the execution ofS on o terminates

and results i’. Natural semantics of a program= fi,--- , f, is a set of relations, one per

function, i.e.,JP] = ([A], -, [f.])-
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The semantic rules for PL are defined compositionally on tmax using the function
[-]c, wherez is an environment mapping free fixpoint variables (useddopt and functions)
to relations with an appropriate type. Natural semanticafomic statements is the same as

base semantics; the other cases are:

[51; S2]e = [Si]e o [S2]e

[nX - S(X)]e = Ip (A\Z - [S(X)]e(x2y)
[S1 1 S2]e 2 [Si]e v [Sa]e

[x := f(a)]- 2 [pr=a; Xpx=r].
[X]. = e(X)

[I>

[while(e) S]. [ X0 - if(e) then (S5 Xo)]e

Jif(e) then S; elseS;]. = [(assume(e); S1) || (assume(—e); S2)].

wherelfp denotes for least fixpoint(¢(X;)) = py — ry andr(e(Xy)) = 7([S]:). A

programP = f1,--- , f, induces the system of equations
e(Xy) =[5r]e (1<i<n) (nat)

Natural semantics aP is the least fixpoint solution to this system.
For example, for the functiolf, in the prograntX,, we use an additional fixpoint variable

X, to model the loop by tail recursion, and the instance of eqodbat) is:

(X)) =e(Xy)oz=2z—1];

e(Xy) = [if(z < 0) then (z := z+ 1;X,)]:
The least solution to this system is computed as follows:
1. Following the base semanticsof=z — 1, we have thajz .=z - 1]. =2/ =2 — 1.
2. By induction, the least fixpoint far(X,,) iSe(Xy) = (2 > 0A 2 =2) V(2 <0A 2 = 0).

3. Finally,
e(Xp)=((z>0n2=2)V(2<0AZ =0))o (2 =2-1)

=(z>0A=2-1)V(z<0AnZ =-1)
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Therefore, natural semantics ffis(z > 0N 2 =2—-1)V (2 <0AZ = —1).
Since natural semantics of a function captures relatiowdxn input and output of termi-

nating executions of the function, every function call otrexrse executions returns.

Theorem 4.1. [NN92] LetP = f,,---, f, be a program and3 = (S, R) be its operational
semantics. For a pair of activation records, o) and (I, o), (ox, 0;) is in [ f;] iff there exists
a pathsg, - - , s, in B such thatsg = (k,oy).I'y ands,, = (I, 0).I';,,, such thaty = T',,,, k
and! are en andex of f;, respectively, and for all othey; = (p, 0,).I'; either'; # I'g or p is

notex of f;.

4.4 Mixed Semantics

We focus on reachability and non-termination propertieseotirsive programs in this chapter
because of their practical interest. In this section, weneéedi stack-free operational semantics,
calledmixedsemantics, for PL programs, which removes call stacks lmsgpves reachability
and non-termination properties with respect to operatisemantics.

Reachability and Non-termination. Given a boolean transition systeh= (S, R), whereS

is a set of states arfd C S x S is a transition relation. Let be an atomic proposition, and
S, £ {s € S| s = p} be the set of states satisfyipg Recall that aeachability property
(EF p) is true at a state if there exists a path froma to a state inS,, and anon-termination
property EG p) is true in a state if there exists an infinite path starting atind contained in
S,. The setkS of all states satisfyingF p is the least solution to equatioregch), and the set

NT of all states satisfyingG p is the greatest solution to equatiomf-term):
RS =S, Upre[R|(RS) (reach)
NT = preflRNS,|(NT) (non-term)

Reachability and non-termination of a recursive program lmameduced to finding the

fixpoint solutions to the equations@ach) and fon-term), respectively, w.r.t. a transition system
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of operational semantics of a program. However, since oipeaa semantics explicitly exposes
a potentially unbounded call stack at each state, thesaiegsianust be solved over an infinite
transition system (even when all program variables range fivite domains). Thus, the exact

fixpoint solution may not be computable.

However, many program properties depend only on the top efcHil stack: i.e., they
are stack-independentAnalysis of such properties can be done ussterk-freeoperational
semantics in which everything except for g activation record is abstracted away. We apply
this idea to the analysis of reachability and non-termoratiIn this chapter, a reachability
property is expressed & p wherep is a proposition that depends only on the top activation
record. Without loss of generality, we further assume tatly depends on program locations,
i.e., it is of the formpc = x. We assume there israain function in a program that is not
called by other functions. Thexitlocation of themainfunction is denoted b¥ND. The non-

termination property is expressed&S (pc # END).

Mixed Semantics.We now define a stack-free operational semantics, calledarsgmantics,
for PL programs which removes the call stack but preseneashiability and non-termination
properties w.r.t. operational semantics. Intuitivehjxedsemantics is a combination of opera-
tional and natural semantics, in which a program is execasefbllows: an atomic statement
is executed as usual; a function call=f 00(y) is executed as mon-deterministichoice be-
tween (a) executinfoo, i.e., updating the top activation record according to resemantics
of f 0o, and (b) entering the body dfoo, and forgetting all but the top activation record.
Upon reaching the end of the main function, the executioarerd self-loop indicating the end
of the program, and blocks at all other exit locations sitnc®es not remember the origin of
the call. For example, consider mixed execution of the @oEX, starting from line 5 with
x = 3 andy = 0. At this point, the execution can either (a) move to line 6 dadrease: by
one according to natural semanticsfefor (b) move teen2 (line 13), assigr to z, and forget

aboutr andy. Within f,, the execution continues until it blocksex 2 (line 18) withz = 2.

Formally, mixed semantics of a prograt= (Loc, Edge, ) is a boolean transition system
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B™ = (S™,R™), where each state issingle activation recordpc, o). For a pair of states

s = (k, o) andt = (I, ;), the transition relation is
R™(s,t) £ ({(k,1) € Edge) Arfly (0%, o)

wherery ) is a relation on valuations, as defined in the 3rd column ofeTdt?. Note that"
for ret edges is empty, which is equivalent to removing those edges the ICFG.

Mixed semantics preserves reachability and non-ternangtroperties w.r.t. operational
semantics. If an execution of a functigireaches a stateunder the latter, then eitheris a
location within f, or it is inside some other function thgtcalls (directly or indirectly). The
non-deterministic treatment of function calls in the forneasures that both of these cases
are covered. Similarly, if there exists an infinite exeautsarting insidef, then either this
execution lies withinf, or f calls a function that does not return the control bacK.tégain,
both cases are captured by mixed semantics.

In the remainder of this section, I8 and B™ be the operational and mixed semantics of a

given program, respectively.

Theorem 4.2. Letp be a propositional formula on control locations, arndbe a single activa-

tion record. Then, the followings hold
(1) s satisfies EFp on B if and only if it satisfies ERp on B™;
(2) s satisfies EGpc # END) on B if and only if it satisfies EGpc # END) on B™.
We first provide the following lemmas that are used for theopaj this theorem.

Lemma 4.3. Let s be a single activation record. Then if there exists a patimfsdo a states’

in B, there also exists a path frosto top(s') in B™.

Proof:

We consider two cases of s’

(@) |s'| =1,i.e., s is a single activation record.
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() |s'] > 1

Case (a): Let 7 : s = sg,51,...,5, = s be the path from s to s’ in B. Since s’ is a single
activation record, we have n > 0. We prove the result by induction on the length of 7, denoted

by |7|.
Base case:|r| = 0, is trivial.

Inductive case: Suppose the result holds for |7| < n. We show that the result also holds for

|T| =n+ 1, where 7 : s = s, $1, .., Sn, Sn+1 = t. Consider the following two cases of s,,:

() |sn] =1, i.e., s, is a single activation record:

Lets,, = (ln, Un) and Sp4+1 = s = (ln+1, 0'”+1).

Since (sp, sp+1) is in B, and both s, and s, are single activation records,
by the operational semantics, the edge (.., [,+1) is labeled with an intraprocedural

statement.
By the mixed semantics of intraprocedural statements, (s, s,+1) IS in B™.

Furthermore, by inductive hypothesis, there exists a path from s to s, in B™.

Therefore, there exists a path from s to s, 1 = s’ in B™.

(i) |sn| > 1, i.e., s, is not a single activation record:
Since s,11 is a single activation record, by the operational semantics, the tran-
sition (s, sp+1) corresponds to the execution along a ret edge (illustrated in Fig-

ure 4.3).

That is, we have s,, = (I,,,0,).I'y, and s,+1 = (lp+1,0n+1) such that [, is the
exit (ex) location of a function f, and the edge (l,,,,,+1) is a ret edge from the ex

of f.

By the operational semantics, there exist s, and sx1 (Where 0 <k <n—1)on
7 such that the transition (s, sx+1) corresponds to the execution along a call edge

and matches the transition (s, s,+1)-
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Spi1 = by ) Ly — oo —— s, =(l,, 0,).1,
call ret
pathinB —— s, =(l,, 0,) et = (ha1y Orq)
func-call
pathin B" —— s, =(l,, 0}) Spe1 = (Laqs T )

Figure 4.3: lllustration of proof, wherg, ., = I',, = s;.

That is, we have s = (I, 0r) and sgyr1 = (lg+1, 0k+1)-Ikr1 Such that I is the
entry (en) location of the function f, T'y.1 = T';, = sk, and (lx,lx11) is a call edge

to the en of f.
By Theorem 4.1, (o441, 0,) isin || f||.

Then, by the mixed semantics, (s, sp,+1) IS in B™, which corresponds to the

execution along a func-call edge of f.

Furthermore, since s is a single activation record and & < n, by inductive
hypothesis, there exists a path from s to s; in B™. Therefore, there exists a path

from s to s,,41 in B™.

Case (b): In this case, s’ is not a single activation record. Let s’ = ¢.I', where ¢ = top(s’). Let
T:8=sp,51,...,5, = s be the path from s to s’ in B. We show that there exists a path from s
to ¢ in B™. We prove the result by induction on |r|. Since s’ is not a single activation record,

|7 > 1.

Base case:|r| = 1.
In this case, since s is a single activation record, but s’ is not, the transition (s, s’)

corresponds to the execution along a call edge to a function f.

That is, we have s = (ly, 0¢) and t = top(s’) = (l1,01) such that [; is the entry (en)

location of the function f, and (lo, 1) is a call edge to the en of f.



CHAPTER4. REACHABILITY AND NON-TERMINATION ANALYSIS OF RECURSIVEPROGRAMS31

By the mixed semantics, (s,t) is in B™, which corresponds to the execution along

the call edge.

Inductive case: Suppose the result holds for |7| < n. We show that the result also holds for

|7 =n+ 1, where 7 : s = sg, 81, ..., Sp, Sny1 = § = t.I.

Lett = (lp+1,0n+1). Let s, =t,.I',, and t, = (l,,0,). Consider the following cases

of the edge (I, l,,+1) that corresponds to the transition (s, s,+1) on .

() (ln,ln+1) is labeled with an intraprocedural statement, or is a call edge:
In this case, by the mixed semantics, (¢,,t) is in B™.

Furthermore, by induction hypothesis, there is a path from s to ¢,, in B™. There-

fore, there is a path from sto ¢t in B™.

(i) (ln,l,+1) is aret edge from a function f:

In this case, by the operational semantics, there exist s and si; (Where 0 <
k < m — 1) on 7 such that the transition (s, sx+1) corresponds to the execution

along a call edge to the function f and matches the transition (s, s,+1).

Similar to the inductive case (2) in Case (a), let t; = top(sk), we have (t,t) in

B™ that corresponds to the execution along a func-call edge of f.

Furthermore, since k < n, by induction hypothesis, there is a path from s to ¢,

in B™. Therefore, there is a path s to ¢t in B™.

Lemma 4.4. Let s andt be two single activation records. If there exists a path frota ¢ in

B™, then there exists a path frogto a states’ = ¢.I" in B.

Proof:

Let7: s = sg,s1,..., s, = t be a path in B™. We prove the result by induction on |7|.

Base case:|r| = 0, is trivial.
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Inductive case: Suppose the result holds for || < n. We show that it holds for |7| = n + 1,

where 7 : s = 50,81, -y Sp, Spt1 = t.

By induction hypothesis, there exists a path from s to s/, = s,.I';, in B. Let s, =
(ln,on) and t = (I,,41,0,+1). We show that there exists a path from s/, to ' = t.T" in B.

We consider the following cases of the edge (l,,,1,,+1) that corresponds to the transition
(8n7t)l
() (ln,ln+1) is labeled with an intraprocedural statement:
LetT" =T, ie., s = t.I',. By the operational semantics of intraprocedural
statements, (s, s’) isin B.
(i) (ln,ln+1) is a call edge:
LetT" = s, i.e., s’ = t.s],. By the operational semantics for call edges, (s),,s)
isin B.
(ii) (ln,ln+1) is a func-call edge of a function f:
LetI' =T, ie., s = t.I',. By the mixed semantics of func-call edges and

Theorem 4.1, there exists a path from s/, to s’ in B that corresponds to the execution

along a call edge to f, the function f, and a ret edge from f.

We now give the proof of Theorem 4.2
Proof:
(1) The proof that s satisfies EF p on B if and only if it satisfies EF p on B™ trivially follows from

Lemma 4.3 and Lemma 4.4.

(2) We show that s satisfies EG (pc # END) on B if and only if it satisfies EG (pc # END) on
B™,

(=) Lett:s=sg,s1,... be aninfinite path in B such that top(s;) = (pc # END) for any i > 0.

We first define an infinite sequence 7’ over the states in 7 such that each pair in 7/

corresponds to one or more transitions on 7. 7’ is defined as follows:
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— The first element of 7' is sy, i.e., 7/[0] = sp.

— For each i > 0, suppose sy is the state in 7 such that s, = 7'[i]. Consider the
following cases of the transition (s, sx11) on :
(i) if (sg, sx+1) corresponds to the execution of an intraprocedural statement, then
7'[i 4+ 1] = Sp41-
(i) if (sx, sk+1) corresponds to the execution along a call edge and is not matched
by any transition along a ret edge on 7, i.e., Vj > k+ 1 |s;| > |si|, then
[0 + 1] = Sg41-
(iii) if (s, sg+1) corresponds to the execution along a call edge and is matched by

atransition (s, s;m+1) (m > k+1) along aret edge on 7, then 7/'[i + 1] = sy 41.

Based on 7/, we define an infinite sequence 7™ of single activation records such that

7™[i] = top(7'[i]) for any i > 0.

By the definition of mixed semantics, every pair (7"[i],7™[i + 1]) is in B™, which
corresponds to the execution of an intraprocedural statement (for case (i)), along a call

edge (for case (ii)), or along a func-call edge (for case (iii)).

Since s = s = 7™[0], and 7™[i] = (pc # END) for any i > 0, s satisfies EG (pc # END)

on B™,

(<) The proof is symmetric to the one above. For each infinite path in B™ demonstrating that
s satisfies EG (pc # END), by Lemma 4.4, we can construct an infinite path to show the

satisfaction of the property at s on B as well.

O
When all variables of a given prografmrange over finite domains, mixed semanticg?of

is a finite boolean transition system. Theorem 4.2 implieddfiowing analysis algorithm:

Step 1: compute natural semanticsfoby solving equationn(at);
Step 2: construct the structug™ following the rules of mixed semantics;

Step 3: solve equationsgefch) or (non-term) on B™ for reachability or non-termination,
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respectively.

While sound and complete, this algorithm is not efficientcsiit relies on the (potentially
unnecessary) computation of “full” natural semantics bfuaictions (for Step 2) and the con-
struction of “full” mixed semantics before the analysis loé tproperty can even begin. As a
trivial example, consider checkirtgfF(pc = 5) on the progrankX,. Since reachability of line
6 is irrelevant for this analysis, there is no need to cowsthe transition relation correspond-
ing to func-call edge(5,6) and thus no need to compute natural semantick .ofollowing
this observation, in the next section, we show that the thieges of the above algorithm can be
combined into amn-the-flyalgorithm that only computes the necessary parts of mixdaat

ural semantics.

4.5 On-the-Fly Reachability and Non-Termination

We formalize the on-the-fly analysis of reachability and sd@mination as equation systems

in Section 4.5.1 and Section 4.5.2, respectively.

4.5.1 On-the-Fly Reachability

Intuitively, the analysis oEF p properties only needs the part of mixed semantics that id use
for solving equationréach), and that, in turn, drives the computation of the necegsars of
natural semantics. To illustrate, consider checkifjpc = 8) on EX;. Natural semantics of
foisfo] =(z>0NZ=2—-1)V (2 <0AZ = —1). After a few iterations, the reachability
algorithm computes a pre-conditich = x = 2 A y < 0 for reaching line 8 from line 6. To
determine a pre-condition f@p w.r.t. a function calk: =f 2( x) atline 5, it needs to compute

pre[ris 1(Q) = (z =3 Ay < 0), where

The =Y =y A (r>0N"=2-1) V(< 0AZ =-1))
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is the instantiation of f,] to the call site. However, instead of using the “full” vensiof [ f-],
it is sufficient to compute a pre-condition ttegsumes) as a post-condition, i.e., to restrict

to 2’ = 2 (the relevant part of)) yielding
M=y =yAz=3N2 =2

7™ is an instantiation of = 3 A 2’ = 2 in the context of the call, obtained by (a) converting
() to a postcondition of, by taking its pre-image over thret edge (which eliminateg and

renames: to z), and (b) restricting f>] to this post-condition:

[/2] o (assuméz = 2))
= 2=3ANz2 =2
We now formalize the above intuition. Recall tHafk) stands for the set of variables in
the scope of a locatioh. Let! be the return location of a function call 1o, @ C Xy ;) be a
set of valuations at, and the correspondingt edge(ex;, [) be labeled withx := r;,. Then,

function

prop((ex;, 1), @) = pre([x ==ry; (x — V())var (V(1) \ x)[] (@)

turns @ into a post-condition off;. Here, the pre-image w.r.ivar undeclares (or removes)
all variables that are not changed by the call, and the pegyew.r.t.ret edge turns the post-
condition onx into the one orry,.

Let RS : Loc — 2* map each locatiok to a subset oEy ), and, as in Section 4.3, let
¢ be the semantics environment, mapping each fixpoint vari@bh relation of an appropriate

type. The on-the-fly algorithm for reachability analysishie equation systemeach-otf):

v (k) if k= p (k € Loc)
RS(k) =

RS(k) UUje gucer) PrElFff ] (RS(D))  otherwise (reach-otf)

E(sz) = [[sz]]E o assume(Ulesucc(exi) prop((exi, l)? RS(Z))) (Z € [1n])
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wheresuccare the successors of a node in the ICEgjs the body off;, and forS = = ((k, [)),

7y 1s defined as:

(U—-U) ([pf=ajoe(Xyg)ox:=rf]) ifS=U—-U)x:=f(a)
"kt =
ST otherwise

This system is a combination ofdt) and ¢each), whereprop is used to propagate the
reachability information to the computation of natural setics. Since reachability and natural
semantics are both least solutions to equaticeef) and fat), respectively, we need the least
solution to the above equation as well.

For example, the following is an instance of the systesadh-otf) for checkingE F'(pc =

8) onEX, (for RS, only locations 5—7 are shown):

RS(5) = RS(5) U
pre[({z,y} — {z,y})(z' = v o e(Xy,) 02’ = 2)](RS(6)) U
pre[({z, y} — {2})?’ = z|(RS(en2))
RS(6) = RS(6) U prefid({z, y})](RS(7))
RS(7) = RS(7) U
prefassumer = 2 Ay < 0)](RS(8)) U
prefassume-(z = 2 Ay < 0))](RS(10))
e(Xy,) = [4Xy - if(z < 0) then (z := z + 1;X,,)]c o [z :=z — 1] 0

(assuméprop((exaz, 6), RS(6))) U assuméprop((exz,9), RS(9))))

Note thatRS(ex2) does not appear in the computation®f(6), becauseet edges are re-
moved in mixed semantics.
Below, we show a possible fixpoint computation. We use thetioot# S (/); to denote the

value of RS(I) at theith step of the computation. We assume tRat(/); = RS(l);_; unless
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stated otherwise.

1. Initially,

true ifl=28
RS(1)o =

false otherwise

2. Computing along the edgés, 8) and(7, 10):

RS(7)1 = RS(7)p U
prefassumér = 2 Ay < 0)](RS(8)o) U
prefassume-(z = 2 Ay < 0))](RS(10)o)

— false U
prefassuméz = 2 A y < 0)](true) U
prefassumé-(z = 2 Ay < 0))|(false)

=(x=2)Ay<0

3. Computing along the eddé, 7):

RS(6)2 = RS(6); U

prefid({z, y})](RS(7)1)

= false U

4. To computeRS(5); along thefunc-call edge(5s, 6), we need the value af X, ), which

is a partial natural semantics @f w.r.t. thecurrentvalue of RS(6). We first propagate
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RS(6), along theret edge(exa,, 6):

prop((ex;, 6), RS(6)2) = pre[[z := z; (z — {z,y})var y]](RS(6)2)
= prefz’ = 2 o (z — {z,y})decl[y]](RS(6)2)
=prefr’ =z o (z — {z,y})declly]](x =2 Ay <0)

= pre[z’ = z](z = 2)

SinceRS(9), is empty, the computation @f X;,) at this step is restricted only to the
post-conditiorassumeéz = 2).
e(Xy,) = [uXy -if(z < 0) then (z :=2z+ 1;X,)]. o [z: =2z — 1] o
assume(z = 2)
= [uXy - if(z < 0) then (z := z + 1;X,)]. o
(z=3N2'=2)
=(z=3)AZ=2
This on-the-fly computation of(X;,) avoided computing the semantics of the loop

[uX, - if(z < 0) then (z := z + 1;X,,)]. which is required for the “full” natural se-

mantics off,.
5. Computing along th&unc-call edge(5, 6):
RS(5)3 = RS(5)2 Uprel({z,y} — {z,y})(z' =z 0e(Xp,) 02’ = 2)|(RS(6)2) U

pre[({z, y} — {2})2’ = z](RS(enz)2)

= false U pre[({z,y} — {z,y})(z' =z o0e(Xp)o0a' =2)](z=2Ay <0)U
pre[({z, y} — {2})?' = z|(false)

=preflr =3A2 =2Ay =y|(x =2 Ay <0)

=(x=3)Ay<0

The above computation establishes that location 8 is rédetieom location 5 wherr = 3

andy < 0.



CHAPTER4. REACHABILITY AND NON-TERMINATION ANALYSIS OF RECURSIVEPROGRAMS39

The following theorem shows that the analysis based on guaystem ieach-otf) is

sound, and computes only the necessary part of natural sesan
Theorem 4.5.Let RS| ande| be the least solutions to equation systeeach-otf). Then,

(1) RS, isthe least solution to the equatioreach) on B™;
(2) foreachi € [1..n],e(X},) is a subset of f;];

(3) for anye, if RS| is the least solution to thé&S equations in (each-otf) w.r.t. ¢, thenVi €

[1..n] '5l(Xfi> - E(Xfi)'

Proof:

The proof of (1) follows from the fact that the transfer function induced by the equation (reach-
otf) is less than that induced by the equation (reach); therefore, the least solution to (reach-otf)
is less than that to (reach). Note that RS is also solution to (reach). Hence, RS| is the least
solution to (reach).

The proofs of (2) and (3) follow from the equation of £(X,) in (reach-otf) and the definition
of least solution, respectively. O
Part (1) of Theorem 4.5 shows th&SS| is the solution for the reachability analysis; part (2) —
thate| is sound w.r.t. natural semanticsffand part (3) — that;, only contains the information
necessary for the analysis.

Since we need the least solution for batly (k) ands(Xy,) equations, it can be obtained
by any chaotic iteration [Cou77] and thus is independent efdtder of computation oRS
ande. Interestingly, the algorithm derived fromefch-otf) is a pre-image-based variant of
the post-image-based reachability algorithm @&B®r[BROO], and is similar to the backward

analysis withwp described in [Bal04].

4.5.2 On-the-Fly Non-Termination

The derivation of the on-the-fly algorithm for the analydison-termination, it-otf), proceeds

similarly, and is a combination of systemsf) and fon-term):
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0 if k|~ p (k € Loc)
NT(k) =

UlESUCC(k) pl’e[f?;ng](NT(l)) otherwise (nt-otf)

£(X7,) = [S7]- 0 assumg Uy coqex, PIOP((exi, ), NT(1)) (i € [1.1])
whereNT : Loc — 2* maps each locatiohto a subset oEy (1), andsucg Sy, and7™ are the
same as those imgach-otf). Since non-termination requires the greatest solutigndo-term),
and natural semantics — the least solutionntat)( in (nt-otf), we need the greatest solution to
NT(k), and the least solution tq X ,) equations, respectively.

For example, the following is an instance of the systetff) for checkingEG (pc # ex;)

onEX, (for NT', only locations 5-10 are shown).

NT(5) = pre[({z, y} — {2, y}) (' =z 0 e(X ) 02’ = 2)|(NT(6)) U
pre[({z,y} — {2})2" = 2](NT(enz))
NT(6) = pre{(id({z, y})|(NT(7))
NT(7) = preflassumér =2 Ay < 0)](NT'(8)) U
prefassume-(z = 2 Ay < 0))](NT(10))
NT(8) = pre[({z,y} — {2, y})(¢' =y oe(Xp) oy’ = 2)[(NT(9))
NT(9) = pre{(id({z, yDI(NT(7))

NT(10) = prefkill [{z, y}]}(NT (exy))

e(Xy,) = [uXw - if(z < 0) then (z:=z+ 1;X)]. o [z:=2z—1] o

(assuméprop((exz, 6), NT'(6))) U assuméprop({exz,9), NT'(9))))

A fixpoint computation for this system is shown below.

1. Initially:

false if [ € {ex;,ex2}
NT(l) =

true  otherwise
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2. Computing along the edde0, ex;):

NT(10); = prekill[{z,y}]](NT(ex1)o)
pre[kill[{z,y}]](false)

= false

3. Computing along the edgés 8) and(7, 10):

NT(7), = prefassumér = 2 Ay < 0)}(NT(8)1) U
prefassume(~(z = 2 Ay < 0))(NT(10),)
= prefz = 2 Ay < 0 Aid({z, y})](true) U
pref~(z = 2 Ay < 0) Aid({x, y})] (false)

=(x=2)Ay<0

4. Computing along the eddé, 7):

NT(6)s = pre[(id({z, y})|(NT(7)2)
= prefid({z,y})](z = 2 Ay <0)

=(x=2)Ay<0

5. Computing along the edd®, 7):

NT(9)a = pre[(id({z, y})|(NT(7)3)
= prefid({z, y})|(z = 2/ y < 0)

=(x=2)Ay<0

6. In order to computéVT'(5)s and NT'(8)s, we needs(Xy,) w.r.t. the current values of

NT(6) andNT(9), respectively. We first propagaté?'(6), and N7'(9), along theret
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edges(exz, 6) and(exs, 9), respectively:

prop({exz, 6), NT(6)4) = pre[[z := z; (z — {z, y})var y]](NT(6)4)
=pre[z’ =z o (z — {z,y})decly]|(NT(6)4)

— prefla’ = z o (a — {x,y})decly]|(z = 2 Ay < 0)

prop((exz,9), NT(9)4) = pre[[y := z; (y — {x,y})var z]|(NT(9))
=prely’ = z o (y — {z,y})declz]|(NT(9)4)
=prely’ =z o (y — {z,y})declz]](z =2 Ay < 0)

=2<0
We then compute(Xy,) restricted teassuméz = 2) andassume(z < 0):

e(Xy,) = [pXy -if(z < 0) then (z:=z+ 1;X,)]. o [z:=2z — 1]. 0
assuméz = 2) V assumeéz < 0)
= [uXy - if(z < 0) then (z := z+ 1;X,,)]- 0
(z=3NZ=2)V(¥=2-1A7<0)

=(2=3A=2)V(ez=1A2Z=0)V(z<0AZ=-1)

This partial semantics of, does not include its behaviors for outputs- 2 andz = 1,

but it is sufficient for continuing the computation 8%7'(6); and NT'(9)s.

The following theorem shows that the non-termination atgar based onrt-otf) is sound

and computes only the necessary part of natural semantics.

Theorem 4.6.Let N7 ande| be the greatest solution fa¥7" and the least solution for in

systemift-otf), respectively. Then,

(1) NT; is the greatest solution to the equatiarof-term) on B™,

(2) foreachi € [1..n],e(X},) is a subset of f;];
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(3) for anye, if NT; is the greatest solution to th&7" equations in ift-otf) w.r.t. e, thenVi €

[1"”] ’ €l(Xfi) - E(Xfi)'

Proof:

The proof is similar to that of Theorem 4.5. |
As in Theorem 4.5, part (1) of Theorem 4.6 shows soundnessmftermination, and parts
(2) and (3) show thatVT; is sound and only contains necessary information for arslys
respectively.

Unlike reachability, non-termination requires differdidpoint solutions forNT ande,
and thus the order of computation can influence the result.ekample, consider checking
EG(pc # ex;) onEX,. Initially, lines 7, 8, and 9 are associated with all the ations onz
andy, i.e.,, NT(7) = NT(8) = NT(9) = X, ,}, ande(f) is empty, which is not the partial
semantics off, restricted taNT(9). If the computation ofVT proceeds along the function call
y: =f 2(y) using the initial value of(f), NT(8) is assigned. EventuallyNT(7) = NT(8) =
NT(9) = 0, i.e., the algorithm incorrectly concludes that any exiecustarting at lines 7, 8 or
9 terminates.

The correct order for computing the solution is such thafpiteeimage of a sef) w.r.t. a
function call tof has to be delayed until the derivationagfX ;) w.r.t. ) is finished. Nonethe-
less, since this order is only restrictedftmc-call edges, the order of the computation else-
where can be arbitrary. This can be used to avoid derivintf’ ‘hatural semantics. Going
back to the previous example, one can first compufealong all edges except fdunc-call
edges, which will assigivT'(9) with z = 2 Ay < 0, and then compute natural semanticg:of
restricted to the post-condition < 0. Similarly, although initiallyN7'(6) is assignedty,,,
NT(6) equals(z = 2 Ay < 0) after the initial computation oN7", which means that only
partial natural semantics g} restricted to the post-condition= 2 is needed.

In this section, we have presented mixed semantics — a dteloperational semantics of
PL, and showed how it can be used to check reachability andaramnation of programs with

a finite data domain. The mixed semantics combines both bpeahand natural semantics,
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allowing us to analyzing recursive programs without deglvith call stacks. Although the
basic idea of such combination has been used in other toglsBeBoP[BR00], we provided a
formalization of both reachability and non-terminatiorabssis using equation systems, which
characterizes all the operations involved in the anahy&igh formalization enables a natural

way to combine the analysis with abstraction, which is dbsdrin the next section.

4.6 Abstract Analysis

We describe our approach for deriving abstract versione@tbncrete analysis described in

Section 4.4, which follows abstract interpretation.

4.6.1 Abstract Domains and Operations

Abstract interpretation [CC77, CC92] is a theory for systen@icvation of abstract program
analysis. In particular, in order to approximate the fixpa@ha function over a concrete do-
main, according to this theory, we need to define an abstoasath and provide sound abstract
counterparts of the operations used in concrete fixpoinfpedation. The concrete analysis in
Section 4.4 computes fixpoints of functions defined by equatieach-otf) and fit-otf) over
the sets of states i2* and relations ir2>**. To derive abstract analysis, we require two ab-
stract domains: abstract sets whose elements approximate setgin and abstract relations
A, whose elements approximate relation2ir*. These domains must be equipped with
abstract versions of all of the operations used in the egpsitfeach-otf) and (t-otf). The
theory of abstract interpretation then ensures that theiealto an abstract equation is an ap-
proximation of the solution to the corresponding concrefaagion. In what follows, we first
identify the necessary abstract operationsigrand A,., and then show how to adapt predicate
abstraction for our algorithm.

According to the equationseach-otf) and (t-otf), the domain of abstract sets must be

equipped with a set uniaa (used in the fixpoint computation) and equality (to deteetftk-
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point convergence). The domain of abstract relatidnmust be equipped with (a) a pre-image
operator to convert abstract relations to abstract trams&fs overA,, (b) asynchronous and
sequential compositions of abstract relations (used inrahsemantics), (c) scope extension
(used to instantiate a function call using natural semarfa function), and (d) equality (to
detect the fixpoint convergence). Furthermore, we neeglsanmeoperator that maps an ab-
stract set to a corresponding abstract relation; and, tly #pgabstraction directly to the source
code, a computable version of abstract base semdnticthat maps each atomic statemént

to an abstract relation that approximafé$ (the concrete semantics §j.

4.6.2 Predicate Abstraction

We now show how the domain of predicate abstraction [GS97, BPRWC06a] can be ex-
tended with the necessary abstract operations to yieldeabseachability and non-termination

algorithms.

Abstract domainsPredicate abstraction provides domains for abstractemgents, sets, and
relations of valuations. Lel’ be a set of variables, arfdl be a set of predicates ovér. A
monomialis a conjunction of literals of. The elementarydomain of predicate abstraction
over P, denoted MofiP), is the set of all monomials ové?. The soundness relatign C
Yy x Mon(P) is defined s.t(c,a) € ppiff o = a, i.e., an element € Mon(P) approximates
a valuationo € Yy iff o satisfies all literals im. For example, if? = {z > 0,z < y}, then
a; = (z > 0) anday = (x > 0) A =(x < y) are in Mor(P). A valuations = (z +— 2,y — 2)
is approximated byt;, and is also more precisely approximatedaby

The elementary domain is lifted to abstract sets and relatio approximate the concrete
domains2*v and2*v**v, respectively. In exact-approximating predicate abtitadGCO06,
GWCO06a] used by Xswm, the abstract sets and relations are defined éwearlued logic, that
is, the abstract domaind, and.A, are4Mon(P) and4Mon(P)xMon(P) " corresponding td-valued
sets and transition relations, respectively. The apprakon relation between an abstract set

X e 4Mon(P) and a concrete s€ € 2%V is characterized by the information ordering on the
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(b)

Figure 4.4: (a) Ad-valued transition relatiom, and (b) a mixed transition relatiori trans-

formed fromr, where solid and dotted lines represenistandmaytransitions, respectively.

truth domain, i.e.X approximates) iff for any o € ¥y, anda € Mon(P), p(o,a) = X(a) <
Q(o). Thatis, ifa is inside (resp. outside) of, then all the concrete elements approximated
by a are inside (resp. outside) ¢f. The approximation relation betweentavalued relation

in A, and a concrete relation v **Vv is based on mixed simulation.

Abstract OperationsThe exact-approximating abstract base semantics of am@statement
has also been defined in [GWCO06a, GC06]. For exampley le¢ an integer variable and
P = {zx > 0}. For the statement := x + 1, a4-valued transition relation approximating its
base semantics is shown in Figure 4.4(a), where the abstedet:; anda, approximate pos-
itive and negative integer numbers, respectively, andpproximates all the integer numbers.
Figure 4.4(b) shows the mixed transition relatiétransformed fromr. The abstract transition
relationr (or, equivalently;’) shows that ifr is a positive number; + 1 is also positive; ifr

iS a non-positive or an arbitrary number, the sign:ef 1 is unknown; and: + 1 is always an
integer number for any. Such abstraction describes both possible and necessayibes ex-
pressed using the predicate> 0, which is an exact-approximation of the concrete behaviors

defined byx := x + 1.

[GWCO06a, GCO06] also show that abstract versions of set unidrgneerelation equality,

and pre-image operations fdr, and A, are defined in the same way as the ones av&rand
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2%v*%v except that the logical operations of conjunctions andidigions are interpreted over
4-valued logic. For example, ik, X, € 4M°"(P) are twoabstractsets that approximate sets

Q1, Q- € 2%V, their abstract unioX; U, X = Az - X;(z) V X5(2) approximates); U Q..

For the missing abstract relational operati@ssumg, asynchronous\(,), and sequen-
tial (o) compositions, we define them similarly using the corresipmndefinitions from Sec-
tion 4.2, e.g., ifr; andr, are abstract relations, then their abstract asynchrormupasition is
T1Vara = As, t-11(s,t) Vra(s,t), whereV is interpreted oved-valued logic. The soundness of
these operations follows from the soundness of the abstedstand relations associated with

them [GWCO06a].

Scope extension in concrete semantics is used to extendteneio additional variables.
That is, ifr is a relation of typd/ — V, then(U — U)r is an extension of to variables
in U \ V. In the abstract semantics, relations are defined overgatedi; thus, abstract scope
extension must extend a relation to additional predicatesdo this, we assume that the ele-
mentary abstract domain M@R) corresponding t&/ can be decomposed into two independent
abstract domains: one fof and the other —fot/ \ V, i.e., MonP) is defined using predicates
that either range only ovér, or only overU \ V. Then, abstract scope extension— -),,

defined as in Table 4.1, is a sound approximation of concoetgesextension.

In the context of our on-the-fly algorithms, the assumptionabstract scope extension
means that predicates that are used to abstract valuatiamstarn locatior of a function call
x := f(a) are either defined only ovet, or only over other variables in the scopelofFor
example, predicates= 2 andy < 0 can be used to abstract valuations at line 6 in the program
EX,, but predicater > y cannot. This is not a severe restriction in practice sinaeatfon can

always be extended to accept additional parameters anth teem without modification.

We have described how to derive abstract domains and thesegeabstract operations to
obtain abstract reachability and non-termination analpsised on exact-approximating pred-

icate abstraction. This approach can be applied to over-uadér-approximating predicate
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int g ~void level [i(){ void level _n(){ ®) o> =
int t = 0; int t =0 g=-1%*g;
(a) voi d main(){ g=-1=xg; g=-1~xg © <stnt>:=
level _1(); if (g<=0){ it (g<=0){ level _n();
if (g<0){ t = t+1; t = t+1; g=-1+g:
ERROR: .} else { } else { level n();
} § level _i+1();
END: g=-1-g stnt>
} level i+1();
- }
g=-1xg} g=-1+g}

Figure 4.5: (a) The template for experiments. €8} nt > for templateT1(n). (c) <st nt >
for T2(n).

abstractions [BPRO03] in a similar way with the difference thand A, are now classical sets
and relations over the elementary abstract domain, andicotpns and disjunctions are now
interpreted over Boolean logic. To summarize, both over-wamtkr-approximating predicate
abstractions can be used to soundly abstract reachakllitynan-termination analysis. The
choice depends on the desired algorithm. For example, ajy@mximation is necessary to
establish unreachability, whereas under-approximatitm establish non-termination. Since

exact predicate abstraction combines them, it can be uséxbfo verification and refutation.

4.7 EXperiments

The technique described in this chapter has been implechentair symbolic software model
checker YA\sm [GWCO06b]. Yasm is written in AVA; it uses CVC Lite [BB04] to approximate
program statements and CUDD [Som01] as a decision diagrameanyye have also extended

our proof-based refinement approach [GCO06] to handle nasamlantics of functions. In
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T1(n) T2(n)

n || EF (pc = ERROR) (reach) | EG (pc # END) (non-terminate)| —EF (pc = ERROR) (unreach)
20 6.5 4.9 4.3

50 11.7 8.9 6.3

100 20.3 20.3 111

200 36.7 25.2 27.6

300 47.6 34.4 42.1

400 68.1 43.2 64.5

500 105.2 60.6 86.6

Table 4.3: Experimental results: overall analysis timesioands.

the rest of this section, we report on a preliminary evatiatf this implementation. All
of the experiments have been conducted on a 2xP4Xeon-3.66Rer, which demonstrate
YAsM’s ability to analyze reachability and non-termination e€ursive programs using exact-
approximation. In summary:
1. We run YASM on template programs similar to those in theE®p and MoPED bench-
marks. The experiment shows that the analysis timebfuth reachability and non-

termination increases linearly w.r.t. the number of fupiesi in a program.

2. We show that abstract analysis based on exact-approgmgipports both verification

and refutation.

3. We compare Xsm with MopPEDand VERA (BEBOPdoes not do non-termination), and
show that YAsm can prove non-termination of the original bug@ui cksort algo-

rithm, whereas MPEDand VERA do not support non-termination analysis.

To evaluate the reachability algorithm, we have used thelate programl1(n) which
is a variant of the one used foreBorin [BR0OO]. T1(n) is the result of replacingst nt >
in the template shown in Fig. 4.5(a) with the statements ¢n £i5(b). It consists of aai n

function andn sub-functions, wheremni n callsl evel _1, andl evel i callsl evel _i +1
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twice if the global variabley is positive. Since is not initialized, its initial value is arbitrary.
Although this program has no recursion, inlining functi@i€increases its size exponentially,
making the analysis infeasible for a sufficiently largeWe checked the reachability property
EF (pc = ERROR) with values ofn ranging between 20 and 500, and measuredtiezall
analysis time (including parsing, abstraction, modelekimgy, and refinement). The results
are shown in the second column of Table 4.3. Since our teakngopalyzes each function
separately, the analysis time increases linearly w.ret.nimber of functionsr), as expected.
In all these cases, ASM was successful in proving reachability, and discoveredlipates

g <0,g > 0andg < 0. While the templatel'1(n) is similar to the one used in [BROO],
there is a fundamental difference EBoP assumes an over-approximating abstract semantics
of Boolean programs and cannatnclusively verifythat theERROR label is reachable with

these predicates.ASM uses exact-approximation which results in a conclusivéyarsa

We also checked the template progré@y(n), obtained by replacingst nt > in the tem-
plate in Fig. 4.5(a) with statements in Fig. 4.5(c). Norgration and unreachability results
are presented in the third and fourth columns of Table 4.§peetively. As expected, the

analysis time increases linearly with the number of fumio

For non-termination, we have also appliedsi to several examples inspired by [CPR06a],
in particular, to programéck andShi f t, shown in Fig. 4.6(a) and (b), respectivelyasv
was able to automatically prove non-terminatiorAok in 2.1 seconds and discovered predi-
catesy > 0,n > 0,z > 0, mz > 0 andmy > 0. Analysis ofShi ft took 1.9 seconds and
yielded predicateg < 0, x < 0, x > 3, x = 0 andz = 3. Finally, we have comparedAgm
to MoPED [ESO1] and \ERA [ACEMO5] on the buggyQui cksort example from [ESO1]
in Fig. 4.6(c), wherenondet () represents non-deterministic choiceas¥ has established
non-termination ofui cksort in 10 seconds, finding 7 predicates. Note that bothA¥D
and VERA only apply to programs with finite data domain, and the ansliysfACEMO05] and
[ESO01] had to restrict the number of bits used by each vajathile YAsm did not need any

such restriction.
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void main (){ voi d main(){ void main (){
int nx, ny; int x; int mMeft, nright;
(a) ack (nmx, ny); (b)foo(x); ©) qui cksort (meft, mright);
END: ; } whi | e(x!'=0) { END: ; }
if (x<0) {
int ack (int x, int y){ X = -1 * Xx; void quicksort (int left, int right){
int r1, n; X = X+2; int lo, hi;
if (x >0) { } else { if (left >=right) return;
if (y >0) { X =-1+* x; lo =left; hi = right;
y =y -1 X = X+3; while (lo <= hi) {
n = ack (x, y); 1} if (nondet()) {
} else { n=1;} END: ;} lo = | o+1;
rl = ack (x, n); } else {
return ri; void foo (int y){ if(lol=left || hi!=right)
} else { y =-1x*y; hi = hi-1;
rit=y+1 if(y <0 { 1}
return ri; foo (y); qui cksort (left, hi);
1} 1} qui cksort (lo, right); }

Figure 4.6: Non-terminating programs: @k; (b) Shi f t ; (c) BuggyQui cksort .

4.8 Related Work

Recursive programs have been studied widely in the contarterfprocedural program anal-
ysis. In general, there are two main approaches for thisyaisafunctionalapproach [SP81,
KS92] andoperationalapproach [SP81]. The function approach uses natural seaxaémsum-
marize the computational effects of functions, which arpliag at the locations of function
calls to update program states along the execution pathesopérational approach adopts the
operational program semantics that uses an unboundedahl for recursive calls. In terms
of interprocedural program analysis, our approadingtionalsince it uses natural semantics
to handle function calls.

Most other model-checking approaches for recursive progrde.g., [BR0O0, ACEMO5,
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BCP06, PSWO05]) are functional as well. The input tee®pP [BR00] and VERA [ACEMO5]

is a finite recursive program, which is equivalent to a pushideystem. These tools apply
over-approximatiorwhen analyzing recursive programs on infinite domains. Haeabil-
ity analysis in them uses the RHS algorithm presented in [RHSBBe RHS algorithms is
developed based on the functional approach in [SP81, K$8&}iding a forward on-the-fly
summarization of functions using graph reachability teghes. Our reachability algorithm
can be seen as a pre-image-based (backward) variant of theaRRE&hm. Function sum-
mary is also used in [BCP06, PSWO05] to prove termination of @eamprograms, where only
over-approximation is considered, and computation ofionsummary is not driven by prop-

erty analysis.

In the operational approach, & eD [ES01] is developed based on a symbolic approach
to reachability analysis of pushdown systems [BEM97, EHRSOU]is approach relies on
the result that the set of reachable states in a pushdowensysta regular language. There-
fore, instead of computing the reachable states directlichvmay not converge, the approach
defines a procedure to construct a finite automata that rezegythese states, which is guar-
anteed to terminate. BPED accepts a finite recursive program as input, and also uses ove

approximation for infinite programs.

Both MOPED[ESO01] and \ERA [ACEMO5] can detect cycles in programs wiihite data
domains, which can be used for non-termination checking.Wised for analysis of programs
with infinite data domain, they assume an over-approxirgatgmantics of finite abstractions
of original programs. Note that an ability to detect nom¥tration of over-approximating
boolean programs is of limited utility since over-approaiion often introducespuriousnon-
terminating computations. Thus, non-termination of amr-@ggproximation says nothing about
non-termination of the concrete progranit is unclear how to combine ®PED and VERA

with exact-approximation, whereas it is quite natural im approach, resulting in both sound

1In [CHO8], Charlton and Huth showed that using only oversagjmmating information they can prove reach-
ability in limited cases by exploiting the seriality and palrdeterminism of programs. It is possible to apply this
technique to prove non-termination in those cases as well.
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verification and refutation of the property over programthwifinite data domain.

In [JS04], Jeannet and Serwe propose abstract analysiswkige programs by different
abstractions of the call stack, which provides a method moloe the function and operational
approaches. Their method can be parameterized by an ayldtata abstraction. However, the
authors restrict their attention to reachability (i.evanance) properties, and do not report on
an implementation.

The stack-free semantics we proposed in this chapter allewsanalyze stack-independent
properties of recursive programs including reachabilitg aon-termination. More general
properties of recursive programs require inspection ofsiaek. A decidable class of such
properties can be expressed by the temporal logic CaRet [AEMadallows for matching of
calls and returns of procedures. Properties expressilflaRet can be analyzed usiunigibly
pushdown automat@/PA) [AMO04]. VPA are a special class of pushdown automatarelthe
set of input symbols is partitioned into calls, returns, i@l symbols, and the push and pop
operations on the stack are determined by the type of the symubol. Exposing the matching
structure of calls and returns makes VPA an appropriate hfodalgorithmic verification of
recursive programs with respect to properties via stagbeicgon. We leave investigation of

combining exact-approximation and VPA for future work.

4.9 Conclusion

In this chapter, we have presented a technique for analyegchability and non-termination
properties of recursive programs. The technique is base siack-free mixed program se-
mantics that eliminates call stacks while preserving stadkpendent properties. We showed
how to compute only the necessary part of function summariypgthe analysis, leading to on-
the-fly algorithms for analysis of reachability and nomtaration of finite programs. We then
used the framework of abstract interpretation to combinetgorithms with data abstractions,
making them applicable to programs with infinite data domaisiwell. We have implemented

a combination of this approach with exact predicate abstrain YASM [GWCO06b] which
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supports both verification and refutation of properties.r &periments indicate thatAém
scales to programs with a large number of functions and is ebhnalyze reachability and
non-termination of non-trivial examples.

Our interest in non-termination is motivated by the worktermination(e.g., [CPRO06a]).
A termination tool typically can prove termination of pragns, but requires manual inspection
of non-terminating paths. We view our approach as compléangmo that. As illustrated by
our experiments, XSM can prove non-termination of non-trivial programs. In theufe, we
plan to investigate how the strengths of the two approaciwe®e combined together for better
analysis. The refinement strategies that are currentlyamehted in Xsm were originally
developed for reachability analysis only. While they wer#isient for our non-termination
experiments, we would like to investigate strategies inftitere that are specifically tailored

to the non-termination analysis.



Chapter 5

Analysis of Partial Modeling Formalisms

Partial modeling formalisms support abstract model cherkif complex temporal proper-
ties by combining both over- and under-approximating agsions into a single model. In
this chapter, we investigate three families of these maddtirmalisms represented Byipke
Modal Transition System#lixed Transition SystemandGeneralized Kripke Modal Transi-
tion SystemsFollowing the two fundamental ways of using these pantaisition systems for
abstracting concrete programs and for temporal logic mokdetking, we study the connec-
tion between semantic and logical consistency of paraaidition systems, compare expressive
power of the three families of formalisms, and discuss tleeigion of model checking over

them.

5.1 Introduction

Partial models play a fundamental role in exact-approxmnarameworks. A temporal prop-
erty is interpreted over a partial model in one of four walyse or false if the partial model
is precise enough to prove or disprove the propenmnown if the model is imprecise, and
inconsistenbtherwise. The modeling formalism of partial models, ipartial transition sys-
tems(Page 31), usually have two types of transitiomsyandmust representingossible(or

over-approximating), andecessaryor under-approximating) behaviours, respectively. €her

105
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are three families of partial transition systems identifrethe literature, represented Byipke
Modal Transition System&MTSs) [HIS01],Mixed Transition Systen{#ixTSs) [DGG97],
andGeneralized KMTSEGKMTSs) [SG04] (Definition 2.9), respectively:

1. KMTSs are equivalent t8-valued Transition SysterfilSDEGO03],Modal Transition Sys-
tems[LT88], and Partial Kripke StructuredBG00]. KMTSs require that everynust
transition is also anaytransition. They were introduced as computational modais f
partial specifications of reactive systems [LT88] and thdapéed for model check-

ing [BG00, HJSO1, CDEGO3].

2. MixTSs [DGG97] are equivalent t¢-valued Transition Systeni&WCO06a]. MixTSs
extend KMTSs by allowingnust onlytransitions (i.e., transitions that ameustbut not
may). MixTSs were introduced in [DGG97] as abstract modelsgr and have been

used for predicate abstraction and software model chedkif(§C06].

3. GKMTSs [SG04] are equivalent #bstract Transition SystenidAGJ04] andDisjunc-
tive Modal Transition Systenftar91l]. GKMTSs extend MixTSs by allowinghust

hyper-transitions(i.e., transitions into sets of states).

In this chapter, we study these formalisms from two pointgiefv: a semantic one, using
partial transition systems as objects for abstracting i@agrograms, and a logical one, using
partial transition systems for temporal logic model chegki A partial transition system is
semantically consisteiitit abstracts at least one concrete program. A partiakitaom system
is logically consistenif it gives consistent interpretation to all temporal loggemulas. For
semantic consistency, note that we investigate partiakitian systems from the perspective
of abstract model checking in this chapter, where a parasition system and its concrete
refinement are related through the soundness relation tbaband concrete states. The no-
tion of semantic consistency in this setting (formally defliin Section 5.4) is slightly different
from the notion oimplementabilitywhere partial transition systems are used as specifications

of a system’s behavior. A discussion of this difference i&giin Section 5.9. Specifically, in
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this chapter we first study the connection between semamtidagical consistency of partial
transition systems. We then compare the expressive povtiee édrmalisms, i.e. what abstrac-
tions can be captured using them. Finally, we discuss thigsiagower of these formalisms,
i.e., the cost and precision of model checking. This chaptdudes the following technical

contributions:

1. We definemonotonepartial transition systems, and show that they are as exigeeas
their regular counterparts: for any partial transitiontsgsthere exists a monotone one
such that both of them approximate the same set of concrsternsyg. The monotonicity
condition ensures that all information that can be derivedhfexistingmay and must
transitions is made explicit in the transition system, wahadlows for more effective

local reasoning about partial transition systems.

2. We show that while in general semantic and logical coasdst of partial transition sys-
tems are not equivalent, they are equivalent over monotoas.dr hus, for every partial
transition system, there is an equivalent monotone oneevdemantic and logical con-
sistency coincide. For monotone transition systems, wedsdfine a structural condition

that captures both notions of consistency.

3. We show that despite the structural difference, the tfanedies of partial modeling for-
malisms, KMTSs, MixTSs and GKMTSSs, are equally expressivat is, for any partial
transition system from one formalism, there exists a paraasition system in the other
such that the two partial transition systems approximagestime set of concrete sys-
tems . We prove the equivalence of these formalisms by defis@mantics-preserving
translations from GKMTSs to MixTSs, and from MixTSs to KMTS3ur results show
that both GKMTSs and KMTSs can be converted to semanticgliyvalent MixTSs of

equal or (possibly exponentially) smaller size.

4. We show that under the traditional inductive semanticteofporal logic, which is re-

ferred to asstandard a GKMTS can prove/disprove more properties than a MixTS ob-
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tained by semantics-preserving translation. Howeveectly applying symbolic model
checking over GKMTSs has been hampered by the difficulty obdimg hyper-transitions
symbolically. We then develop r@ducedinductive semantics that is more precise than
the standard one. We show that GKMTSs and MixTSs are equivai¢h respect to the
reduced semantics, and give a symbolic model checking guvedor it. We apply this
algorithm to MixTSs constructed using predicate abstact@nd evaluate it empirically

against an algorithm for the standard semantics.

The rest of this chapter is organized as follows. SectiopEe2ents preliminaries and fixes
the notation used in this chapter. In Section 5.3, we defioeotongartial transition systems
and show that they are as expressive as their regular cpant®rin Section 5.4, we investigate
semantic and logical consistency of partial transitiortesyss. In Section 5.5, we prove that
KMTSs, MixTSs and GKMTSs are equally expressive by develggemantics-preserving
translations from GKMTSs to MixTSs, and from MixTSs to KMTSs Section 5.6, we in-
troducereducedinductive semantics foL,,. In Section 5.7, we present a symbolic model
checking algorithm with respect to the reduced semantitsarcontext of predicate abstrac-
tion. We report on our experience with this algorithm in $8c6.8. We discuss related work

in Section 5.9 and conclude this chapter in Section 5.10.

5.2 Preliminaries

Convention In this chapter, we use the following naming convention. Bomrapital letters de-
note transition systems (TSs), which are built out of statestransitions}/ for a MixTS, K
fora KMTS, G for a GKMTS, andB for a BTS. Subscripts indicate a particular transition sys-
tem. For examplel/; is a MixTS (see Figure 5.1), where&s is a GKMTS (see Figure 5.2).
Script capital letters denote models, which extend trammsisystems with interpretations of
atomic propositions:M for a MixTS model,K for a KMTS model,G for a GKMTS model,

and B for a BTS (or a concrete) model. We use subscripts to indicatedel corresponding
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to a particular transition system. For example,; is a model whose underlying transition
system is the MixTS\/; (see Figure 5.1). The lettéris used exclusively to indicate a labeling

function of a model.

Concrete and Abstract Statespad®ecall that for a concrete statespdac¢eanabstractstates-
pace approximating’ is a set of stateS equipped with aoundnessgelationp : C' x S, acon-
cretizationfunctiony(s) £ {c| (c, s) € p}. Abstract states are related with each other through
the concrete states approximated by them. In this chapéemnwestigate partial models based
on the exploration of approximation abilities of abstraetas. To this end, we assume tlsat

is equipped with an approximation ordering s.t. s <, t < ~(s) 2 ~(¢). Thatis,s =<, t if

s is less precisémore approximate) than Following [CC92], we require thak, be a partial
order, that is, there are no redundant abstract statesghetxamate the same set of concrete
states. We also require that there exists an abstract Stdtgives the most precise approxima-
tion of a concrete state, i.&l¢c € C-3s € S-(p(c, ) AVs' € S-p(c,s') = v(s') D v(s)). We

use arabstractionfunctiona : C' — S to map each concrete element to its best approximation.
The image ofx is denoted byy[S] = {a(c) | ¢ € C'}. We use the notatioC, p, v, o, S) to

denote that a concrete statespatis abstracted by with p, v, anda as defined above.

An abstract state € S is consistentff ~(s) # 0. We require that any state labeling
function L over S is locally consistenti.e., for any consistent abstract statend proposition
p, at most one op and—p belongs toL(s). We also require that any state labeling function

oversS is monotonew.r.t. <,: s; <, s2 = L(s1) C L(s2).

Predicate AbstractionLetn be a natural number, arfd = {py, ..., p,} be a set of quantifier-
free first-order boolean predicates. Recall tha@nomialis a conjunction of literals of,

and amintermis a monomial in which each variablg appears exactly once (either positively
or negatively). We write Mof’) and MT(P) for the set of all monomials and minterms
of P, respectively. The set M@®) is the domain of predicate abstraction. The soundness
relationpp is defined s.t(c, s) € pp iff ¢ |= s, i.e.,c satisfies all literals irs; the abstraction

A

ap(c) = (Ngep Pi) N (Nogyp, 7Pi); apMON(P)] = MT(P); and the approximation ordering
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is reverse implications <, t iff s < t.

Semantics over Partial Modeld his chapter discusses several semantick,ofLet M be a
partial model over an abstract statespdcandy be anL, formula. We refer the traditional
inductive semanticg,, over partial models (Definition 2.10) as tBéandard Inductive Seman-
tics (SIS), and use a subscripto indicate this, e.g., the SIS gfover M is denoted by ||M.
Recall thatC[M] is the set of all concrete refinements.of (Page 35). IntuitivelyC[M] is
the semantic meaning 0¥1. A thoroughsemantics of, over M, denoted|¢||;"!, is defined

with repect to respect to the semantic meaning6f

Definition 5.1 (Thorough Semantics) [BG0O] Let M be a partial model over an abstract
statespaceS. Thethorough semanticsf an L, formula ¢ over M is defined ag|¢|;"! =

(U,0), where
U={aeS|VBeCM] 7(a) CU(lelF)}
O={aeS|3BeCM]- (v(a)NO(l¢]F)) # 0}
In order to compare different semantics/of, we introduce two ordering relations on the
space2’ x 29,

Definition 5.2 (Information and Semantics Orderingd)et S be an abstract statespace. Let
e1 = (U, 01) andey = (Us, O,) be two elements i® x 2°. e, is less informativethan e,,

writtene; =; e, if and only if

U1 QUQ and 02 QOl

e1 iIs semantically less precigkane,, writtene; =<, e, if and only if
7(U1) Cy(Us) and ~(01) € ~(0,)
Note that we use the same notatigfy to denote the precision orderings, defined w.r.t.
concretization, for both the elements§rand the ones ig® x 2°.

Semantic Equivalence and Expressive Equivalelde define semantic equivalence between

partial models (TSs) and expressive equivalence betweeleling formalisms as follows.
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Definition 5.3 (Semantic EquivalenceYwo partial models\f and M’ are semantically equiv-
alent if and only if they have the same set of concrete refinemiemits;[M] = C[M’]. Two
partial transition systems)M and M’, are semantically equivalenif and only if C[M] =

C[M).

Definition 5.4 (Expressive Equivalence)lwo partial modeling formalisms arexpressively
equivalentif and only if for every TSV from one formalism, there exists a T& from the

other, s.t.M and M’ are semantically equivalent.

5.3 Monotone Partial Transition Systems

In this section, we definmmonotongoartial TSs. We show that monotone partial TSs are expres-
sively equivalent (Definition 5.4) to their regular coumarts: for any partial TS there exists
an equivalent monotone one, i.e., they approximate the smmnef concrete systems. The
monotonicity condition simply ensures that all informatithat can be derived from existing
mayandmusttransitions is made explicitin the TS. As we show in latetis®s, this condition
allows us to perform local reasoning of partial TSs morecgifely.

For simplicity, we present the results w.r.t. MixTSs. Thapbe easily adapted to GKMTSs

as well.
Definition 5.5. A MixTSM = (S, R™, R™ is monotoneff
(@) Vs, ti,ty € Sty Xy t1 = ((s,t3) € R™ = (s,t1) € R™) A
((s,t1) € R™S'= (s,ty) € R™S
(b) Vs, 50,1 € 551 =g $2 = ((52,t) € R™ = (59,t) € R™) A
((s1,t) € R™S'= (s9,t) € R™Y

A modelM = (M, L) is monotonéff its MixTS component)/ is monotone.
Intuitively, a transition system is monotone iff the infaxtion captured by its transition

relation is monotone with respect to the approximation onde=<,, of its states. For example,
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Figure 5.1: Four MiXTSsM,, M,, M3, andM,, whereM; and M, are monotone. Solid and

dashed lines represemiustandmaytransitions, respectively.

let M be a transition systens; ands, be two states of/ such thats; <, s;. (1) Suppose
there is amaytransition froms, to some other state The meaning of this transition is that
any system that refine®/ can have a transition from a statenifs,) to a state iny(¢). Recall
that we assumed that <, s,; hencey(s;) 2 v(s2). Thus, the same behavior is allowed from
the states in/(s;). For M to be monotone with this information, it must havenaytransition
from s; to ¢. (2) Similarly, suppose there israusttransition froms; to some other state
Then, every state in(s;) must have a transition to some stateyii). Sincey(s;) 2 v(s2),
the same is true for the statesiifs,). Therefore, forM to be monotone with this information,
it should have anusttransition froms, to t.

For example, the MixT3/3; shown in Figure 5.1 is monotone; the MixT%, in the same
figure is not monotone: for the states and a,, wherea, is less precise thaa,, we have

as must as, but there is nanusttransition froma; to as, and for the states; anda,, whereay
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. . ma . i
is less precise thasg, we haveu, MLA ay, but there is nanaytransition froma, to as.

In the rest of this section, we show that every partial TS (@det) can be translated
into a semantically equivalent (Definition 5.3) monotone .owe first define such translation
for MixXTSs. The translation consists of two stepss1D (destination translation) andr8T
(source translation), which produce a monotone transgy@tem preserving the behaviors of

the original one.

Definition 5.6 (Translation BTT). Let M = (S, R};”, RT¥s) be a MixTS. The result of trans-

lation DSTT(G) is a MiXTSN = (S, Ry, RTUY, such that

Ry 2 {(a,b) € SxS[3W €S-V =<, bA(ab) € R}

Rjn\ﬁfusté{(a’b) ESXS|E|b,€S'bja b//\(a,b’) GRT/[US

The translation BTT checks the transition from each state in its input TS and audsing
transitions derived from the approximation ordering oumsteact states, ensuring that the result
satisfies the condition (a) of Definition 5.5.mMaytransition is added between stateandb in
the resulting TS if the source TS hagnaytransition between statesand some staté that is
less precise thal Similarly, amusttransition between statesandb is added to the resulting
TS if the source TS hasrausttransition between and some staté that is more precise than
b. For example, for transition systems in Figure 5.1, thedi@tion DsTT (/) results in the
MiXTS M,: sinceay is less precise tham; and there exists eaytransitiona, ey, a4 in
My, M, contains anaytransitiona, ey, as; furthermore, since there existsrausttransition

t . . .. t
as = qgin My, M, contains anusttransitiona, — a,.

Lemma 5.7. Let M be a MixTS. The translatioDSTT (M) results in a MixTS which satisfies

condition (a) of Definition 5.5.

Definition 5.8 (Translation &cT). Let M = (S, R}[”, RT¥Y be a MixTS. The result of the



CHAPTERS. ANALYSIS OF PARTIAL MODELING FORMALISMS 114

translationSRCT(G) is a MiXTSN = (S, Ry, RmsY  such that

RYY2 {(a,b) €S x S|Vd €5 d 2, a= (d,b) € R}

R]n\}USté{(a,b) ESXS’HCLIES'@ja a’/\(a’7b) ER?\}US

The translation 8CT ensures that its outpul/, satisfies the condition (b) of Definition 5.5.
It guarantees that the transitions from more precise staitesiore defined: for each statgit
has amusttransition to a staté in V if a less precise stat€ already has anusttransition to
b in its input, M; it has amaytransition tob in N only when all the states that are less precise
than it already havenaytransitions ta in M. For example M3 in Figure 5.1 is the result of
SRCT(M;): because:, is less precise tham and there arenusttransitionsas must as and
ay % 44 in My, two musttransitionsz; ™% 4 anda; ™% «, are added td/;; on the other
hand, themaytransitiona; MLA ay IS removed fromV/; because, has namaytransition toas

in M.

Lemma 5.9. Let M be a MixTS. The translatioBRCT (M) results in a MixTS which satisfies

condition (b) of Definition 5.5.

We now define the monotone translatiooMoT be the composition of the translations for
source and destination states, i.eQNOT £ SRCT o DSTT. The following theorem shows

that MONOT translates a MixTS into an equivalent monotone one.

Theorem 5.10.Let M be a MixTS. The translatioMoNOT (M) results in a MixTS which is

monotone and semantically equivalent\to

Proof:
(1) Let Ny = DSTT(M) and Ny = SRCT(N;). According to Lemmas 5.7 and 5.9, N; and
N, satisfy conditions (a) and (b) of Definition 5.5, respectively. To show that MONOT (M) is
monotone, we only need to show that N> also satisfies condition (a). Proof of this follows from
the definition of SRCT.

(2) To prove that M and N, are semantically equivalent, we show that any concrete BTS

B = (C, R) refines M iff it refines N. It is equivalent to showing that (i) the soundness relation
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p C C x S'is a mixed simulation between B and M iff it is a mixed simulation relation between
B and Ny; and (i) p is a mixed simulation between B and [V, iff it is a mixed simulation relation
between B and N. This follows from the definitions of DSTT and SRcT. |

The translation MONOT can also be used to convert a partial model into its monotone

equivalent one.

Corollary 5.11. Let M = (M, L)) be a MixTS modelN = MONOT (M), andLy = L.

Then the modeV = (N, Ly) is monotone and semantically equivaleni\t

In this section, we have shown that monotone partial TSsseg@ressive as their “regular”
counterparts. The monotone conditions make hidden transiexplicit, allowing us to do

better local reasoning about partial TSs, which is illustlan the following sections.

5.4 Consistency

There are two alternatives for defining consistency of agar: either based on satisfaction
of temporal logic formulasl@gical consistency or based on possible concrete refinements
(semantic consistengyWhile semantic consistency implies logical consistetiog,converse

is not true. There exists a logically consistent TS that lasamcrete refinements. In this sec-
tion, we investigate these two notions, show when they edé@nd provide a new structural

condition which is necessary and sufficient to ensure th& & Tonsistent.

5.4.1 Logical and Semantic Consistency for Consistent Statespaces

Throughout this section, l&t’ be a concrete statespace, ahthe the corresponding abstract
statespace such th@t, p, v, «, S). In addition, in this subsection, we assume that every state
a € Sis consistent, i.eq(a) # (). We extend our definitions to deal with inconsistent states i
Section 5.4.2.

A model M is logically consistent if it gives a consistent interpteta, i.e., eithertrue,

false orunknownto every temporal formula. Formally,
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Definition 5.12. A modelM is logically consisteniff for everyp € L, U(||¢|l:) € O(||¢ll)-

Logical consistency naturally extends from models to tteorssystems: a transition sys-
tem M is logically consistent iff for any labeling functioh the model(}M, L) is logically
consistent.

Atransition systend/ is semantically consistent iff there exists at least one Bigbrefines

Definition 5.13. A transition systemi/ is semantically consisteiff C[M] # ().

Semantic consistency extends naturally from transiti@iesys to models. A modeét =
(M, L) is semantically consistent iff the transition systémis semantically consistent. Be-
cause we require that the labeling functibbe monotone with respect t¢,, this is equivalent
to requiring that the modeW1 has a consistent refinement.

Semantic consistency implies logical consistency:
Theorem 5.14. Any semantically consistent transition system is alsachly consistent.

Proof:
Let M be a consistent transition system. We show that M is logically consistent by contradic-
tion.

Assume M is not logically consistent. Then, there exists a labeling function L and a tem-
poral formula ¢ such that ¢ is inconsistent in some state of the model M = (M, L). Formally,
there exists a state a of M such that a is in U(||¢]|) \ O(]|¢|IM).

Let B be a concrete (BTS) model refining M. Since M is semantically consistent, such 5 is

guaranteed to exist. By Theorem 2.14, v (U(|l¢[*)) € U(ll¢[I?), and 4(O(l¢[)) € O(lllI?).
Then, there exists a concrete state ¢ € y(a) s.t. ¢ € U(||¢||F) and ¢ € W.
Since B is concrete, U(||¢[|®) = O(||¢||¥). Hence, ¢ € U(||¢||?) and ¢ € C\ U(||¢||®) — a
contradiction. Thus, M is logically consistent. O
Interestingly, the converse of Theorem 5.14 is not true inegal. We illustrate this on

an example. Consider the MixTH, in Figure 5.1. InM,;, everymusttransition is matched
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by amaytransition, i.e.,R™St C R™, Thus, by [HIS01, dAGJ04], it is logically consistent.
However,), is not semantically consistent as we show using a proof biradiction. Assume
there is a BTSB that refines\l,. Letc; : (x = 1) be a state of3; ¢; is approximated by both
a; anday. BecauseB refinesM,, and M, has amusttransitiona, must asz, B has a transition
from ¢, to a state approximated lay, say,c; : (x = —1). SincelM, approximates3, by the
definition of mixed simulation (Definition 2.11); must have anaytransition to a state that
approximates;, i.e., eitheras or ay. There is no sucmaytransition in)M,, contradicting the
assumption. Thusl/; is not semantically consistent.

Below, we show that monotone MixTSs is a class of systems faztwibgical and semantic
consistency coincide. Intuitively, the reason is that tppraximation ordering=,, of the
statespace of monotone MixTSs is “pushed” down to its ttexms. This gives rise to the

following theorem:

Theorem 5.15.Let M be a monotone MixT&S, R™®, R™SY) and assume that every state in

S is consistent. Then, the following are equivalent:
(a) M is semantically consistent (Definition 5.13),

(b) M is logically consistent (Definition 5.12),

must

(©) Va,by €5 -a ™5 by = Ty € S by <y bo A — by,

Proof:

We show that (a) = (b), (b) = (¢), and (¢) = (a).

Part 1. (a) = (b) The proof follows from Theorem 5.14.

Part 2. (b) = (¢) Leta and b; be two states in S such that a M= b, is a transition in RMUSt
We show that (i) there exists a labeling function L, and (ii) there exists a formula ¢, such that
¢ is consistent in the state a of the model M = (M, L) only if M has a transition a T, by for

some state b, that is more precise than b.



CHAPTERS. ANALYSIS OF PARTIAL MODELING FORMALISMS 118

(i) To define L, we partition the statespace S into sets S1, Sz, and Ss:

Slé{SGS“)ljaS}
Sgé{S€S|3t651'Sjat}\Sl

SgéS\(SlLJSQ)

S is the set of all states that are more precise than b;. S is the set of all states that are
not in Sy, but are less precise than some state in S;. S3 contains all states that are neither in

S1 nor Ss.

Let AP = {p}. L is defined as follows:

{(p} ifseS

L(s) 28y ifseS,

{—\p} if s € S3.

L is consistent. We need to show that L is monotone, i.e., if s <, ¢ then L(s) C L(t). Let
s and t be two states such that s <, t. Then, either s and ¢ belong to the same partition or

s € Sy andt € S; U Ss. In both cases, monotonicity follows trivially.

(i) We define ¢ as the formula Op. Note that because of the must transition « must b1, ais
in U(J|Op|IM). And, because M is logically consistent, a € O(||0p||) as well. We use this fact

to show existence of b,, needed for condition (c) of the theorem.
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must
a—— b

= (by the definition of L, ||p|| = (S1, 51 U S2))
a % by A by € U(lplIM)

= (by SIS of ¢p)
a € U(|oplIM)

= (since M is logically consistent, {p is consistent at a)
a € O(|[0p[M)

= (by SIS of ¢p)
by € S1USs - a 2 by

= (logic)
(Fby € S1-a 2 by) V (Tby € S - @ — by)

In the first case, b, € S;. By definition of S, by =<, be. This fulfills condition (c) of the

theorem.

In the second case, by € Ss.

by € Sy - a 2 by
= (by the definition of S)

by € G- a Dby ATY €8 by =V
= (by assumption, M is monotone)

el -aly

Hence, ¥’ fulfills the condition (c) of the theorem.

Thus, if M is logically consistent, then

Va,by € S-a % by = Iy € S - by <4 b Aa —2, by

Part 3. (¢c) = (a) The proof proceeds by constructing a concrete BTS B that refines M.
Let C be a concrete statespace approximated by S. Let p C C x S be the corresponding

soundness relation with the abstraction function o : C' — S. Let B be a BTS (C, R), where

R2{(c,d) eCxC|IbeS- (alc),b) € R"™A (d,b) € p}
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We show that p is a mixed simulation relation between M and B, i.e., M <, B. Letc € C, and
a € S be two states such that (¢, a) € p. Recall that this implies that a <, a(c).
First, we show that p satisfies condition (a) of Definition 2.11. Let b be a state in M such
that there is a must transition « ™% 5. Then,
(a,b) € RMUSt
= (by assumption, M is monotone and a <, a(c))
(a(c),b) € RMust
= (by assumption of condition (c) of the theorem)
I e S b=, A (afc),t) € R™Y
= (by the definition of B)
W eSS -IdeC b=, A(c,d € RA(V)ep
= (by monotonicity of p)
dd € C - (¢,d) € RA(d,b) € p
Second, we show that p satisfies condition (b) of Definition 2.11. Let d be a state in B such
that there is a transition ¢ — d. Then,
(c,d) € R
= (by the definition of B)
e S-(ale),b) € R™A(d,b) € p
= (by assumption, M is monotone, and a <, a(c))
dbeS-(a,b) € R"YA(d,b) €p
Thus, we have constructed a BTS B and produced p which is a mixed simulation between
M and B. Hence, M is semantically consistent. O
In the rest of this section, we highlight some of the consaqes of Theorem 5.15. First,
note that Theorem 5.15 does not extend to monotone partidélsio For example, consider
a monotone MixTSV/; in Figure 5.1. By Theorem 5.15//; is inconsistent: there is @ust
transitiona; must ag, but nomaytransitiona, ¥, 4 to a statez such thatu; <, a. Letp be
an atomic proposition: & is a prime number”. Lel; be a labeling function: for any state

of M3, Ls(s) = 0. Thatis,p is unknown at all the states it;. The modelM; = (M3, L3)
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is semantically inconsistent. Buk/; is logically consistent — there does not exists a formula
@ such that(||o]|*) \ O(||¢|l#) # 0. Intuitively, the labeling functiorL; is too coarse to
detect the inconsistency logically.

Second, part (c) of Theorem 5.15 gives a necessary and saffgtructural condition for a
monotone MiXTS to be consistent. Let us compare it with threvipusly known condition to
ensure logical consistency [HIS01, dAGJ04]:

may

Va,be S (a ™2 b) = (a =% b).

Our new condition is weaker. Thus, there is a consistent tem@oMixTS which has anust
transition that is not anaytransition. For example, consider the MixT3, in Figure 5.1.
Note that thenusttransitiona; ~—= a is not matched by angnaytransition. LetB be a BTS

(Z, R), whereZ is the set of integers, anfd is defined as follows:
RE{(z,2)€ZXxZ|(x>0N2 =-1)V(@<0AL =2—2)}.

B refinesM,. Thus, by definition, M, is semantically consistent. By Theorem 5.14, is
logically consistent as well.

Third, by definition, a KMTS always satisfies condition (c)ldfeorem 5.15. Existing work
on KMTSs [HJS01] often implicitly assumes that the abstdmrhain is flat (i.e., the abstract
ordering=, on S is discrete). This assumption ensures that every KMTS isatooe. For
such TSs, semantic and logical consistency coincide. Yea#sumption about the flatness
of the abstract domain is too restrictive. For example, ios true in a typical application
of predicate abstraction (e.g., in [GC06]). By looking at aevidange of transition systems
and considering not only flat abstract domains, we have weredvthe subtle but important

differences between logical and semantic consistency.

5.4.2 Logical and Semantic Consistency for Arbitrary Statespaces

In Section 5.4.1, we have assumed that the abstract sta&Smgoes not contain any incon-

sistent states. That is, dfis in .S, then its concretization(a) is non-empty. We now lift this
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restriction, i.e., we aim to redefine (i) logical consistgr{t) semantic consistency and (iii) the
structural condition of Theorem 5.15.

(i) An inconsistent state does not abstract any concretesstao a temporal formula can
have any value in that state, including being both satisfredirafuted. We thus strengthen

Definition 5.12 as follows:

Definition 5.16. A modelM is logically consisteniff for everyy € L,

a € (U(ll¢ll:) \ O(llelli) = v(a) = 0.

If the abstract statespace has no inconsistent states, this definition reduces to Defini
tion 5.12.

(i) Semantic consistency does not need a new definitionamsition system isemanti-
cally consistenitff there is a BTS that refines it, independently of the streetf the abstract
statespace.

(iif) We now need to strengthen the structural condition &teh the new Definition 5.16.
Specifically, we add the requirement that evemnysttransition from aconsistenstate must be
matched by amaytransition into aconsistenstate.

Under these conditions, we now restate Theorem 5.15 to bamchhnsistent states:

Theorem 5.17.Let M = (S, R™s R™®) be a monotone MixTS. Then, the following are

equivalent:
(&) M is semantically consistent (Definition 5.13),

(b) M is logically consistent (Definition 5.16),

must

Va,by € S (y(a) #DNa —> b)) =
()

(Fby € S - by =g by Ay(ba) £ DA a 5 by).

Proof:

The proof is similar to that of Theorem 5.15. O



CHAPTERS. ANALYSIS OF PARTIAL MODELING FORMALISMS 123

In this section, we have investigated the connection betweenantic and logical consis-
tency of partial models. Semantic consistency is importantvhen partial TSs are used as
objects for abstracting concrete TSs. Logical consisté&neyportant when partial models are
used to interpret temporal logic formulas. In the followimgp sections, we first compare the
expressive power of the different TS formalisms, i.e., wdaat be modeled and what abstrac-
tions can be captured (Section 5.5). Second, we comparengigzability of the formalisms,

i.e., the cost and precision of model checking (Section 5.6)

5.5 Expressiveness

We show that GKMTSs, MixTSs, and KMTSs are expressively \edent (Definition 5.4).
The equivalence of the three formalisms is proved by defisgmantics-preserving transla-
tions from GKMTSs to MixTSs, and from MixTSs to KMTSs. Sinc&MTSs syntactically
subsume KMTSs, the translation from KMTSs to GKMTSs is balian identity map.

5.5.1 GroM: Translation from GKMTSs to MixTSs

We present the translationTGM that converts a GKMTS into a semantically equivalent
MixTS. First, we illustrate the translation on a GKMTS in Figure 5.2.G; is not a MIXTS
because omusthyper-transition; must {as, az}. This transition ensures that in every con-
crete BTS refining~,, all states iny(a,), i.e., those satisfyingr < 0 A even(z)), must have

a transition to a state im({as, as}), i.e., satisfying(z > 0). No single state ofs; represents
(x > 0). Thus, this requirement can only be captured either by arhyaesition (as done in
G1), or by extending=; with a new state, says, such thaty(as) = (x > 0). In the latter
case, thenusthyper-transition; must {az, a3} can be replaced by (regulamusttransition

a; must as. The resultis a MixTSV/; in Figure 5.2. Since; replaces a “hyper-statds,, as },

as needs to preserve itaaybehaviours. This is done by adding —> a4 andas —> a,

. ma ma . . .
corresponding ta, —> a, andas —> a,, respectively. There are no outgoingsttransi-
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Figure 5.2: Two GKMTSs(71, G5, and two MixXTSs:M5, Mg, whereG; andG, are semanti-

cally equivalent taV/; and Mg, respectively.

tions fromas since the existingnusttransitions fronu, andas are sufficient.G; and M5 are
semantically equivalent: any BTS that refiésalso refines\/s, and vice versa.

In our example, a new state was added to encode a hypertibarisy a regular one. This
isn’t always necessary. For example, I&sand Mg in Figure 5.2 are semantically equivalent.
The hyper-transition, must {az, az} is encoded by, must asz in Mg since the hyper-state
{as, ag} is equivalent to an existing staig, i.e.,v({az, as}) = v(a3) = (x > 0).

In summary, a GKMTS? is translated to a MixT3/ in two steps:

(i) everymusthyper-transitior M U of Gis replaced by a regulanusttransitiona must

b, whereb is a (possibly new) state s4(b) = v(U);
(i) maytransitions are added for every state introduced in thedieg, if any.

We formalize this below.
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Definition 5.18(GTOM). LetG = (Sg, Ry, RIUSY be a GKMTS. The translatiocBToM (G)
is a MiXTSM = (Sy;, RTSt RTY), such that

Sy =Sqg U St
ST = {a|3(s,U) € RG*™ y(a) =v(U) A (Vt € Sg-4(t) #~(U))}
Ry 2 REYU{(a,b) |a€ ST Abe SeATs € Sa-(s,b) € R Av(s) Cv(a)}

RYS'2 {(a,b) |a € Sa A be Sy AU C Sg-(a,U) € RE"' A ~(b) =~(U)}
The translation GoM is semantics-preserving.

Theorem 5.19.Let G be a GKMTS, and/ = GTOM(G). Then,M is a MixTS, and~ and

M are semantically equivalent.

Proof:

(1) According to the construction in Definition 5.18, every must hyper-transition is replaced by a
regular one. Therefore, M is a MixTS. (2) To prove that G and M are semantically equivalent,
we show that any concrete BTS B = (C, R) refines G iff it refines M. It is equivalent to
showing that the soundness relation pg C C x S¢ is a mixed simulation between B and G iff
the soundness relation py; € C x Sy is a mixed simulation between B and M. This follows
from the construction of transition relations given in Definition 5.18. O

A corollary of Theorem 5.19 is that GKMTSs and MixTSs are gglant w.r.t. thorough

semantics. LeL be alabeling function fof;. We extend the translationi®®M to a GKMTS
model(G, Lg) such that GOM ((G, L)) = (M, Ly;), whereM = GTOM(G), andL,, is a

labeling function forS,, defined as follows:
Lg(a) if a € Sq

Nisesahc@y Lals) ifae st
That is, ifa is a state belonging to the original statesp&8gethe labels o are the same as
before. For a new stateadded by the translation, since the concrete states apmated bya

are theunion of the ones approximated by a set of state§dinthe labels o are the literals
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that are true in all the concrete states; therefdrg(a) is defined as the intersection of the

labels on the states ifi; that are more precise than

Theorem 5.20. The state labeling.,, above is well-defined and approximates the same la-

bellings asL.

Proof:
The proof immediately follows from the approximation defined for state labeling and construc-
tion of L. O

As aresult(G, Lg) and(M, L,,) satisfy the same properties under thorough semantics.

Corollary 5.21. Let (G, L) be a GKMTS model and\V/, L,;) = GTOM ((G, L¢)). Then,

(G, Lg) and (M, Ly,) are equivalent w.r.t. thorough semantics.

Complexity We show that the translationTGM does not increase the size of the model. Let
G be a GKMTS with the statespac®;, and M = GTOM(G). The size ofG is at most
|Sg x 2°¢|. Each new state added byrGM corresponds to a subset §f, i.e.,|S*| < [25¢].
Furthermore, no transitions between the statestirmare added. Thus, the size bf is also at
most|Sg x 25¢|.

Sometimes GoM can reduce a GKMTS exponentially. For example, assumeSthad a
disjunctive completion [CC92], i.e., for every subseof S there exists an equivalent element
sin Sg such thaty(U) = ~(s). In this case, GOM does not add any new states, .81, = (.
This makes the size of the output MixTSs 52 x S|, which is exponentially smaller than

that of the input GKMTS.

5.5.2 MrtoK: Translation from MixTSs to KMTSs

We present the translation K that converts a MixTS into a semantically equivalent KMTS.
First, we illustrate the translation using a MixT\&; in Figure 5.3.M; is not a KMTS because

of the twomust onlytransitionsa; ™= a, anda, =% a,. One way to turn\/; into a KMTS
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Y

S\ s
"
K; ) ;

Figure 5.3: One MixTSsM-, and two KMTSs: K7, K,, whereM, and K, are semantically

equivalent.

is to addmaytransitionsa; — a, anday, —> a4, resulting ink; in Figure 5.3. This naive
transformation is not semantics-preserving, if€,,and M, are not semantically equivalent.

For example, the concrete system

(y>0)A(z>0)ANodd(z) N’ =z +1Ay =y)V
(x>0)ANodd(x) N’ =z ANy =—-1x2)V

(z>0)A—odd(z) N’ =x+ 1Ay =—1x%x1z)

refinesk, but notA/;: the transition(z = 1,y = 1) — (x = 2,y = 1) cannot be simulated
by anymaytransition of M.

The must onlytransitiona; M=t 4, of M- ensures that in any concrete BTS refinihg,
all states iny(a,), i.e., those satisfyingqz > 0Aodd(x) Ay > 0), must have a transition
to a state iny(as), i.e., satisfying(x > 0). This is further restricted by theay transitions
from a, that ensure that statesrja,) have transitions only to statesr{a;,a3}). Hence,
in any BTS refining)M;, every state iny(a;) must (and may) have a transition to a state in
v(az2) N y({a1,as}). That is, the restrictions posed bynaust onlytransition froma, are
further restricted by the set of all of tmeaytransitions from;. In general, for abstract states

may

.. t i ma
bo, . . ., by, amust onlytransitionb, > b,, and a set ofnaytransitionsy —> by, ..., by —

br ensure that every stateinib,) has a transition to a statedrib;) N y({b2, ..., bx}).
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Themust onlytransitionas MU g in My is equivalent to a pair ahayandmusttransitions
from a, to ay, sincey(as)Ny({a1, as, az}) = v(as). Themust onlytransitiona; ™= a, can be
equivalently represented by (a) adding a new statuch thaty(as) = v(a2) N y({a1,as}) =
(x > 0Aodd(x)), and (b) adding anustand amaytransition froma, to a;. Moreover, since
as approximates some of the same states.ase.,v(a;) C v(as), as inherits the transitions

ma ma ma must

ma . .
from ay: as A ai, as e, as, as e, as, s — a4, A5 e, as. The final result is the

KMTS K, in Figure 5.3, which is semantically equivalentitf;.

In summary, a MixTSV/ is translated to a KMTS in two steps:

(i) everymust onlytransitiona M b of M is replaced by a pair ahustandmaytransitions

a ™ o handa ™% @ — b, wherea — bis a (possibly new) abstract state such that

L —

v(a — b) = ~v(b) Ny (Ry(a));

(i) mayandmusttransitions are added for all states introduced in the fiegt.s

We formalize this below.

Definition 5.22(MTOK). LetM = (Sy;, R}/”, RTSY be a MixTS. The translatioé TOK (M)
isa KMTSK = (S, R, RS, s t.

Sk & Sy usSt
RPY £ RYY UREPLUIMAY U IMO

R}”}USté (R%“Stﬂ RT/[ay) UREPLUIMUsSTUIMO,
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where
St 2{a—0b]|3(a,b) € (RSN R™) . Vs € Sy - v(s) # v(a — b)}
REPL 2 {(a,a — b) | 3(a,b) € (R¥\ RI™)}
IMAY 2 {(a — b,b') | Ja,b,l/ € Sy
(a,b) € (RTYSY\ R™) A (b,1) € R™ Aa — be ST}
IMUST 2 {(a — b,') | Ja,b,l/ € Sy
(a,b) € (RTUSY\ R™) A (b, ) € (RSN R™) A g — b e S*}
IMO 2 {(a — b,b— | 3a,b,b/ € Sy-
(a,b), (b, V) € (RTUN\ R™™) A g — b e S*}
In Definition 5.22, REPL denotes transitions that replacest onlytransitions, and IMy,
IMusT and IMO denote transitions from newly added state$inthat correspond tonay,

must andmust onlytransitions of the original system, respectively. In ouar@ple of MroK (Mz),

we have
St = {as},
REPL = {(a1,as), (az,a4)},
IMusT = 0,
IMO = {(as,a4)},
IMAY = {(as,a1), (a5, a2), (a5, a3)}.

The result of the translation MK is a KMTS: everymusttransition is matched by may

transition.

Theorem 5.23.Let M be a MixTS, and = MTOK(M). ThenK is a KMTS, andV/ and K

are semantically equivalent.

Proof:

(1) The construction in Definition 5.22 ensures that every must transition in K is matched
by a may transition. Therefore, K is a KMTS. (2) To prove that M and K are semantically
equivalent, we show that for any concrete BTS B = (C, R), the soundness relation py; C

C x Sy is a mixed simulation between B and M iff the soundness relation px C C x Sk is a
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mixed simulation between B and K. This follows from the construction of transition relations
in Definition 5.22. O
A corollary of Theorem 5.23 is that MixTSs and KMTSs are eglent w.r.t. thorough
semantics. Lef.,, be a labeling function fol/. We extend MoK to (M, L,,) such that
MTOK((M, Ly)) = (K, Li), whereK = MTOK (M), andL is a labeling function forSy

defined as follows:

Ly(a) if a € Sy
Li(a) &

Ussesuhtacaon Lu(s) ifae ST
In this case, iz is a new state added by the translation, the concrete sigpesxdmated by:
correspond to thantersectionof the concrete states approximated by a set of stat8g;ithe
labels oru are all the literals which are true on the concrete statesrefbre,L k- (a) is defined

as the union of the labels on the state§'jn that are less precise than

Theorem 5.24. The state labeling.x above is well-defined and approximates the same la-

bellings asL,,.

Proof:
The proof immediately follows from the approximation defined for state labeling and the con-
struction of L. 0

As aresult(M, L) and(K, Lk) satisfy the same properties under thorough semantics.

Corollary 5.25. Let (M, L) be a MixTS model andk’, Lx) = MTOK((M, L,s)). Then,

(M, Lys) and (K, L) are equivalent w.r.t. thorough semantics.

Complexity. Let M = (Sy;, Ry, RT*Y be a MixTS, andK be a KMTS such thak =
MTOK(M). The size ofM is bounded byO(|Sy x Sy|). In the worst case, the translation
adds a new state for eaatiust onlytransition inR7st\ RTY. Thus, the number of new states
|ST| is bounded bySy; x Sy|, and| K| is bounded bYO(| Sy x Sus|?).

MixTSs are more succinct than KMTSs: over a fixed statespadbe set of MiXTSs is

more expressive than the set of KMTSs. This holds bec&usmay not be empty in some
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cases, i.e., new states have to be added byl The following theorem shows that §
is a powerset abstract domain [BHZ06], therr®K does not add new states, and therefore,

MixTS and KMTSs ovelS are equally expressive.

Theorem 5.26.Let S be an abstract statespace satisfying the assumption ofxiserce of

best abstraction. For any abstract state S and a subsef) C S, there exists a subseét C S

s.t.y(V) =v(a) N(Q).

Proof:
LetV £ {be S|3c-cecv(a)Ny(Q)Ab=a(c)}. The proof of v(V) 2 v(a) N~(Q) follows from
the definition of V. To prove v(V') C v(a) Ny(Q), we show that for each b € V, v(b) C v(a) and

~v(b) € ~(Q), which follows from the definition of abstraction function. |

5.6 Reduced Inductive Semantics

GKMTSs and MixTSs are equally expressive: a GKMTS model ascquivalent MixTS
model satisfy the same properties under thorough semakhtogever, thorough model check-
ing is expensive. In practice, model checking of partial gleds done w.r.t. a more tractable
inductive semantics, SIS. GKMTSs are more precise than Bex.r.t. SIS: for any € L,,
model checkinge in a GKMTS modelG w.r.t. SIS is more precise than model checking it
in the MixXTS modelM = GTOoM(G). However, the direct use of GKMTSs in symbolic
model checkers has been hampered by the difficulty of engddiper-transitions into BDDs.
In this section, we propose a hew semantics, catbelliced inductive semanti¢RIS), that
is inductive while being strictly more precise than SIS. Wew that GKMTSs and MixTSs
are equivalent w.r.t. RIS. In Section 5.7, we give a symboladel checking procedure for
computing RIS over MixTSs. The outcome is an algorithm thamlsimes the benefits of the
symbolic encoding of MixTSs with the better model checkinggision of GKMTSs.

In Section 5.6.1, we illustrate the differences between Qi&¢land MixTSs w.r.t. SIS; de-

fine RIS in Section 5.6.2; and show how to effectively modeb&he.r.t. RIS in Section 5.6.3.
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5.6.1 Example

Let p and ¢ denote predicate§c > 0) andodd(x), respectively. Consider the modg] =
(G1, Lg, ), whereG, is shown in Figure 5.2, andl, is a labeling function that labels each

abstract state as follows:

Lg,(a1) = {—p, ~q} L, (a2) = {p,q}

Lg, (a3) = {p, ~q} La,(as) ={-p,q} .

Let M5 = (M5, Ly, ) be the model obtained frog by GToM, where M is shown in Fig-
ure 5.2 and. ., (s) £ if s = as then {p} elseL¢, (s).
Compare the value af = {(q V —¢) under SIS org; and M:

‘z’gl = <{a17a27a3}7{a17a2’a3’a4}>

]
el = ({as,as}, {ar, a5, a3, a4, a5})
According togy, in all states corresponding tq, ¢ is true . According toM, the value ofp
is unknown in exactly the same states. Sindg = GTOM(G,), G; and M are semantically
equivalent. Thus, although; andG; are semantically equivalent; is less precise thag
for model checking w.r.t. SIS.

Let us reexamine the above example. First, there is no jwadsss during the evaluation

of gV —q:

er1 =gV ﬁQHigl =({a1,az, a3, a4}, {ay, az, a3, as}) (%)

S

€2 = ||q\/_'q’ {alaa27a37a4}7{a17a27a37a47a5}>

Sincey(U(e)) = v(U(ep)) andy(O(e1)) = 7(O(eq)) = v(0), e1 =, e5. However, there is a
subtle difference between ande,. In stateus of M5, ¢V —q is unknown even though it is true
in botha, andas, andy(as) = v(az) U~v(as). This minor imprecision is then magnified by the
{ operator.

This loss of precision is not limited to tautologies. Formde, a formulaguZ - (-p A q) Vv

0Z,i.e,EF(—pAq)in CTL,is true in state; of G, butis unknown in the same state.bf;.
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5.6.2 Reduced Inductive Semantics for Partial Models

In this section, we define the reduced inductive semanticS)(Rhe new semantics is inductive
and isstrictly more precis¢han SIS. The key idea is to eliminate any local imprecisipnding

a specialeductionoperator

Reduction Operator Let S be an abstract statespace, and ¢ 2° x 2° be two abstract
elements. Recall that in the information ordes less thar/, i.e.,e <; ¢/, if U(e) is contained

in U(e'), andO(e) containsO(e’). We define theeductionoperator as follows:
RED(e) = (REDy(U),REDo(O))

whereREDy(U) £ {s | v(s) € y(U)} andREDo(O) £ {s | y(s) € v(O)}. Intuitively, RED(e)
increased)(e) and decreasd3(e) as much as possible without affecting the semantic meaning
of e. That is,RED(e) is the largest element w.r.t. information ordering thatesantically

equivalent tce. For example, consid@®ED(e,), wheree, is as defined byx) above. Then,
€3 = RED(@Q) - <{a17 Az, a3, 4, CL5}, {a‘17 a2, a3z, a4, CL5}> (**)

es differs from ey only in the addition ofas; to U(es). Sincev(U(es)) = ~(U(e3)) and

7(O(ez2)) = v(O(e3)), e2 =, e3; butes is more informative, sinc8(ey) C U(es).

An elemente = (U, O) € 2° x 25 is monotonéff
Slja82:>(81GU?SQEU/\51¢O:>SQ¢O)

The monotonicity of elements is preserved under propasitioperations. That is, # and
¢/ are monotone elements, so are ande I ¢’. Moreover,RED(e) is monotone for any,
and commutes with propositional operations on monotonmehs. That is, let ande’ be

monotone elements @ x 2°. Then,~e =, ~RED(e), ande I ¢’ =, RED(e) M RED(e’).

Reduced Inductive Semantid?lS is defined by applying th&ED operator before and aftér

to prevent it from propagating imprecision.
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Definition 5.27(RIS). Let M = (M, L) be amodel, s.tM = (S, R™, ™Y ando : Var —

2% x 29, Thereduced inductive semantioéy € L, is defined as follows:

IpllYs = {slpeLls)}{s|-p¢L(s)})

=gl = ~llellis

ke Awlie 2 Il il
10wl 2 RED((preu(REDu(U(||i4))), preo (REDO(O(l¢]1+4)))))
1212 2 o(2)

07 el 2 (= (AQ- U(lellsng)) o= (AQ - OlelX sg)))

The only difference between RIS (Definition 5.27) and SIS (@¥eéin 2.10) is the seman-
tics of {. Since we assume that state-labelings are monotone, agplgb to other operators

as well does not improve precision. We now show that RIS isdoun

Theorem 5.28.Let C' be a concrete statespace approximated by an abstract ptates via
(C,p,7v,a,S). LetB = (B, Lg) be a concrete model ovér, and M = (M, L,,) be a partial

model overS. If M approximated3, then, for anyL,, formula:

Y(U(lell?) € Udlel?),  and Y(O(llellM)) € O(llll?) -

Proof:

The only difference between RIS and SIS is the application of the RED operator before and

after ¢. Since RED is semantics-preserving, following Theorem 2.14, the result holds. m|
Returning to our running example, RIS ¢fon M5 is computed as follows: RIS a@f —q,

andq V —q is the same as SIS. Thug; V —q||M> = e,. To compute), recall from ¢x) that

RED(ep) = es; thus, |o||M = ({ay,as,a3,a5},{a1, as, a3, a4, as}). Hence,||¢||5 is more

precise thar| ||

Theorem 5.29.RIS is more precise than SIBp||; <. |||l

Proof:

The proof is by structural induction on ¢. For the base case, it is obvious that for any atomic
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proposition p, ||p||; = |lpl|-- In the following, we show the inductive case for {y; the proofs of
other cases are trivial.
We show that |||l =a [l¢llr = [[0¢lli =Za [[O¢]|r, which is equivalent to proving the

following two statements:

(@) [lelli Za llellr = A (U0@l1) € (U [0¢]]r))

®) llelli Za llellr = ¥(O([[0#l]i)) €A (O(||0¢llr))

The proof of (a) is as follows. First, note that for any two sets @1, @2, we have that

7(Q1) € 7(REDY(Q2)) = Q1 C REDy(Q2) (P1)

This follows from the following derivation: suppose Q; ¢ REDy(Q2). Then there exists a state
ss.t. s € @ and s ¢ REDy(Q2). By the definition of REDy, v(s) € 7(Q2); on the other hand,

since v(Q1) € v(REDy(Q2)) = v(Q2), v(s) € v(Q2), reaching a contradition.

We then have the following:

lelli Za [lellr
= (by the definition of <,)
(U (llelli) € ~(U(lell-))
= (by the definition of REDy, v(Q) = v(REDy(Q)))
Y(U(llelli) € v(REDY(U([ll])))
= (by (P1)
U(llells)) < REDy(U([l¢llx))
= (by monotonicity of pre )
prey(U(|lell:)) € prey(REDy(U(||¢ll-)))
= (by monotonicity of )
Y(preu(U(llell:))) € ~(preu(REDY(U(l¢l]+))))
= (by the definition of REDy, v(Q) = v(REDy(Q)))
Y(preu(U(l[ell:))) € v(REDy (prey(REDY(U(l¢llr)))))

= (by the definitions of SIS and RIS)
YU(10ll) € v(U([[0ellr)
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Proof of (b) is dual of the one above. O

The previous example illustrates another important p@MTSs and MixTSs are equiv-
alentw.r.t. RIS. For examplé | is equivalent td|||9t. The following theorem formalizes

this.

Theorem 5.30.LetG be a GKMTS model, antt = GTOM(G). Then,G and M are equiva-

lentw.r.t. RISVy € L, - [|¢]|9 =, ||¢||M

Proof:
The proof is by structural induction on ¢. For the base case, according to the definition of L/,
Ipll¢ =. ||p||M for any atomic proposition p. In the following, we show the inductive case for

Oy; the proofs of the other cases are trivial.

We show that ||¢[|9 =, |l¢||M = (|00l =. [|O¢]lM, which is equivalent to proving the

following two statements:

(@) llellf =a llel = vUl0elF) = v (UI0el)

(®) lelf =a el = 7 (O(10lI7)) = 1 (O([[0wlIM))

The proof of (a) is as follows. First, note that for any concrete state ¢ and a set of abstract

states (@,

¢ € vy(REDy(Q)) & Ja € Q - c € v(a) (P2
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We then have that, for any concrete state c,

c € v(U(10elF))
< (by the definition of RIS)

¢ € y(REDy (preg (REDy (U(||¢[I)))))
< ( (=) let a be the abstract state in (P2),
(«) since 7(Q) = 7(REDy(Q)))
¢ € y(a) Aa € preg (REDy(U(l|¢1F)))
< (by the definition of prey)
c € v(a) A3Q S REDY(U([l¢l7)) - RF“a, Q)
< (by the definition of GTOM)
¢ € y(a) A3b-y(b) € v(REDy(U(l¢[I7))) A RY{™(a, b)
& (since [lo)|7 =a llellM, v (UlelF)) = U lell))
c € v(a) A3b-y(b) € v(REDY(U(ll¢ll)) A RE{*(a,b)
< (since v(Q) = v(REDy(Q)), by the definition of REDy)
¢ € y(a) A 3b € REDy(U([lll)) - RT{(a, b)
< (by the definition of prey)
¢ € y(a) Aa € pre{i (REDy (U(l|¢[)))
& ((=)since 7(Q) = v(REDy(Q)),
(«) let a be the abstract state in (P2))
¢ € y(REDy (pre{j" (REDy (U(ll¢[17)))))

< (by the definition of RIS)

c € y(U(ll02lIM)

The proof of (b) is similar to the one above, based on the observation that for any concrete
state ¢ and a set of abstract states @, ¢ € y(REDo(Q)) < 3a € Q - ¢ € ¥(a). O

Our new semantics RIS is both inductive and precise enoughke @KMTSs and MixTSs
equivalent. However, the definition 8ED operator is based on concretization,of abstract
elements. In practice, reasoning directly about conclet@ents may be undecidable or inef-

ficient. We address this limitation next.
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5.6.3 Reduced Inductive Semantics for Monotone Models

We study the reduction operatRED of RIS in the context of monotone models. As shown
in Section 5.3, monotone models are as expressive as thelarecounterparts. Furthermore,
models built by automated predicate abstraction [GCO06] aneatone by construction. Thus,

restrictingRED to monotone models is neither a theoretical nor a practesdfiction.

Note that in any monotone model and any formuld|¢||, is a monotone element. This
holds because of the monotonicity of the state labeling hadransition relation. For mono-

tone elements}ED can be computed effectively, as we show below.

For a states € .S, theupsetof s is defined as

Ts&{tcalS]|s =t}

Thus, s is the set of all those statesdnS| that are more precise thanFor example, lef; be
the statespace df/; shown in Figure 5.2. Themy[S,] = {a1, as, a3, as}, andTas = {as, as}.
A states and a set|s approximate the same set of concrete states,ni(@), = v(1s). For

exampleyy(Tas) = v(as) = (x > 0).

We now show that thés computes a canonical representation of an elemefithe abstract

statespace.

Theorem 5.31.Let S be an abstract statespace= (U, O) be a monotone element®f x 27,

ands € S. Thenyy(s) C ~v(U) iff s C U andv(s) € v(O) iff 1s € O.

Proof:
First, we show that v(s) C v(U) < 1s C U. The («) direction follows directly from the

definition of . We prove the (=) direction by contradiction. Let C' be the concrete statespace
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approximated by S. Suppose that 1s ¢ U. Then,

s U

= Ja€S-a€lsha¢U

= (by the definition of s, a € a[S])
daeS-s=2,ana¢UANTceC a=alc)

= (since s <, a, v(a) C 7(s); since vy(s) C v(U))
daeS-a¢gUANIceC-a=alc)NceyU)

= (by the definition of ~)
JaeS-a¢UANIceC-a=alc)NTbeU-ce ()

= (by the definition of «)
JaeS-a¢UANTeU -b=,a

= (by monotonicity of ¢, a € U)
JaeS-a¢UNacU

= false

The proof of v(s) Z v(0O) < 1s € O is dual of the one above. ]
We now define a new operatoed for monotone elements. Let= (U, O) be a monotone

element o9 x 2°. red is defined as
red(e) £ (redy(U),redo(O))

whereredy(U) £ {s | Ts C U} andredo(O) = {s | Ts € O)}. A corollary of Theorem 5.31

is thatred andRED are equivalent.

Corollary 5.32. Let S be an abstract statespace, ancde a monotone element #f x 2°.

Then,red(e) = RED(e).

For example, the element defined in ) is monotone. We have thaikd(U(es)) =
{a1, a2, a3, a4, a5} sincelas = {az, a3} C U(eqz), andred(O(es)) is the same ad(e;) since

O(eq) is empty. Thereforered(e;) andRED(ey) are equal. Note thated can be computed

effectively since it does not reason about concrete elesriirectly.
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In this section, we have introduced a new inductive semaRikS, and shown that it is
more precise than SIS, and that GKMTSs and MixTSs are eguival.r.t. RIS. RIS can be
computed effectively on monotone models, which is not atétion since monotone models

are as expressive as their non-monotone counterparts.

5.7 Symbolic Model Checking of RIS using BDDs

In this section, we describe a symbolic algorithm RIS thgpleaments the RIS semantics
for monotone models constructed using predicate abstraclihese are the models used by
existing software model checkers [GWCO06D].

Our implementation is based on the following observatiogt. 4. be an abstract statespace.
Then, for any monotone element®f x 27, there exists aemantically equivalerglement in
20151 % 29151, For example, the monotone elemegidefined in §) is semantically equivalent
to ({ay, as, as,as},{ai, as, as,as}).

Theorem 5.33.Lete; = (Uy, O;) be a monotone element®f x 2%, ande, = (Us, O5) be in

20151 % 2281 1f U} N a[S] = Uy and O, N a[S] = O, thene, =, e,.

Proof:

This is proved by showing that RED(e; ) = RED(e5); since RED is semantics-preserving, the result

holds. O
This theorem allows us to restrict the algorithm to compyiets overy[S] instead of sets

overS. Another consequence of Theorem 5.33 is that the transgi@ations can be simplified

as well, since we only need the result of the pre-image inttites ofa[S).

Theorem 5.34.Let R™ C S x S and R™S'C S x S be themayand musttransition relations
of a monotone MixTS, respectively, ane: (U, O) be a monotone element®df x 2. Define
U2UnalS],0 2 0nalS], RMsta RMustn (¢S] x S), andR™ £ R™Y A (a[S] x a[S]).

Then,

(pre{ ™} (REDy (U)), pre[ R™] (REDo (0))) =, (pre[R™*)(REDy(U)), pre{R™](0))
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Proof:

By the definition of =,, the theorem is equivalent to proving that the following results hold:

(a) ~(pre[R™*}(REDy(U))) = ~(pre[R™*}(REDy (U))))

(b) y(pre[R™](REDo(0))) = ~(pre[m](0))

(1) We first show that (a) holds. The proof of ~(pre[R™S}(REDy(U))) C ~(pre[R1](REDy(U))) is

shown below. For any concrete state c,

¢ € y(pre[R™S}(REDy (1))
= 3Ja€ S -cey(a)Aac pre[R™"SY(REDy(U))
= (by the definition of pre)
Ja € S-c€v(a) A3beREDY(U) - R™"{a,b)
= (leta’ = a(c); by the definition of «)
cevy(@)Nad €a[S]AJa€ S a=,a ATbeREDY(U) - RMSYq,b)
= (by monotonicity of the transition relations)
c€~(a)Na € a[S]AIbeREDY(U) - R™SYa', b)
= (by the definition of R™uSY
cey(d)Ad €alS]ATbeREDY(U) - R™SYa/, b)
= (since e is a monotone element, v(U) = (U))
ce~(a)Ad € alS] ATbeREDY(U) - R™SYa/, b)
= (by the definition of pre)
ce~(a) Ad e pre[R™SY(RED(U))

= ¢ € (pre[R™}(REDyY(D)))

The proof of v (pre[R™S}(REDy(U))) 2 ~(pre[R™S§(REDy(U))) follows from the definitions of

RMustand U,

(2) We now show that ~(pre[R™®(REDo (0))) = ~(pre[R™](0)). The proof of
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~(pre[R™®](REDo (0))) C ~(pre[R™»](0)) is shown below. For any concrete state c,

=

¢ € y(pre[RM](REDo (0)))

da € S-cevy(a)Aa e pre[RMY](REDg(O))

(by the definition of pre)

Ja € S -c € yla) N R™(a) C REDo(0O)

(let ' = a(c); by the definition of «)

cen(@)ANd €alS]ATa €S a=,d AR"™(a) C REDo(O)

(by monotonicity of the transition relations)

cen(@)ANd €alS]ATa €S  R™(a') C R™(a) C REDo(O)

(by the definition of R™, R™/(a/) N a[S] = R™(a'))

cev(a)Nd € a[S] A R™(a') C (REDo(O) N S])

(since e is a monotone element, Vs € a[S] - s € REDp(O) & s € O)
cey(d)nd €alS]AR™(a) C (0N alS])

(by the definition of O)

cer(a)Ad € a[S]AR™(a') C alS]\ O
(by the definition of pre)

¢ € y(a) Ad' € y(pre[R™](0))

¢ € v(pre[Rm¥](0))

The proof of v(pre[R™](REDo (0))) 2 ~(pre[R™®](0)) is similar to the one above.
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The algorithm RIS is shown in Figure 5.4. It uses BDDs to syrnadladly represent and

manipulate sets of states and transition relations. Famgtihat are prefixed withBbD” are

the standard BDD operations. The algorithm works recungigel the structure of the input

formulay. The fixpoints are computed as usual, by iterating until eogence. We describe

the details of the implementation below.

Let P = {pla--'

,pn} be a set ofn predicates. Recall that MOFR) denotes the set of

monomials over”, and MT(P) — the set of minterms oveP. Furthermoren[Mon(P)| =

MT (P). The input to the algorithm is a MixTS modéM, Ly,), s.t. M = (S, R™® R™UsY),

S = Mon(P), and Ly (s) = Lit(s), and anL, propertyy. Without loss of generality, by
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1: global var Rmay, Rmust : BDD 18: func ABSAND(BDD v1,BDD v2) = BDDAND(v1,v2)
2: func RIS(Expry) : BDD 19: func ABSOR(BDD v1,BDD v2) = BDDOR(v1, v2)
3:  match ¢ with 20: func ABSEQ(BDD v1,BDD v2) = BDDEQ(v1, v2)
4 ATOMIC(p) : return ABSV (BDDVAR(“p”), 21:
BDDVAR(“p”)) 22: func ABSNOT(BDD v) : BDD
5: —p : return ABSNOT(RIS(v))) 23:  0:=ABSO(v), u:= ABSU(v)
6: 11 A by @ return ABSAND(RIS(¢;), RIS(¢)) 24:  return ABSV(BDDNOT(o),BDDNOT(u))
7: 11 V 1y 1 return ABSOR(RIS(¢), RIS(1)9)) 25:
8: Q1 @ return ABSPRE(Rmay, Rmust, RIS(v))) 26: func ABSREDU(BDD v) : BDD
9 w : return RIS () 27:  if (BDDISCONST(v)) return v
10: vt return RISyep(v)) 28: b:=BDDROOTVAR(v), h:= UVAR(b)
11: 29: T:=ABSREDU(v[1/b]),F := ABSREDU(v[0/b])
12: func ABSV (BDD u, BDD o) : BDD 30:  tmp:=BDDITE(D, T, F)
13:  sel := BDDVAR("sel") 31:  return BDDITE(h, BDDAND(T, F), tmp)
14:  return BDDITE(sel, u,0) 32:
15: 33: func ABSPRE(BDD Rmay, BDD Rmust, BDD v) : BDD
16: func ABSO(BDD v) = v[0/sel] 34:  0:=ABSO(V),u:=ABSREDU(ABSU(V))
17: func ABSU(BDD v) = v[1/sel] 35 return ABSV (BDDPRE(Rmust,u), BDDPRE(Rmay, o))

Figure 5.4: The RIS algorithm and its supporting functions.

Theorem 5.34, we assume that the transition relations ateated s.t. R™ C MT(P) x

MT (P), andR™S'C MT(P) x Mon(P).

The algorithm uses the following sets of BDD variablés= {b; | p; € P} —the current
state Boolean variable®’ = {b] | b; € B} — the next state Boolean variablés,= {h; | p; €
P} — the current state unknown variables, dfd= {2} | h; € H} — the next state unknown
variables. In what follows, we do not distinguish betwees BDDs and the corresponding

propositional formulas.

A set of mintermsX C MT (P) is encoded by a propositional formula overas usual. For
example, letP = {p1, p2, p3}. Thenb, A —b, encodes the séi; A —ps A p3, p1 A —pa A —ps}.
A set of monomialsX C Mon(P) is encoded by a formula oveds U H. Intuitively, for a

monomialm, a variableh, indicates whethep; is present inn, and a variablé; specifies the
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polarity of the occurrence. Formally, the encoding is

\/((/\ =hi A b)) AN\ che oA =b) A (N hi)>
(m)

meX N p,eLit(m) —ps€Lit(m) pi€P\Lit
For example(—hy A by) A (=ha A —by) A hs represents a singleton sgt; A —p» }.

An abstract value = (U, O) is encoded in a single BDD by a formulgae1 AU )V (—sel A
0), wheresel is a designated BDD variable. This encoding is implementedigtionABSV.
TheU andO elements of value are extracted usingssU andABsO, respectively. Abstract
intersection ABSAND), union ABSOR), and equality ABSEQ) are done using the correspond-
ing BDD operations. Abstract negatiorgSNOT) is implemented following its definition on
Page 33.

The may transition relatioR™® C MT(P) x MT(P) is encoded by a formula ovétU B’
as usual. Similarly, the must relatidk™s' C MT(P) x Mon(P) is encoded by a formula
over BU B’ U H', where the primed variables are used to encode the destirstate. For
example, anusttransition from a stat€p; A p» A p3) to a statep; A —ps) is represented by
(by Aby Abs) A (2R ABY) A (2R A=by) A RY).

FunctionABSREDU implements theredy reduction operator of Section 5.6.3. It takes a
set of minterms as input, and returns a set of monomials ficttmputation of pre-image
overmusttransitions. A monomial is added to the output iff its upsetontained in the input.
The implementation oABSREDU uses the following observation: 1€t C MT (P) be a set of
minterms, and. € Mon(P). If a € MT(P), thenTa = {a}, andTa C Q < a € Q; otherwise,
some predicatgis not presentim, and in this cas¢a C Q iff T(aAp) C @ andT(aA—p) C Q.
For example, suppoge = {p1, p2, ps} and@ = {p1 Ap2Aps, p1 Apa A—ps}. For the monomial
a = p1 A p2, We have thata C Q becauseg(a A p3) = T(p1 Ap2 Aps) = {p1 Ap2 Aps} CQ
andT(a A —p3) = T(p1 Ap2 A —p3) = {p1 Apa A —ps} C Q. FunctionaBSREDU applies this
reasoning recursively on the input diagram, using functid/mr to find a variableh; € H
for each variablé; € B. FunctionABSPRE implements the pre-image computation based on

Theorem 5.34.
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Theorem 5.35. For a monotone MixTSM and ¢ € L,, algorithm RIS(¢) in Figure 5.4

returns the symbolic representation |@f|| .

Proof:
The proof follows from Theorem 5.32, Theorem 5.33, and Theorem 5.34. In particular, The-
orem 5.33 is used to show that in the interpretation of ¢ in Definition 5.27, removing the
application of RED after prey and preg does not affect precision. O
The main difference between the symbolic implementatiadnSI18 and our RIS is the
extraABSREDU operation in functiomBsPRE (line 29 in Figure 5.4).ABSREDU is similar
to existential quantificationsPDEXISTS) of BDDs, with one exceptionBDDEXISTS uses
BDDOR in each iteration, btiBSREDU uses on@DDAND and twoBDDI TE operations. Thus,
ABSREDU has the same complexity a8®DEXISTS, and symbolic implementations of RIS and
SIS also have the same complexity. This means that the extrasypn of RIS comes “for free”,

without a penalty in complexity.

5.8 Experiments

To empirically evaluate the cost and performance of RIS w&$, we have implemented
symbolic algorithms for computing both of them using the CU[EomO01] library, and ana-
lyzed reachability and non-termination properties ovegalistic model. While our algorithm
in Figure 5.4 can analyze amycalculus formula, our experiments considered just relsitiha
and non-termination properties because of their praatitatest.

For the model, we used a template programg,; based on an example from [SG04],
which uses: (n is a natural number) integer variables0], x[1], ..., x[n — 1]}, and is built
out of a sequence of blocks. Figures 5.5(a) and 5.5(b) show the code for eacheofitt
n — 1 blocks, and the code for the last block, respectively. Théhoweof [GCO06] was applied

to build an abstract MixTS using the set of predicates

{x[0] > 0,x%[1] > 0,...,x[n — 1] > 0} U {odd(x[0]), odd(x[1]),...,0dd(x[n — 1])}
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if (x[i]>5) if (x[n-1]>5) i f (nondet)
x[i]=x[i]+1 X[ n-1] =x[ n-1] +1 x[1]=x[i]+1
(@) else if (x[i]>0) (b) else if (x[n-1]>0) (©) i f (nondet)
x[i]=x[i]+2 X[ n-1] =x[ n-1] +2 x[i]=x[i]+1
el se el se el se
x[i]=x[i]-2 X[n-1]=x[n-1]-2 X[i]=x[i]*x[i]-10
el se
while (x[i]>0) while (x[n-1]>0) x[i]=x[i]*x[i]-10
if (odd(x[i])) if (odd(x[n-1]))
x[i]=-1 x[n-1]=-1 if (x[i]>0)
el se el se x[1]=x[i]+1
x[i]=x[i]+1 X[ n-1] =x[ n-1] +1 el se
L: x[1]=x[i]-1

while (x[n-1]<=0)

x[n-1]=x[n-1]-1
END:

Figure 5.5: Code examples for experimenitsndet denotes non-deterministic choice.

We model checked the following reachability (least fixedapoand non-termination (greatest
fixed-point) properties w.r.t. the standard and the redsesadantics:

Prop; : EF(pc=1L)

Prop, : EG(pc # END)

Props : EG(pc#ENDA (x[0] >0V x[1l] >0V ---Vxn—1]>0)).
For both SIS and RIS, we measured the size of the abstract snasialy the number of BDD
nodes, the total analysis time, the number of iterationeffixpoint computation, and the
time spent in theABSREDU operation for RIS. To compare the precision of the resules, w

considered two sets of initial states
I;: (x[0) <O0Ax[1]]<OA---Axn—1] <0)

I,: (x[0] >0Ax[1]>0A---Axn—1] >0).
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n SIS RIS
— 100 370,070 216,689
s 8
2 © ||200 1,460,270 853,389
250 2,275,196 1,329,215
Prop. n || Analysis (sec.) lter.| I;| Io| Analysis (sec.) ABSREDU (sec.) lter.| I;| I,
. 100 2.20 301 3.60 0.74 401
g 200 15.36 601 t| m 27.77 6.45 801 | t| t
250 28.92 751 55.19 13.40 1001
N 100 3.60 203 0.03 <107 2
g 200 27.16 403| t | m 0.12 <107 2 t|t
250 54.62 503 0.19 <107 2
o 100 33.96 400 21.24 4.5 400
g 200 395.24 800 | f| f 258.72 42.44 800 | f | f
250 1108.67 1000 546.88 101.20 1000

Table 5.1: Experimental results for SIS and RIS ®esg; .

and checked whether conclusive results can be obtainedtoer

The results are summarized in Table 5.1, whefandm denotetrue, falsg andunknown
respectively. The top part of the table shows that RIS modgtsyesignificantly smaller en-
codings than their SIS counterparts, due to restrictecitian relations (see Theorem 5.34).
RIS is more precise than SIS: for the two sets of initial staf®dS$ produces conclusive re-
sults for both of them w.r.t. the three properties being kbdcwhereas SIS cannot decide
whetherProp, andProp, hold in I,. As expected, the extra precision of RIS does not cause
a complexity penalty: the experiments show that the in@gad the analysis time w.r.t. the
size of the models for both RIS and SIS are comparable. In ahefcases, the time spent
in ABSREDU, which represents the main difference between the two sBosa comprises

roughly 20% - 25% of the total time.

Note that RIS and SIS may require different numbers of itenatof fixpoint computation:
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n SIS RIS
— 100 245,584 145,284
5 8
§ » (200 971,062 570,462
250 1,513,796 888,046

Prop. n || Analysis (sec.) lter. | I; | I, || Analysis (sec.) ABSREDU (sec.) lter. | I;| I,

. 100 0.48 603 0.27 <104 403

(oW

§ 200 2.15 1203 m| t 0.97 <1074 803| t | t
250 3.46 1503 1.44 0.01 1003

Table 5.2: Experimental results for SIS and RIS dussg,.

in the above experiments, RIS required more iterations th&rfd@ the reachability property
Prop;, but less iterations than SIS for the non-termination prigperop,. These differences
are determined by the structure of the model and by the fixpypoe (least or greatest) being

computed.

As another example, we checked the reachability property different programprog,,
built of a sequence of blocks. The code for théh block is shown in Figure 5.5(c). An

abstraction of the template is built using the set of predia

{x[0] > 0,x[1] > 0,...,x[n— 1] > 0}

The property checked waxop, : EF(pc = END), whereEND is the last location oProgs.
model checking was evaluated on the same initial sets acdsstht andI,. The results are
summarized in Table 5.2. In this case, while still more @ecRIS requires fewer iterations

than SIS.

These experiments suggest that using the more precise REhgesimproves the overall

performance of model checking, making it a viable altexeatd SIS in practice.
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5.9 Related Work

Consistency In this chapter, we investigated partial TSs and modelsftbe perspective
of abstract model checking. Partial TSs are also used a#fispgons of a system’s behav-
ior [LT88, LNWO7]. In this case, semantic consistency is aepld by implementability. A
partial transition systemV/ is implementabléff there exists a BTSB that refines\/ through
some mixed simulation. Such a BTS is calldimplementationThere is a subtle, but crucial,
difference between implementability and semantic coestst as defined in this chapter. We
assume that the statespace of an abstract transition sigstenabstract domain, and that it is
related to the concrete domain by a given soundness relatibnour case, a partial TS/ is
semantically consistent iff there exists a BTS that refihesia this p. On the other hand, the
definition of implementability leaves the choice of the nib@mulation relation open. Thus,
semantic consistency is stronger than implementability.

For example, the MixTS/; in Figure 5.1 is not semantically consistent. It is, however
implementable. LeB be a BTS(Z, R), whereZ is the set of integers, anl is defined as

follows:

R={(z,2) | (x > 0Aodd(z) A2’ =2)} U
{(z,2") | (x > 0 A even(z) Nz’ = =3)} U
{(z,2) ]| (x > 0 Aeven(z) N2’ = —-2)} U

{(z,2) | (z <ONn2"==3)}
Then, B refinesM, through the following mixed simulation relation:

{(c;a1) | e >0ANodd(c)} U{(c,as) | c>0Aevn(c)}U

{(c,a3) | c<0Ao0dd(c)} U{(c,a4) | c <O AN evn(c)}

Note that in this case, no concrete stat&irs approximated by botl, anda,. Therefore, the

source of inconsistency discussed in Section 5.4 does Isit ex
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In [HIS04], Huth et al. provided thmix condition(MC) on MixTSs to ensure imple-
mentability. A MiXTSM = (S, R™, R™Y satisfies MC iff for all(a, b) € R™' there exists
someb’ € S such thad' refinesb, and(a, ') € R™'N R™¥. For example, the MixT3/, in
Figure 5.1 satisfies this condition, whereds does not. Howevelr/, is semantically incon-
sistent, and\/, is consistent. Therefore, MC is neither sufficient nor nsagsfor semantic
consistency.

The complexity of deciding implementability of a partiamsition system is EXPTIME-
complete [AHL"08, AHL™09, Ant08]. On the other hand, semantic consistency candidek
in time polynomial in the size of the system; this is immeelifsom Theorem 5.17. This result

iS not surprising since semantic consistency is stronger itmplementability.

Huth et al. showed that the KMTS models are logically corsisfHJS01]. To ensure
logical consistency of GKMTSs, de Alfaro et al. defined thadition that requires that every
destination of anusthyper-transition intersects with the destination ahaytransition from
the same state [dAGJ04]. This can be viewed as an analoghe abhditionkR™Ust C RmaY
required by KMTSs. In this chapter, we showed that such aitonds not necessary for
logical consistency. We fixed this problem by defining a rethstructural condition which

captures both logical consistency and semantic consist#rgartial models.

Other forms of partial model consistency, in addition to tdme based on mixed simu-
lation, are possible, e.g. [LNWO7]. For example, a partiadeianay be built for abstract
model checking of temporal logic properties without thetregerator. Exploring connections
between semantic and logical consistency in this case anddang algorithms for deciding

them are interesting questions which we leave for futurekwor

Expressivenesd he work of Godefroid and Jagadeesan [GJ03], and GurfimkeChechik [GCO05]
showed that the models in the KMTS family have the same esmepower and are equally
precise for SIS. Dams and Namjoshi [DNO5] showed that theetlfmilies considered in this
chapter are subsumed by tree automata. We completed theepimt proving that the three

families are equivalent as well. Specifically, we showed KMTSs, MixTSs and GKMTSs
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are relatively complete (in the sense of [DNO5]) with onetaea

We did not consider Hyper TSs (HTSs) [SG06] which allow fotthmustandmayhyper-
transitions. As pointed out in [SGO0&hayhyper-transitions can be eliminated by increasing
the abstract statespace, making HTSs exactly as expressGEMTSs.

Our results bring forth several interesting research toes. Since the three modeling
formalisms are equally expressive, it would be interestingtudy how to relate the results of
model checking w.r.t. thorough semantics for one formalism., for KMTSs [BG00, GP09],
to the ones for another formalism. Another direction is falizing our translations within the

abstract interpretation framework using Galois connesti€C92].

Reduced Inductive Semantic©ur reduction operatakED is an instance of normalization
from Abstract Interpretation [CC92]. It is often used to pdevia canonical representation
of equivalent abstract properties. The symbolic implermigon ABSREDU is similar to the
semantic minimization of 3-valued propositional formulR&S02].

Regarding the ability to improve model checking results,rdguction operator is similar
to the focus and defocus operations defined in [DNO4]. Adogrtb the definition oRED, a
formula holds in an abstract statef (i) v(a) can be split into (i.e., focused) different parts
approximated by more precise states thaand the formula holds in each of these states, or
(i) v(a) can be covered (i.e., defocused) by a set approximated laealsss precise than
and the formula holds in it. In particular, if the partial nredés monotone, then the reduction
operator resembles the focus operation only.

For a partial modeling formalism, the ability to support thenotonic abstraction refine-
ment framework allows us to define a best model over an absti@espace s.t. model check-
ing on it is more precise than on other models over the statespln the context of SIS, as
shown in [SG04], KMTSs is inappropriate for monotonic ahstion refinement — extranay
transitions required by the conditidt™s' C R™® introduce a loss of precision, and therefore,
a best KMTS model over an abstract statespace may not exagievér, this is not a problem

for MixTSs [DGG97, GWCO06a] which support monotonic absti@ctiefinement by allowing
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must-only transitions. GKMTSs achieve the same goal bygusinsthyper-transitions [SG04],
which essentially ensure that no extnaytransitions are added. The following theorem shows
that our new inductive semantics, RIS, preserves the poecwmider of partials models w.r.t.
SIS. Therefore, the best abstract model for SIS is also thedme for RIS, and both MixTSs

and GKMTSs still support monotonic abstraction refinemerater RIS.

Theorem 5.36.Let M = (M, L) and M’ = (M', L") be two partial models, wher&/ =
(S, R™ RMusYy and M’ = (S, R™ R™sY) are two (underlying) transition systems defined
over the same abstract statespage Then, if M is less precise thaoM’ under SIS, i.e.,

Vo € L, [|ollM = I, M, then is also less precise thawl’ under RIS.

Proof:
The proof is by structural induction. In particular, the inductive case for ¢ follows from the
definition of RED and the monotonicity of preimage. O
Regarding precision of model checking, one interesting ardhe investigation of self-
minimizing temporal formulas whose inductive and thorowggmantics coincide [GHO5].
Through a semantic minimization process, evegyformula can be transformed into an equiv-
alent formula that is self-minimizing, but may be exponailhilarger than the original one.
Several results along this line, based on the comparisomSag&d thorough semantics, have
been reported, e.g., [GHO5, GC05, NGCO06, AHO6]. In this chapte have used a reduction
operator to improve precision of inductive semantics basethe exploration of approxima-
tion ordering over abstract domain. Our approach is orthabtm semantic minimization. For
example, consider the modgt; defined in Section 5.6.1 (its transition systéj is shown
in Figure 5.2) and the formula = EF(—p A ¢), wherep andq denote predicatgg > 0) and
odd(x), respectively.y is self-minimizing. However, its value ia; is unknown under SIS,
but is true under RIS. We leave further investigation of thatien between RIS and semantic
minimization of temporal logic formulas for future work.
We have shown that symbolic model checking of RIS and SIS Havedme complexity.

An interesting question left for future study is whethermréhexists an inductive semantics that
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is more precise than RIS, and whether it can be symbolicallgehohecked with the same

complexity as RIS.

5.10 Conclusion

Several types of partial transition systems have been osdlover the years to support ab-
stract model checking of complex temporal formulas. Someevetaimed to be more pre-
cise; some had a more efficient decision procedure; some mere succinct. In this chap-
ter, we have studied these formalisms, partitioned inteegtiamilies — KMTSs, MixTSs and
GKMTSs. We have compared them w.r.t. two fundamental wayssofg partial transition
systems: as objects for abstracting concrete systems, santbdels for checking temporal
properties.

Specifically, we studied the connection between semantidagical consistency of par-
tial transition systems, which is necessary to ensure mgéariabstract model checking. We
showed that these notions are not equivalent. However, awedrthat they coincide for mono-
tone partial transition systems and provided an effectivetural condition which is necessary
and sufficient to guarantee consistency.

We have also compared the expressive power of the threeidarofil partial transition sys-
tems w.r.t. their ability to capture abstractions. We shihvizy defining semantics-preserving
transformations between the formalisms, that while theees&ructural differences, all three
formalisms are equally expressive. Thus, neither hy@arsitions nor restrictions anayand
musttransitions affect expressiveness. They do, of coursecitie succinctness of the result-
ing transition systems.

We then turned to looking at the power of these formalismd.wine cost and precision
of model checking. We have introduced a new inductive seic&rRRIS, for partial transition
systems and showed not only that it is more precise than émelatd semantics, SIS, but also

that model-checking under this semantics for MixTSs and QIS has the same results. We
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have further described a symbolic implementation of motlecking w.r.t. RIS. The outcome
is an algorithm that combines the symbolic encoding of MigMdth the model checking
precision of GKMTSs. The symbolic algorithm was evaluategbeically, and our preliminary
experiments suggest that RIS should be a good alternativéStdo® predicate abstraction-
based model checkers. We leave further experimental casoparbetween the two semantics
for future work.

We hope that the results of our investigation help clear batdonfusion about the ex-
pressive power of the different partial transition systemd enable their increasing usage as

underlying formalisms for abstract model checking.



Chapter 6

Conclusion

In this chapter, we summarize the contributions made inth@sis, and discuss limitations of

our work and future research directions.

6.1 Summary of The Thesis

In this thesis, we have studied abstraction in model chgckased on exact-approximation,
which combines over- and under-approximations, allowiagauverify and refute properties
in the same abstraction framework. Our work is driven by f@eits from both practical and
theoretical aspects of exact-approximation.

We started with symmetry reduction that exploits symmetrpriograms for abstraction.
It can be seen as a strong exact-approximation techniquisrpéng abstract model check-
ing using a symmetry-reduced structure that is bisimilath®original program. In Chapter
3, we studied symmetry reduction with respect to full vitts\gmmetry, addressing two chal-
lenges of effectively using it in practice, i.e., identitica of virtually symmetry and support
for symbolic model checking. We first characterized symynegduction from the perspective
of abstraction. Based on that, we reduced identifying fullual symmetry to satisfiability
of quantifier-free Presburger formulas built directly frgmogram specifications. This satisfi-

ability problem is NP-complete and can be solved by existiagision procedures. We also

155
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extended counter abstraction to fully virtually symmeprograms, which avoids the bottle-

neck problem of building orbit relations in symbolic symnyateduction.

A software model checker often uses predicates over progaaiables for data abstraction.
In our previous work, we have developed a software modelk&re¥asm based on exact-
approximating semantics of predicate abstraction, whiglilb abstract models that are exact-
approximation of original programs, supporting provingl aisproving properties with equal
effectiveness. In Chapter 4, we extendesls¥ to reachability and non-termination analysis
of recursive programs. To avoid explicitly dealing withlcgthcks, we proposed a stack-free
program semantics that effectively reduce to the analyfsisachability and non-termination
of recursive programs to that of non-recursive ones. Tldsval us to reuse existing abstract
analysis in YAsM to handle recursive programs. We also developed on-thdgityithms that

improve the performance of the analysis.

Exact-approximation can be achieved using different glntiodeling formalisms. Our
third study focused on the analysis of three families ofipbmtansition systems for this, rep-
resented by KMTSs, MixTSs, and GKMTSs. In Chapter 5, we ingatéd these formalisms
from two fundamental ways of using them — as objects for abstrg concrete programs, and
as models for checking temporal properties. We first progeivalence between semantic and
logical consistency of partial transition systems overdlass of monotone ones, and provided
a structural condition that is both necessary and suffi¢t@iguarantee consistency. We then
developed semantic-preserving translations between KMMXTSs, and GKMTSs, which
shows that despite the structural difference, the threditsof formalisms have the same ab-
straction ability. We also defined a new inductive semartf¢demporal logic for them, which
is more precise than the standard one. Based on that, we gededm algorithm that com-
bines the benefits of a symbolic encoding of MixTSs with adyattodel checking precision of

GKMTSs.

Abstraction in model checking uses a smaller abstract ntodmalyze properties of com-

puter programs. Exact-approximation provides a uniforstralstion framework for proving
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correctness and detecting errors. Choice of designing coemts for abstract model checking
depends on the programs and the properties being analyrethisithesis, we have inves-
tigated abstract analysis of virtually symmetric prograansg extended exact-approximating
predicate abstraction to recursive programs, which iregeéhe applicability of existing exact-
approximation techniques. We also reported the resultseodibalysis of partial modeling for-
malisms, which provides a better understanding of exaptesgimating abstraction framework

and its application in practice.

6.2 Limitations and Future Work

In this section, we discuss the limitations of our work anthpout future research directions.

6.2.1 Extended Symmetry Reduction

In this thesis, we have developed techniques for identifinaand counter abstraction of full
virtual symmetry. Extending them to handle industriaksizprograms is still a challenge. A
major limitation of our techniques is that the specificatianguage is too restrictive, where
transition guards can only be expressed using countersalf poocess states. It is of practical
interest to investigate how to extend our techniques to rgereeral specification languages.
For example, counter abstraction has been applied to fylyngetric programs where pro-
cesses communicate using shared variables [EWO03]. We plaxplore this for full virtual
symmetry as well.

The symmetry reduction techniques we studied in this thesisduced by a single per-
mutation group. We have shown that a program is symmetrik v@gpect to this group if
and only if all the local transitions in the program are syrtmoewith respect to it. That
is, the symmetric relations between processes needs toelserped on every local transi-
tion. Such restriction may be relaxed by considetiagsition dependerdgymmetry reduction

(e.q., [SWZ07, WahQ7]). In this case, symmetric relatiorntsveen processes can dynamically
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change over local transitions. Therefore, we can applgdfit permutation groups to a pro-
gram, which enables better statespace reduction thanahe she using a single group. We
leave further investigation of combining such symmetryuattbn with virtual symmetry for
future work.

We have only investigated symmetry reduction techniquesdban process symmetry,
where symmetry is induced by permutations of process isdicepractice, symmetry can also
be induced by data [ID96, EW05], where symmetry permutataantslirectly on the values of
variables. For example, Murphi [ID96] defines a specialasat data structure in its descrip-
tion language, and requires only symmetric operations sealarset variables. This ensures
that permutations of these variables in all states correspman automorphism of the states-
pace. In the future, we would like to extend our investigatid virtual symmetry reduction to
data symmetry.

To ensure a bisimilar symmetry-reduced quotient, we hageired that the transition sys-
tem of the program be invariant under symmetry permutatigfs interesting extension of
this is only to require that the transitive closure of thensiion system be invariant under
permutations, which is callearchitectural symmetrfTWO09]. Although the quotient structure
induced by architectural symmetry is not bisimilar to thegyimal program, it preserves many
interesting properties, e.g., reachability. Architeatlaymmetry extends space reduction with
respect to the full symmetry group to programs that are nenhdully virtually symmetric.
We would like to explore how to identify and apply counter tafstion to those programs.
Our techniques for full virtual symmetry are based on thdyamaof individual transitions in
a program. Since architectural symmetry is defined baseteftransitive closure of transi-
tion relations rather than individual transitions, we néztbok for other directions to handle

architectural symmetry.

6.2.2 Termination and Non-Termination Analysis

We have developed abstract analysis of the non-terminptimperty of programs. Since exact-

approximation supports both verification and refutatiohew non-termination checking fails,



CHAPTER6. CONCLUSION 159

it means that the program terminates. However, our absaraaiysis is based on predicate
abstraction. It is known that, as a finite state abstractiom,ability of predicate abstraction
for proving termination is limited. The reason is that anynpuitation of a program that is
longer than the number of abstract states results in anagbstvmputation containing a loop.
Therefore, we cannot always prove termination using pegdiabstraction. Because of this
limitation, when analyzing non-termination of a programy analysis may get stuck on the

terminating part of the program.

To overcome this limitation, it is necessary to develop sohs for both termination and
non-termination analysis. One approach is using abstratthmework that is complete for the
modal i-calculus [DNO4]. For example, Fecher and Huth proposedoatraction framework
that extends predicate abstraction to ranked predicatieagbenin [FHO6] so that liveness
properties including termination can be analyzed as wdlkyTshowed that ranked predicate
abstractions are increment and thus can be possibly inéebreith counterexample-guided
abstraction refinement. It is an interesting future workeawedop refinement heuristics that are

appropriate for termination and non-termination analystkin this framework.

Another approach is to synthesize the existing techniqudsfmination and non-termination
analysis. Recently, there has been a lot of work on terminainalysis based on automatically
synthesizing ranking functions for a program [PR04, PR05, CRRBEC"07]. These meth-
ods are biased towards proving termination. When terminatnalysis fails, they require users
to manually check where a program is non-terminating. Welaviike to develop techniques
to combine this analysis with non-termination analysis msingle framework so that the two
analysis can benefit from each other. One possible diretiimnve intend to explore is based
on the approach used byeRMINATOR [CPR06a, CPRO6b], where through a program transfor-
mation, termination of the original program is equivalgmthalyzed using over-approximating
predicate abstraction over a transformed program. Thisoagp provides a way to combine
the termination analysis methods above with predicateatigin. Following this approach,

we would like to develop analysis for both termination and-t@rmination by applying exact-
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approximation over the transformed program.

6.2.3 Partial Modeling Formalisms

In this thesis, we have defined a more precise reduced industimantics than the standard
one, and compared the performance of the two semantics ovgrgms abstracted using the
same predicates that we provided manually. On the other, ivasdftware model checking, the
predicates for abstraction are usually computed throwgghtite refinement. Currently, we do
not know whether the more precise semantics always leadster [performance of the overall
abstraction refinement process, or whether the result dspmproperties and programs being
analyzed. We would like to design experiments to find this out

Fairness is often required for analyzing concurrent pnograith interleaving semantics. A
fairness constraint associated with a transition systatitipas the infinite computations in the
system into fair and unfair ones. In this thesis, we did nostter fairness in abstract analysis.
In particular, the partial modeling formalisms we studied eelated with concrete systems
through mixed simulation that does not distinguish fair anthir computations. The notion of
mixed simulation can be adapted to transition systems w&ithéss constraints [DNO4]. In the
future, we would like to investigate partial modeling folmms with fair mixed simulation,

and see how this will affect our results presented in thisithe

6.2.4 Combination of Abstraction and Testing

Our work in this thesis has focused on abstract model chgdkiat builds an abstract model
for property analysis. A drawback of this abstraction applois that it does not handle large
programs with complex statements well, due to the difficoltgonstructing precise abstract
models of these programs. As a dynamic analysis methodthdeditectly executes programs,
which is fast and easily scales to large programs. Recehtyethas been a growing interest

in combining abstract analysis and testing [KGC04, PPV05, ¥ 8% HK"06, BNRS08] to
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take advantage of the strength of both methods. For exai@piERGY [GHK*06] provides
algorithms that combine over-approximation and testingene testing results are used to ex-
plore program statespace and detect bugs, and abstragsianaisults are used to guide the
generation of test inputs and prove correctness.

We intend to study such combinations over our exact-appraton framework. In par-
ticular, we would like to see how the additional under-appra@tion in the framework can
improve existing techniques such as theNERGY approach. Our observation is that although
testing can also be seen as a way to under-approximate prdgghaviors, it is different from
the abstract under-approximating analysis. The programabers discovered by testing are
restricted by the test inputs, whereas the abstract urggeaimating analysis explores all
the possible program behaviors in an abstract way, whichptemments the ones explored by
testing. Moreover, unlike testing, which can only be exeduh a forward way, the abstract
under-approximating analysis can be conducted backwardh Backward analysis can pro-
vide us more information about error-reachable states;lwmay be used to guide generation
of test inputs that lead to quick discovery of program bugs.pfén to work on implementation

of the above ideas in the future to obtain more efficient apghes for program analysis.
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