
Transformations of Software
Product Lines:

A Generalizing Framework based on
Category Theory

Gabriele Taentzer, Rick Salay, Daniel Strüber and Marsha Chechik

Software Product Lines (SPL)

…

 Manage a large number of similar but different artifact variants
(products)

 Washing Machine Co.

2 Transformations of Software Product Lines

SPL Structure

…

 SPL (annotative) represented by
 Domain Model – combined parts from all products
 Feature Model – shows possible features and restrictions for products

Feature Model

Wash

Heat

Dry

Delay

excludes

Domain Model

3 Transformations of Software Product Lines

SPL Configuration – example

…

 +Dry product
 Feature configuration: {Wash, Dry}

Feature Model

Wash

Heat

Dry

Delay

excludes

4 Transformations of Software Product Lines

Domain Model

SPL of models:
washing machine state machine

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()

Drying

Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

/ QuickCool()

[PRESS_START]/ wash.Start()

Presence Conditions

Feature Model

Wash

Heat

Dry

Delay

excludes

5 Transformations of Software Product Lines

[PRESS_START] /
HeaterOn()

Heat
Delay

Heat
Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay

Heat

Dry
Dry

Dry

¬Dry

¬Heat

Heat

Domain Model

Example Product: {Wash, Dry}

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()

Drying

Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

/ QuickCool()

[PRESS_START]/ wash.Start()

Feature Model

6 Transformations of Software Product Lines

[PRESS_START] /
HeaterOn()

Wash

Heat

Dry

Delay

excludes

Heat
Delay

Heat
Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay

Heat

Dry
Dry

Dry

¬Dry

¬Heat

Heat

Product: {Wash, Dry}

Example Product: {Wash, Dry}

Locking

Washing

Drying

Unlocking

/ QuickCool()

[PRESS_START]/ wash.Start()

Feature Model

Wash

Heat

Dry

Delay

excludes

7 Transformations of Software Product Lines

Outline
 Software Product Lines
 Transformations of SPLs
 What is the problem?
 Approach (part 1): Category of SPLs
 Approach (part II): SPL Transformations using graph transformation rules
 Summary of results and next steps

8 Transformations of Software Product Lines

Presenter
Presentation Notes
I am not very happy with this story.
My preference would be:
 - product lines (as given)
 - transformation on product lines together with establishing that you need those that can transform both products and features
 - realated wok analysis that establishes that this has not been done (btw, for that one, please give years / conferences, not just first author et al)
 and now the clear statement of the goal and we are off to the approach.
By that time, it makes sense to show the outlne

Key types of SPL transformations in the Literature

Lifting Transformations to Product Lines9

1. Feature model transformations
 Supports reasoning about additions, deletions, and modifications of features
 e.g., Transformation rules to specify high-level feature editing operations [Bürdek et al.]

2. Lifted model transformations
 Adapts single-product transformation rules to the entire SPL [Salay et al.]
 Effect of lifting is same as applying the rule to each product separately.

3. SPL refinement
 Supports safe evolution SPL by controlling impact on existing products.
 e.g., Modifications restricted so that only a subset of products change [Sampaio et al.]

Presenter
Presentation Notes
Slide is too monochrome
And lower case after e.g.

Motivation

Lifting Transformations to Product Lines10

 Types (1) & (3) apply only to feature models; type (2) applies only to
domain models

None of these types of transformation apply to entire SPL’s –
feature and domain models!

 But, this is needed in practice:
 Addition or deletion of features usually entails the corresponding changes in

the domain model
 Research Objective:

A formal characterization of SPL transformations that
addresses both feature and domain models.

Presenter
Presentation Notes
IMHO, this needs redoing

Approach

Lifting Transformations to Product Lines11

 Build on existing formal theories: category theory and theory of Algebraic Graph
Transformations (AGT)[1]

 Our strategy: given any suitable (to be defined) category 𝑴𝑴𝑴𝑴𝑴𝑴 of models,
1. Show how to define the category 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴 of SPLs having 𝑴𝑴𝑴𝑴𝑴𝑴 models as domain models.
2. Use AGT to define transformation rules for SPLs in 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴

 Benefits:
 General, systematic and covers both feature and domain model parts of an SPL
 Gets formal techniques from AGT that support SPL transformation development

 e.g., conflict and dependency analysis, confluence analysis, etc.

[1] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph Transformation, ser. Monographs in Theoretical Computer
Science. Springer, 2006

Presenter
Presentation Notes
Inconsistent use of references from your related work
This slide does not quite fit into the outline

And for me this is too fast of a plunge into details

Outline
 Software Product Lines
 Transformations of SPLs
 What is the problem?
 Approach (part 1): Category of SPLs
 Approach (part II): SPL Transformations using graph transformation rules
 Summary of results and next steps

12 Transformations of Software Product Lines

Defining category 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴 – objects and morphisms

Transformations of Software Product Lines13

 An SPL 𝑃𝑃 = (𝐹𝐹𝑃𝑃,Φ𝑃𝑃,𝑀𝑀𝑃𝑃, 𝑓𝑓𝑃𝑃) of 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴 consists of:
 (feature model) Set 𝐹𝐹𝑃𝑃 of features with set Φ𝑃𝑃 of propositional feature constraints

over 𝐹𝐹𝑃𝑃 defining allowable feature configurations
 (domain model) 𝑴𝑴𝑴𝑴𝑴𝑴-model 𝑀𝑀𝑃𝑃
 (presence conditions) Function 𝑓𝑓𝑃𝑃 assigns a propositional formula over 𝐹𝐹𝑃𝑃 to each

submodel of 𝑀𝑀𝑃𝑃 defining for which feature configurations the submodel is present

 An SPL morphism ℎ:𝑃𝑃 → 𝑄𝑄 is a mapping from SPL 𝑃𝑃 to 𝑄𝑄 such that
 (feature mapping) ℎ maps 𝐹𝐹𝑃𝑃 to 𝐹𝐹𝑄𝑄
 (domain mapping) ℎ maps 𝐷𝐷𝑃𝑃 to 𝐷𝐷𝑄𝑄 (using a 𝑴𝑴𝑴𝑴𝑴𝑴-morphism)

 above mappings constrained so that products of 𝑃𝑃 map into products of 𝑄𝑄

Domain Model 𝐷𝐷𝑊𝑊𝑊𝑊

Washing machine SPL 𝑊𝑊𝑊𝑊 in 𝑃𝑃𝐿𝐿𝑺𝑺𝑺𝑺

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()

Drying

Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

/ QuickCool()

[PRESS_START]/ wash.Start()

Feature Model
𝐹𝐹𝑊𝑊𝑊𝑊: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷
Φ𝑊𝑊𝑊𝑊: {𝑊𝑊𝑊𝑊𝑊𝑊𝑊, ¬(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∧ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)}

14 Transformations of Software Product Lines

[PRESS_START] /
HeaterOn()

𝐷𝐷𝐷𝐷𝐷𝐷 ∧ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

Presence
condition
(example)

𝑓𝑓𝑊𝑊𝑊𝑊

Presenter
Presentation Notes
This comes too late for my taste, should go before all the category-theoretic stuff, to explain the problem

Product: {𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐷𝐷𝐷𝐷𝐷𝐷}

Example Product: {Wash, Dry}

Locking

Washing

Drying

Unlocking

/ QuickCool()

[PRESS_START]/ wash.Start()

15 Transformations of Software Product Lines

𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷 ∧ ¬𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∧ ¬𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

Presence
condition
(example)

𝑓𝑓𝑊𝑊𝑊𝑊

Products are the maximal
submodels with presence
condition for a configuration

Morphisms in 𝑃𝑃𝐿𝐿𝑺𝑺𝑺𝑺

16 Transformations of Software Product Lines

Domain Model 𝐷𝐷𝑊𝑊𝑊𝑊

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()

Drying

Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

/ QuickCool()

[PRESS_START]/ wash.Start()

[PRESS_START]
/ HeaterOn()

Feature Model
𝐹𝐹𝑊𝑊𝑊𝑊: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷
Φ𝑊𝑊𝑊𝑊: {𝑊𝑊𝑊𝑊𝑊𝑊𝑊, ¬ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 }

Domain Model 𝐷𝐷𝐵𝐵

x1

[t]/ a

x2

Feature Model
𝐹𝐹𝐵𝐵: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Φ𝐵𝐵: { }

ℎ

Presenter
Presentation Notes
Nice. Helps intuition

Morphisms map products

17 Transformations of Software Product Lines

Product:{𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐷𝐷𝐷𝐷𝐷𝐷}

Locking

Washing

Drying

Unlocking

[PRESS_START]/ wash.Start()

Product:{𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵}

x1

[t]/ a

x2

ℎ

Key result: Pushout construction in 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴

Transformations of Software Product Lines18

 In 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴 we can use the standard category theory pushout construction to
combine two SPLs that are related by a common SPL

𝑆𝑆𝑆𝑆𝐿𝐿𝑃𝑃

𝑆𝑆𝑆𝑆𝐿𝐿𝑄𝑄

𝑆𝑆𝑆𝑆𝐿𝐿𝑅𝑅

ℎ𝑃𝑃𝑃𝑃

ℎ𝑃𝑃𝑃𝑃

𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆

ℎ𝑄𝑄𝑄𝑄

ℎ𝑅𝑅𝑅𝑅

Products of 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆 are
constructed by combining
products of 𝑆𝑆𝑆𝑆𝐿𝐿𝑄𝑄 and 𝑆𝑆𝑆𝑆𝐿𝐿𝑅𝑅
according to overlap in 𝑆𝑆𝑆𝑆𝐿𝐿𝑃𝑃

See Paper for
Details!

Presenter
Presentation Notes
Hm. Not sure what this is trying to say – but sadly, it is not saying anything

Outline
 Software Product Lines
 Transformations of SPLs
 What is the problem?
 Approach (part 1): Category of SPLs
 Approach (part II): SPL Transformations using graph transformation rules
 Summary of results and next steps

19 Transformations of Software Product Lines

Transformations in 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴

Transformations of Software Product Lines20

 Since we can construct pushouts in 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴, we can use the double pushout
approach from AGT to define transformation rules.

Rule: AddBeepFeature

LHS RHS

Domain Model 𝐷𝐷𝐵𝐵

x1

[t]/ a

x2

Feature Model
𝐹𝐹𝐵𝐵: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Φ𝐵𝐵: { }

Domain Model 𝐷𝐷𝐵𝐵𝐵𝐵

x1

x2

Feature Model
𝐹𝐹𝐵𝐵𝐵𝐵: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Φ𝐵𝐵: { } Domain Model 𝐷𝐷𝐵𝐵𝐵𝐵

x1[t]/ a

x2

Feature Model
𝐹𝐹𝐵𝐵𝐵𝐵: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

Φ𝐵𝐵𝐵𝐵: { 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⇒ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵}

Beeping Logging

[t]/ a

¬𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ¬𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

¬𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

Key result: We show the existence and
uniqueness of rule applications for 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴.
See details in the paper.

Presenter
Presentation Notes
Again, this starts with solution rather than problem. The issue is not what we have or what we can construt but what we are trying to show and why it is interesting.

Domain Model 𝐷𝐷𝑊𝑊𝑊𝑊

Washing machine SPL 𝑊𝑊𝑊𝑊

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()

Drying

Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

/ QuickCool()

[PRESS_START]/ wash.Start()

21 Transformations of Software Product Lines

[PRESS_START] /
HeaterOn()

Heat
Delay

Heat
Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay

Heat

Dry
Dry

Dry

¬Dry

¬Heat

Heat

Feature Model
𝐹𝐹𝑊𝑊𝑊𝑊: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷
Φ𝑊𝑊𝑊𝑊: {𝑊𝑊𝑊𝑊𝑊𝑊𝑊, ¬ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∧ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 }

Domain Model 𝐷𝐷𝑊𝑊𝑊𝑊

Applying AddBeepFeature: Match LHS

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()

Drying

Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

/ QuickCool()

[PRESS_START]/ wash.Start()

22 Transformations of Software Product Lines

[PRESS_START] /
HeaterOn()

Heat
Delay

Heat
Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay

Heat

Dry
Dry

Dry

¬Dry

¬Heat

Heat

Feature Model
𝐹𝐹𝑊𝑊𝑊𝑊: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷
Φ𝑊𝑊𝑊𝑊: {𝑊𝑊𝑊𝑊𝑊𝑊𝑊, ¬ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∧ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 }

Domain Model 𝐷𝐷𝐵𝐵

x1

[t]/ a

x2

Feature Model
𝐹𝐹𝐵𝐵: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
Φ𝐵𝐵: { }

LHS

Domain Model 𝐷𝐷𝑊𝑊𝑊𝑊𝑊𝑊

Applying AddBeepFeature: Result SPL 𝑊𝑊𝑊𝑊𝑊𝑊 of double pushout

Locking
Waiting

exit/HeaterOff()

Washing

entry/TempCheck()

Drying

Unlocking

[PRESS_START_WITH_DELAY]

/wash.Start()

/ QuickCool()

/ QuickCool()

[PRESS_START]/ wash.Start()

23 Transformations of Software Product Lines

[PRESS_START] /
HeaterOn()

Heat
Delay

Heat
Heat ∨ Delay

Heat ∨ Delay

Heat ∨ Delay

Heat

Dry
Dry

Dry

¬Dry

¬Dry ∧ ¬Heat

Heat

Feature Model
𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊: 𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

Φ𝑊𝑊𝑊𝑊𝑊𝑊: {𝑊𝑊𝑊𝑊𝑊𝑊𝑊, ¬ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∧ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⇒ 𝐷𝐷𝐷𝐷𝐷𝐷}

Beeping Logging

[PRESS_START]/
wash.Start()

[PRESS_START]/
wash.Start()

Beep ∧ Dry ¬Beep ∧ Dry

Rule application affects domain
model, feature model and
presence conditions!

Presenter
Presentation Notes
And this, to me, is motivation! A perfect example on which to explain what we are trying to accomplish and why this cannot be done with other approaches

Summary of Results

Transformations of Software Product Lines24

 Given any suitable category 𝑴𝑴𝑴𝑴𝑴𝑴 of models,
1. Showed how to define the category 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴 of SPLs having 𝑴𝑴𝑴𝑴𝑴𝑴

models as domain models.
2. Defined the pushout construction for 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴
3. Showed how to define transformation rules for 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴 using double

pushout
4. Proved the existence and uniqueness of rule application.

 Illustrated how an SPL rule can affect both feature and
domain model parts of an SPL
 i.e., we have exceeded these limitations in the literature

Presenter
Presentation Notes
Again, not sure this is what I want to know. Instead, this should be the summary of contribution, not a bottom-up summary of the construction

Next Steps

Transformations of Software Product Lines25

 Have only partially proven that 𝑃𝑃𝐿𝐿𝑴𝑴𝑴𝑴𝑴𝑴 satisfies the formal requirements
for AGT
 We are completing this task

 Plan to implement formal analysis techniques from AGT for 𝑃𝑃𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀
 e.g., conflict and dependency analysis, confluence analysis, etc.
 Henshin is likely the platform

 Want to explore the scope of SPL transformations expressible using our
approach.

 Want to explore the kinds of SPLs obtained by using different model
categories for 𝑴𝑴𝑴𝑴𝑴𝑴

Presenter
Presentation Notes
Sorry, again – why would these be the suitable next steps?

Questions

Lifting Transformations to Product Lines26

	Transformations of Software Product Lines: �A Generalizing Framework based on Category Theory
	Software Product Lines (SPL)
	SPL Structure
	SPL Configuration – example
	SPL of models:�washing machine state machine
	Example Product: {Wash, Dry}
	Example Product: {Wash, Dry}
	Outline
	Key types of SPL transformations in the Literature
	Motivation
	Approach
	Outline
	Defining category 𝑃 𝐿 𝑴𝒐𝒅 – objects and morphisms
	Washing machine SPL 𝑊𝑀 in 𝑃 𝐿 𝑺𝑴
	Example Product: {Wash, Dry}
	Morphisms in 𝑃 𝐿 𝑺𝑴
	Morphisms map products
	Key result: Pushout construction in 𝑃 𝐿 𝑴𝒐𝒅
	Outline
	Transformations in 𝑃 𝐿 𝑴𝒐𝒅
	Washing machine SPL 𝑊𝑀
	Applying AddBeepFeature: Match LHS
	Applying AddBeepFeature: Result SPL 𝑊𝑀𝐵 of double pushout
	Summary of Results
	Next Steps
	Questions

