
A CHARACTERIZATION OF MERGING PARTIAL BEHAVIOURAL MODELS

by

Greg Brunet

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c
�

2006 by Greg Brunet



Abstract

A Characterization of Merging Partial Behavioural Models

Greg Brunet

Master of Science

Graduate Department of Computer Science

University of Toronto

2006

Constructing comprehensive operational models of intended system behaviour is a complex

and costly task. Consequently, practitioners have adopted techniques that support partial be-

haviour description and focus on elaborating these descriptions iteratively. Scenario-based

specifications, for example, are incrementally elaborated to cover system behaviour that is of

interest. However, how should partial behavioural models described by different stakeholders

with different viewpoints be composed? How should partial models of component instances of

the same type be put together?

In this thesis, we use model merging based on observational refinement as a general solu-

tion to these questions, where merging consistent models is a process that results in a minimal

common refinement. We prove several mathematical characterizations of merging and consis-

tency, study algebraic properties of the merge operator, and give new and improved algorithms

related to constructing merge. Finally, we present a case study that illustrates the utility of our

results.
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Chapter 1

Introduction

State-based behaviour modelling and analysis has been shown to be successful in uncovering

subtle design errors [8]. However, the adoption of such technologies by practitioners has been

slow. Partly, this is due to the difficulty of constructing behavioural models – this task requires

considerable expertise in modelling notations that developers often lack. In addition, and per-

haps more importantly, the benefits of the analysis appear after comprehensive behavioural

models have been built: classical state-based modelling approaches are generally not suited for

providing early feedback, when system descriptions are still partial.

In contrast, interaction-based specifications, such as message sequence charts [30], are be-

coming increasingly popular. These scenario-based notations are partial behavioural descrip-

tions that promote incremental elaboration of system behaviour.

There has been interest in developing an understanding and exploiting the relation between

interaction-based and state-based modelling techniques [46]. In particular, several approaches

to the synthesis of state-based models from scenario-based specifications (e.g. [51, 35]) have

been developed. These approaches aim to combine the benefits of the incremental elaboration

in interaction-based specifications with the behavioural analysis in state-based models.

A current limitation of synthesis approaches is that the models being synthesized, e.g., la-

belled transition systems (LTSs) [31], are assumed to be complete descriptions of the system

1



CHAPTER 1. INTRODUCTION 2

behaviour up to some level of abstraction, i.e., the state machine is assumed to completely

describe the system behaviour with respect to a fixed alphabet of actions. This completeness

assumption is limiting, particularly if state-based modelling is to be adopted in iterative de-

velopment processes [3], processes that adopt use-case and scenario-based specifications (e.g.,

[52]), or that are viewpoint-oriented [26].

In such development contexts, a more appropriate type of state-based model to synthesize is

one in which currently unknown aspects of behaviour can be explicitly modelled. These mod-

els can distinguish between positive, negative, and unknown behaviours: positive behaviour

refers to the behaviour that the system is expected to exhibit, negative behaviour refers to the

behaviour that the system is expected to never exhibit, and unknown behaviour could become

positive or negative, but the choice has not yet been made. State-based models that distinguish

between these kinds of behaviour are referred to as partial behavioural models. A number

of such models exist and promising results on their use to support incremental modelling and

viewpoint analysis has been reported (e.g., Partial Labelled Transition Systems (PLTSs) [50],

multi-valued state machines [12], Modal Transition Systems (MTSs) [37], Mixed Transition

Systems [11] and multi-valued Kripke structures [5]).

1.1 Motivation for Merge

Although synthesis of partial behavioural models can provide substantial benefits [50], such

models lack a specific concept that is particularly helpful in the context of behavioural model

elaboration, namely, model merging. Scenarios are typically provided by different stakehold-

ers with different viewpoints [26], describing different, yet overlapping aspects [6] of the same

system. How should these partial models be put together? Alternatively, consider combining

behavioural models of component instances of the same type. Typically, several instances of

the same component may appear in a given scenario, e.g., several instances of a client com-

ponent that concurrently access a server. Standard approaches to synthesis produce a separate
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behavioural model for each client instance (e.g. [51, 35]). However, it is reasonable to integrate

all models of all client instances into a model for the client component type because all clients

should share the same characteristics. How can these partial models be composed?

Note that composition of behavioural models is not a novel idea [42, 24]; however, its

main focus has been on parallel composition, which describes how two different components

work together. In the context of model elaboration, we are interested in composing two partial

descriptions of the same component to obtain a more elaborate version of both original partial

descriptions. We call this operation a merge.

In a general merging framework, different stakeholders provide models and their properties.

If the models can be merged (i.e., they are consistent), then a merged model that preserves the

stakeholders’ properties is constructed. If the models are inconsistent, then some form of feed-

back that gives insight into why the merge failed should be returned. Chechik and Uchitel [49]

have instantiated this framework for an adaptation of MTSs [37]. In particular, they argue that

the core concept underlying model merging is that of a common observational refinement, and

define consistency as the existence of such a model. They show that merging consistent models

is a process that should result in a minimal common observational refinement, and discuss the

role of the least common observational refinement and the greatest common abstraction in this

process.

In this thesis, we address several questions related to merge: (1) What properties are pre-

served in a merge? (2) When can two systems be merged? (3) What feedback can be returned

when models cannot be merged? (4) When is merge unique? (5) How can complex models be

merged? In addition, we provide several algorithms that are related to these questions, and a

case study that illustrates our results on a realistic example.

1.2 Contributions of this Thesis

We extend the work of Chechik and Uchitel [49], and present many novelties related to merging

MTSs: mathematical characterizations of merging and consistency, algebraic properties of the
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merge operator, new and improved algorithms related to constructing merge, and a case study.

The specific contributions are as follows.

Firstly, we define a + -valued counterpart of the logic weak � -calculus and prove that it

characterizes property preservation in merge (Question (1)). As weak � -calculus can be quite

subtle to use, we also define a + -valued counterpart to the logic FLTL, intended for use as

the main specification language in the merging framework, and prove that it is preserved by

observational refinement (Question (1)).

Secondly, we provide a characterization of consistency using weak � -calculus properties

that distinguish between two systems, i.e., that evaluate to true in one system and false in

the other. Such properties naturally characterize consistency for models with the same vocab-

ulary. For models with different communicating alphabets, distinguishing properties are only

meaningful when formulated and evaluated over the shared alphabet between the models. Con-

sequently, deciding consistency in such contexts is non-trivial, and we therefore give sufficient

conditions to prove soundness and completeness of a consistency characterization for this case

(Questions (2) and (3)).

Thirdly, we introduce consistency relations defined between two MTSs and prove that there

is a consistency relation between two systems if and only if they are consistent, which is an-

other characterization of consistency (Question (2)). Using consistency relations relations, we

give conditions for the uniqueness of merge, which is particularly relevant when attempting

automation: if more than one merge exists, then some form of human intervention is required.

We conclude that these conditions are consequences of the modelling notation (Question (4)).

Fourthly, We study algebraic properties of the merge operation to facilitate the merge of

complex systems. We show that most desired properties hold when there is a unique merge, and

give counterexamples and insights into why the same properties fail to hold when incomparable

merges exist. However, we prove that the right choice of merge can usually be made with

respect to a given algebraic property (Question (5)).

Fifthly, we give several algorithms related to merge, which no longer rely on the determi-
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nacy condition as a sufficient condition [49]. Specifically, we give improved algorithms for: (i)

checking consistency, (ii) building a common refinement, and (iii) building a common abstrac-

tion that can elaborated into a minimal common observational refinement. We also give a new

algorithm for constructing a weak � -calculus property that distinguishes between inconsistent

systems.

Lastly, we provide a case study that illustrates our results on a realistic example.

1.3 Organization of this Thesis

The rest of the thesis is organized as follows. In Chapter 2, we give preliminary definitions

used throughout the thesis. Chapter 3 reviews merging MTSs, and is based on [49]. In Chapter

4, we define consistency relations, give sufficient conditions for merge to be unique, prove

that observational refinement is characterized by + -valued weak � -calculus and preserves + -
valued FLTL, and use these results to prove a characterization of consistency. In Chapter 5,

we present positive and negative results on algebraic properties for merging, both for the case

in which merging yields a least common refinement and for the case in which it yields one of

several different minimal common refinements, while providing insights on the implications

of these results with respect to engineering partial behavioural models. In Chapter 6, we give

several algorithms related to merge. In Chapter 7, we present a case study that illustrates the

utility of our theoretical results for engineering and reasoning about partial descriptions of

system behaviour. Finally, Chapter 8 presents a summary of our results, compares this work

with related approaches, and discusses directions for future work.



Chapter 2

Background

In this chapter, we give and exemplify preliminary definitions and fix the notation. Section

2.1 discusses labelled transition systems, and modal transition systems that extend them. Sec-

tion 2.2 reviews operations on MTSs: refinement, observation graphs, and parallel composi-

tion. Finally, Section 2.3 defines temporal logics weak � -calculus and FLTL that will be used

throughout the thesis to reason about MTSs.

2.1 Transitions Systems

We begin with the familiar concept of labelled transition systems (LTSs) [31], which are widely

used for modelling and analyzing the behaviour of concurrent and distributed systems. An LTS

is a state transition system where transitions are labelled with actions. The set of actions of an

LTS is called its communicating alphabet and constitutes the interactions that the modelled

system can have with its environment. In addition, LTSs can have transitions labelled with

� , representing actions that are not observable by the environment. Examples of a graphical

representation of LTSs are models
�

and � , given in Figure 2.1(a). In this thesis, the state

labelled � is assumed to be the initial state of the transition system, unless stated otherwise. In

addition, transitions labelled with sets are abbreviations for an individual transition on every

action in the set, and the fonts � , � , and � are used for naming specific transition systems.

6
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(a)
��� � �������	���
���������������	���
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Figure 2.1: (a) LTSs and MTSs for reader and writer policies; Observational refinements:

(b) over the alphabet i j kmlonqpsrtnsuwvsxtyozm{}|[~�no��r�nsu�vsxty�zm{�� ; (c) over the alphabet i �
kmlonqps�o~���p�n�xty�zm{}|�~ono�m��~���p�nwx�y�zm{�� .
Definition 1. (Labelled Transition Systems) Let States be a universal set of states, ����� be a

universal set of observable action labels, and let �����d��jG��������k��M� . A Labelled Transition

System (LTS) is a tuple ��j���� |�¡¢|�£L|�¤�¥§¦ , where ��¨ States is a finite set of states, ¡©¨ª�����«�
is a set of labels, £¬¨����©®¡¯®��¦ is a transition relation between states, and ¤°¥²±³� is the

initial state. We use ´ �µjª¡·¶�k���� to denote the communicating alphabet (vocabulary) of � .

Existing semantics for LTSs assume that an LTS gives a complete behavioural description

with respect to its alphabet. Consider LTS ¸ which models a read lock. Starting in state

0, this model allows sequences of alternating lonwpsr�nsuwv�xty�zm{ and ~ono��rtnsuwvsxtyozm{ actions, and,

by the completeness assumption, does not allow two l�nqpsr�nsu�vsxty�zm{ actions without having a

~ono�°r�nsuwvsx�y�zm{ action in between them. LTS ¸ is modelling a lock that can be held by at most

one reader at any time. Model ¹ , on the other hand, allows two readers to hold the lock simul-

taneously. ¸ and ¹ are not considered to be equivalent under any of the standard equivalence
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relations such as strong bisimulation, trace, observational, or failure equivalence [24, 42].

Modal Transition Systems (MTSs) [37] allow explicit modelling of what is not known

about the behaviour of a system. They extend LTSs with an additional set of transitions that

model the interactions with the environment that the system cannot be guaranteed to provide,

but equally cannot be guaranteed to prohibit.

Definition 2. (Modal Transition Systems) A Modal Transition System (MTS) 0 is a structure

=�� ��� ��� � �������	��
 A , where � �� ��� , =�� ���.��� � �	��
 A is an LTS representing required transitions

of the system and =�� ���.�������	��
 A is an LTS representing possible (but not necessarily required)

transitions of the system. We use � 0 � ��� � � � to denote the communicating alphabet

(vocabulary) of 0 .

Figure 2.1(a) shows a graphical representation of some MTSs. For example, MTS ; models

a partial policy for a read lock that can be acquired by at least one reader at any time, but does

not rule out concurrent readers. Transition labels that have a question mark are those in ������� � .

We refer to these as “maybe” transitions, to distinguish them from required transitions (i.e.,

those in � � ). Note that LTSs are a special type of MTSs that do not have maybe transitions;

thus, models
�

and � can be considered MTSs as well.

Given an MTS 0 � =�� ���.��� � ����������
 A , we say 0 transitions on � through a required

transition (denoted 0 ���� � 0�� ) if 0��� =�� ���.��� � �����������
 A and =���
 ���
�����
 A! "� � . Similarly, we

say 0 transitions on � through a maybe transition (denoted 0 ����$# 0�� ) if =���
&�%�2�	�&�
 A! '���(�
� � , and 0 transitions on � through a possible transition (denoted 0 ��)� � 0�� ) if 0 ��*� � 0��
or 0 ����$# 0�� (i.e., =���
&�%�2�	�&�
 A+ ���� ). We write 0 ���� � to mean ,'0��*-�0 ���� � 0�� . We

say that 0 proscribes � (denoted 0 �.��� ) if 0 cannot transit on � through maybe or required

transitions. Finally, for an MTS 0 � =�� ��� ��� � �������	��
 A and a state /0 0� , we denote changing

the initial state of 0 from ��
 to / as 0'1 . For example, some transitions of the MTS ; , shown

in Figure 2.1(a), are ;2
43658789�5;:8<;=�>6?A@��� � ;�B (between states 0 and 1), and ;)BDC 56E�9�5;:8<;=�>6?A@���$# ;*B (a self-loop

in state 1). Additionally, we call the set � 0 F0� 1  � � � the shared actions between 0 and

1 , and =�� 0 �G� 1 A� =A� 1H�I� 0 A the non-shared actions between 0 and 1 .
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In this presentation, we associate each MTS 0 with its communicating alphabet � 0 , ex-

tending the presentation of [37]. The communicating alphabet is the set of events that are

relevant to the model, i.e., the scope of a partial description. Allowing models to have different

scopes is fundamental for merging descriptions of different concerns and viewpoints, as dis-

cussed in Chapter 3. In addition, our choice is in line with process algebra semantics such as

FSP [41].

2.2 Refinement

Refinement of MTSs captures the notion of elaboration of a partial description into a more

comprehensive one, in which some knowledge over the maybe behaviour has been gained. It

can be seen as being a “more defined than” relation between two partial models. Intuitively,

refinement in MTSs is about converting maybe transitions into required transitions or removing

them altogether: an MTS 1 refines an MTS 0 if 1 preserves all of the required and all of

the proscribed behaviours of 0 . Alternatively, 1 refines 0 if 1 can simulate the required

behaviour of 0 , and 0 can simulate the possible behaviour of 1 .

Definition 3. (Refinement) Let � be the universe of all MTSs. 1 is a refinement of 0 , written

0 ��1 , when � 0 � � 1 and = 0 �(1 A is contained in some refinement relation � � �����
for which the following holds for all �  ��	��
� and all = 0 �(1 A  �� :

��� = 0 ���� � 0�� A�� =�,1 � -�1 ���� � 1 ��� = 0�� �(1 � A( �� A
��� =?1 ��)� � 1 � A�� =�,'0�� -�0 ��)� � 0���� = 0�� �(1 � A  �� A

We often refer to this form of refinement as strong refinement.

Consider the MTSs shown in Figure 2.1(a). MTS ; is refined by the LTS
�

( ;�� �
),

incorporating the new knowledge that the maybe self-loop at state ; B should be removed. The

refinement relation between these models is � � ��= ; 
&� � 
(A ��= ;�B � � B4A � . The LTS � refines ;
( ;�� � ), with the refinement relation ��� ��= ;2
&� � 
 A ��= ;*B � �(B�A �%= ;*B � ��� A � . Finally, the MTS �
refines ; via the relation � � ��= ;2
6���
 A ��= ;�B ��� B@A ��= ;�B ����� A � .
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� ������ ���
	 ��
���������� 	 � � 
��� �

. �
� ������ ���	 ��
�������� � 	 � � 
��� �  �

Figure 2.2: Rules for the hiding operator.

Although refinement captures the notion of model elaboration, it requires the alphabets of

the processes being compared to be equal. In practice, model elaboration can lead to aug-

menting the alphabet of the system model to describe behavioural aspects that previously had

not been taken into account. To capture this aspect of model elaboration, we introduce two

concepts: hiding and observational refinement.

Hiding is an operation that makes a set of actions of a model unobservable to its environ-

ment by reducing the alphabet of the model and replacing transitions labelled with an action in

the hiding set by � , as shown in Figure 2.2.

Definition 4. (Hiding) Let 0 � =�� ���.��� � ����������
 A be an MTS and � � � � 
 be a set of observ-

able actions. 0 with the actions of � hidden, denoted 0 �2� , is an MTS =�� ��� �2� ��� � � ����� � �	��
 A ,
where � � � and ��� � are the smallest relations that satisfy the rules in Figure 2.2, where �  
������� � . We use 0 @ � to denote 0 �'= �	��
%�2�"A .

Let � ��� B � � � � ����� be a word over � � 
 � . 0 -��� �.0�� means that there exist 0 
 � � � � � 0��
such that 0 
 � 0 , 0�� � 0�� , and 0�� -! #"%$�)� � 0��'&�B for �)(+*-,/. . 0 -���$# 0�� means that

there exist 0 
&� � � � � 0�� such that 0 
 � 0 , 0�� � 0�� , 0�� -! 0"1$��� � 0��2&�B for �3(4*5,6. , and

,17�- ��(879(:. -
09; -=<"1$���$# 09;>&�B , i.e., there is at least one maybe transition on some letter of

� . For �  �����?*� , we write 0 @� �BA 0�� to denote 0 = �� � A�ADC 0�� , and 0 @� � # 0�� to denote

0 =E@� � � A6=
��)�$# A =F@� � � A40�� , i.e., there is at least one maybe transition on � . For � .� � and

�  �����?*� , we write 0 �� �BA 0�� to denote 0 = @� �BA
A = ���� A2A6= @� �BA2A40�� , and 0 �� � # 0�� for

0 = @� � # A = ���� � A = @� � � A40�� or 0 = @� � � A = ����$# A6= @� � � A�0�� , i.e., the maybe transition precedes

or is on � along the path from 0 to 0 � . For �" ������� �?�� , we extend � �GA to words in the same

way as for ��� A . For �+ � � 
 � , let H� � � if � .� � and H� �+I if � � � . For �  ������� �?�� and

�  �� � 
 � , we often write � ���� A�&� to mean 0KJ ���� A 0�J � and similarly for � �GA . Transitions

on the thin arrow ��� A are referred to as simple transitions, and transitions on the thick arrow
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� �BA are referred to as observable transitions.

To compare a model with another one with an augmented alphabet, we must hide the addi-

tional actions in the second model and then use observational refinement – effectively, refine-

ment that ignores differences in the precise amount of � transitions.

Definition 5. (Observational Refinement) 1 is an observational refinement of 0 , written

0 ��� 1 , if � 0 � � 1 and = 0 � 1 A is contained in some refinement relation � � � � �
for which the following holds for all �  ��	��
� and all = 0 �(1 A  �� :

��� = 0 ���� � 0�� A�� =�,1 � -�1
�
�� � � 1 � � = 0�� �(1 � A  �� A

��� =?1 ��)� � 1 � A�� =�,'0�� -�0
�
�� � � 0�� � = 0�� �(1 � A( �� A

Consider again the MTSs shown in Figure 2.1(a). For model
�

, if a process acquires the

write lock, then the read lock cannot be acquired until the write lock is released. Note that

this model does not indicate that processes are actually allowed to acquire the write lock, as

these transitions are maybe. Hiding the actions ����	�#��%$&	�������� and ������#��%$�	��������� results

in an MTS just like
�

, but with labels ���
	�#��%$&	����'������� and ������#��%$&	����'������� changed to � ?.

Furthermore, the resulting model is observationally refined by the MTS � :

� � � � � �����
	�#��%$&	�����������(������#��%$&	����'�����*� ��� � �

where the refinement relation is:

� � ��= � �
 ���
 A ��= � �B ���+B4A �&= � �� ��� � A ��= � �� ���
 A � �

In fact,
� � is also a refinement of � via the inverse of � . We say that

� � and � are observation-

ally equivalent, written
� ���	��� .

Figures 2.1(b) and 2.1(c) depict observational refinements that hold between models in

Figure 2.1(a). Each graph relates models with the same alphabet:

� � �����
	�������������������������������������*�

in Figure 2.1(b), and


 � �! "�����
	�#��)$&	������������������#��%$�	�����������
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in Figure 2.1(c). Nodes with multiple labels indicate models that are observationally equiva-

lent. Note that models
�

, � , ; , and � have the alphabet � . Consequently, they cannot be

related through observational refinement to models with an augmented alphabet



, i.e.
�

, � ,
�

, � , and � � . For this reason,
�

through � do not appear in Figure 2.1(c). However, these

models can be related through observational refinement to
�

, � ,
�

, � , and � � if the latter have

their alphabets restricted to � , and are depicted in Figure 2.1(b).

It is often desirable to abstract a model from transitions resulting from internal computation.

One way of doing this for MTSs is to use observation graphs [38], as is traditionally done for

LTSs [9]. Intuitively, observation graphs absorb the � transitions of a model into observable

actions, so that the exact amount of internal behavior is obscured.

Definition 6. (Observation Graph) Let � � 
 @ � �	��

 � I � . For an MTS 0 � =�� ���.��� � ����������
 A ,
the observation graph of 0 is the derived MTS 0 @ � =�� , �  "� I � , � �

@
, ���
@
, ��
 A , where � �

@
and

���
@

are defined as follows for all �� ��	��
 @ :
��� 0 @ ���� � 0��

@
� 0 �� � � 0��

��� 0 @ ����$# 0��
@
� 0 �� � # 0��

In particular, absorption of � transitions into visible actions is done by defining the relation

@��� � in 0 @ as the reflexive and transitive closure of
���� � in 0 , and @���$# as the transitive

closure of
����$# in 0 . Transitions on � .� I are defined by the relational products of @� � and

���� in 0 . In fact, it follows that 0 � � 1 if and only if 0 @ � 1 @ . That is, observational

refinement is intuitively about gaining some knowledge over the maybe behaviour in the ob-

servation graph of the original system, i.e., maybe transitions either stay maybe, or are refined

to true or false in the more refined model.

Larsen and Thomsen [37] define a parallel composition operator over MTSs, intended to

describe how models of two different systems work together.

Definition 7. (Parallel Composition) Let 0 � =�� � , � � , � � � , � � � , ��
 � A and 1 � =���� , ��� ,

� � � , � � � , ��
�� A be MTSs. Parallel composition ( � ) is a symmetric operator such that 0	��
 is
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TD
� �� ��� � ���� � �� ��� � � � � �

. � 1 MT
� �� ��� ����� � ������ � ���� � �� ��� � � � � � � .� �

MD
� ������ � ���� � ������ � � � � �

. � 1

TT
� ������ � � � � ������ � ���� � ������ � � � � � � .� �

MM
� �� ��� � � � � �� ��� � ���� � ������ � � � � � � .� �

Figure 2.3: Rules for parallel composition.

the MTS =�� � ����� , � �  ��� , � � , ��� , =���
 � �	��
�� A4A , where � � and ��� are the smallest relations

that satisfy the rules given in Figure 2.3.

For example, in Figure 2.1(a),
� � � � �

, assuming that �����
	�#��)$&	��������� , ������#��%$�	������������F
� � ��� . Note that in the rules in Figure 2.3, “T” stands for “true”, “M” stands for “maybe”,

and “D” stands for “don’t care”. In particular, rule TT captures the case when there is a true

(required) transition in both models, MT captures the case when there is a maybe transition in

one model and a true (required) transition in the other, and TD captures the case when there is

a required transition in one model on a non-shared action (i.e., on an action the other system is

not concerned with).

Proposition 1. (Properties of � [37]) Parallel composition satisfies the following properties:

1. (Commutativity) 0	� 1 � 1 � 0 .

2. (Associativity) = 0	� 1 A ��
 � 0	�2=?1 ��
 A .
3. (Monotonicity) 0 ��� 1 � 0	��
 ��� 1 ��
 .

2.3 Temporal Logics

In this section, we review the Kleene logic, and use it to define + -valued counterparts to the

temporal logics weak � -calculus and Fluent Linear Temporal Logic (FLTL), used for reasoning

about MTSs.

2.3.1 Kleene Logic

The truth values 	 (true), 
 (false), and � (maybe) form the Kleene logic [32], which we refer

to as � . The values 	 and 
 behave classically with respect to � (and),  (or), and � (negation).
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The following identities hold for � :

� � 	 � � � � 
 � 
 �  	 � 	 �  
 � � � � � � �

This logic has two useful orderings, ( (truth) and ( inf (information), which satisfy 
5( �/( 	 ,
and � ( inf 	 and � ( inf 
 . That is, maybe gives the least amount of information: it could be

either true or false .

2.3.2 Weak � -calculus

While shown in [29] to characterize strong refinement, the + -valued counterpart to � -calculus

( , / ) [33] is not well-suited for describing the observable behaviour of an MTS and does not

characterize observational refinement, because it makes no distinction between an observable

action and � . Instead, we define a + -valued extension of weak � -calculus ( , -/ ), which does

make such a distinction. The
�
-valued version of this logic has been shown to be a useful logic

for expressing properties of LTSs in [48].

+ -valued , -/ enables a formula to evaluate to an element of � . For a set of fixed point

variables Var, �  �� � 
 � and �  Var, an , -/ formula � has the grammar:

��� 	�� 
	� �
����� ������ ������� ���������� ����������� ����� ��� � ������� � � �

where ����� � and ��� � � are the next operators with intended meanings “exists a next state reachable

via an observable transition on � ” and “for all next states reachable via an observable transition

on � ”, respectively. We write � =!� A to denote a formula that might contain free occurrences of

the variable � . � and � represent the least and greatest fixed points, respectively, and we write

�%-"� �#� and � -$� ��� as abbreviations for ,��  �� � 
 -%�!�&� ��� and '(�  �	��
D-%��� � ��� .

Let � be a formula in , -/ , 0 � =�� � , � � , � � � , � � � , ��
 A be an MTS, and ) B ��) � � Var �
* =�� � A be environments mapping fixed point variables to sets of states. � �+�,� �.- / $ ( � �+�,� �10/!2 ) denotes

the set of states in 0 where � is true (false). The set of states where � is maybe is then

� � �'=3� �+�,� �4- / $  �� �+�,� �10/!2(A (i.e., � is not true or false).
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� � ��� � - / $
� � � � ���	��
�� � - / $

� � ���� � - / $��
� � 
�� � - / $� � ��� � 0 /!2 � � � ���	��
�� � 0 /!2 � � ���� � 0 / 2�� � � 
�� � 0 / 2

� ����� � - / $
� � � ������� ��� � � - / $

� � �"!#� �%$'& � � !(� �*),+ � �-. �
� � � � � ! � � � � � - / $

/10
� ��23� � - / $

� 4 B + 25/ � ������� � � � � 0 / 2 � � �"!#� � $76 � � !(� � ),+ � �-. �
� � . � � ! � � � � � 0 /!2 /10

� ��23� � 0 / 2 � 4 � + 25/ � � 8�239 � + 25/:� � - / $
�

�
�;�=<>� �?$ � � � � � - / $1@ A �"BDC <E� 0

� ��F � � � - / $
� � � � � � 0 /!2 � � 8�239 � + 25/:� � 0 /!2 �

�
�;�=<>� � $ � � � � � 0 / 2 @ A �"BDC <E� 0

Figure 2.4: + -valued semantics of , -/ .

Definition 8. ( + -valued Semantics of , -/ ) For an MTS 0 , a formula � in , -/ , and environments

) B and ) � , � �$� � �4- / $
� � � and � �+�,� �10/ 2 � � � are defined as shown in Figure 2.4, where �  Act @ ,

and ) � �+� � � � is the same environment as ) � except it maps � to � .

� B  � � , ��� � ��� and � � � � =!� A are defined through negation: � B  � � � � � B � � � � , �+� � ��� �
� �!�&� � � � , and ��� � � =�� A � � ��� � � = � � A . The value of � in 0 is its value in the initial state. We

omit the environments from � �+�,� �1- and � �+�,� � 0 to mean that ) B and ) � map every � in Var to � and

� � , respectively. Finally, if 0 is an LTS, the semantics in Definition 8 reduces to the standard
�
-valued semantics in [40].

For example, the property �!�&� � 	 (which expresses the ability to perform an observable

transition on � ) evaluates to true in both G and H in Figure 2.5, even though the transition on �
in H is preceded by a � . In particular, �!�&� � and �+� � � allow zero or more � transitions before and

after the observable action � , but the precise amount of internal computation is unimportant.

Additionally, the property �+� � � �JI � � 	 is maybe in G because G 
 ���� �(G B is the only transition on

� from the initial state and G B K���$# G B is the only transition on 3 from G B . Finally, � I3� � �!�&� � 

is false in L because L 
 @� � �ML 
 and �� � � �!�&� � 
 � �10 . That is, , -/ properties that explicitly

involve internal activity always allow for the possibility of staying in the same state, even if no

self-loops on � are present.
�
-valued , -/ is a fragment of , / [40]. For the + -valued counterparts of these logics, this

means that for every formula � - in , -/ there is a formula � J in , / such that � �+� - � � - � � �+� J � � -
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G : � �� ��� �
:
� � �� � � � :

+ * ?	 
 ���

Figure 2.5: MTSs for illustrating temporal properties.

and � ������� ��� j�� ������� ��� . The translation procedure follows from the fact that internal activity can

be expressed through extra fixed point computations in ��� .

Additionally, � �� subsumes the expressive power of temporal logics CTL � � and LTL � �
(i.e., CTL and LTL [7] without the next operators), and these relationships hold for the ! -

valued versions of the logics as well.

2.3.3 FLTL

Although � �� is very expressive and in fact characterizes merging MTSs (see Chapter 4), it can

be quite subtle and difficult to use. We therefore define a ! -valued version of FLTL [16], which

is a simple yet expressive logic for capturing properties that combine state and action, intended

for use as our primary specification language.

A fluent Fl is defined by a pair of sets " Fl, the set of initiating actions, and # Fl, the set of

terminating actions:

Fl j%$&" Fl |'# Fl ( where " Fl |'# Fl ¨ Act and " Fl ) # Fl j+*-,

A fluent may be initially true or false as indicated by the InitiallyFl attribute, where a lack of

this attribute indicates that the fluent is initially false. Every action .®± Act induces a fluent,

namely . j/$0.�| Act ¶ k1.t� ( .
Given the set of fluents 2 , a well-defined FLTL formula is defined inductively using the

standard boolean connectives, 3 (next), 4 (strong until), 5 (eventually), and 6 (always), as

follows:

Fl 798:�;79�=<?>@7A�=BC>D7E3F�G7H��4I>+715J�;7K6F� |
where Fl ±L2 . For an infinite trace M j@.s¥ , .-N , . O , ,P,P, , over Act and some Q�±SR , we write MUT for

the suffix of M starting at . T . Let V be the set of infinite traces over Act. An MTS W induces a
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� � � Fl � � 
 � � Fl � � � � � � � = � � � ��A � = � � � � A
� � � ���� � = � � � ��A � � ��� � � � B � � �

� � � �  � � = � � � �5A  = � � � � A � � � ��� � � , *�� ��- � � � � � � ' � ( 7 , * - � ; � � �

Figure 2.6: Semantics for the satisfaction operator.

function 0 �	� � � that assigns values to traces.

Definition 9. (Value of a Trace) A trace � in
�

is a true trace in 0 (i.e., 0 = � A � 	 ) if there

exists an infinite sequence �20K� � such that 0 
 � 0 and 0�� �  � � �.0��'&�B for all *  �
 . A trace

� is a maybe trace in 0 (i.e., 0 = � A � � ) if � is not a true trace, but there exists an infinite

sequence �20�� � such that 0 
 � 0 , 0�� �  � � � 0 �'&�B for all *  �
 , and 0�; � <� � # 0);>&�B for at

least one 7" 
 . A trace � is a possible trace in 0 (i.e., 0 = � A���� ) if � is a maybe or true

trace in 0 . Finally, a trace � is a false trace in 0 (i.e., 0 = � A � 
 ) if it is not a possible trace.

Given a trace �  � , a suffix � � satisfies a fluent Fl, denoted � � � Fl, if and only if one of

the following conditions holds:

� = InitiallyFl �>=.' 7  �
 - � ( 7 ( * � ��;�� �� Fl A�A

� =�,17  �
 -�= 7 ( * � ��;  �����A � =.' .  �
 - 7 , .�( * � �%��� �� Fl A

In other words, a fluent holds at a time instant if and only if it holds initially or some initiating

action has occurred, and in both cases, no terminating action has yet occurred. Note that the

interval over which a fluent holds is closed on the left and open on the right, since actions have

an immediate effect on the value of fluents.

The + -valued semantics of FLTL over an MTS 0 is given by the function �!- � � that, for

each formula �  FLTL, returns the value of � in 0 .

Definition 10. ( + -valued Semantics of FLTL) For an MTS 0 , the function � - � � �
FLTL ��� �

is defined as follows:
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� � � � �������� = 0 = � A � = � � � ��A4A �

where the semantics for � � � � is given in Figure 2.6.

The operators � and � are defined as � � � 	 � � and � � �	� � � .

Hence, 0 satisfies � (i.e., � � � � � 	 ) if every possible trace � in 0 satisfies � , since

0 = � A � � and � � � � for any such � , making the implication = 0 = � A � = � � � �5A�A true.

0 refutes � (i.e., � � � � ��
 ) if there is at least one true trace � that does not satisfy � , since

0 = � A � 	 and � .� � � for any such � , making the implication = 0 = � A � = � � � ��A4A false.

Otherwise, the value of � in 0 is maybe (i.e., � ��� � � � ). Note that if � is a false trace in 0 ,

then = 0 = � A � = � � � �5A�A is necessarily true, regardless of whether � satisfies � . Hence, we

can ignore false traces in 0 when determining the value of � ��� � , as we would expect. Also,

only infinite traces are considered when determining the value of an FLTL formula. If 0 is an

LTS, the + -valued semantics in Definition 10 reduces to the standard
�
-valued semantics given

in [16].

For examples of FLTL properties, refer to models G , H , and L in Figure 2.5 and consider the

FLTL property � B �
� I (eventually the fluent induced by action 3 is true). � B is true in G and H
(i.e, � � B �����	� � B �� � 	 ) because the only possible trace in both models is � B � � , 3 , 3 , 3 ,

� � �
, and

clearly � B � � � B . � B is maybe in L (i.e., � � B ��� � � ) because L admits the additional maybe

trace � � � � , � , � , � � � , and � � .� � � B . The property � � ��� I is false in G because � , 3 , 3 , 3 ,
� � �

,

is a true trace in G that does not satisfy � � . Finally, the property � I � � � , which says that a

transition on 3 cannot be performed until a transition on � is not possible, is true in all three

models. Note that the equivalent , -/ property is ��� � = �!�&� � 
  =3� I � � 
 � �%-"� � 	 � � -$� ��� A4A , which is

much less intuitive.

2.3.4 Model-Checking

In the previous example, � B is a maybe trace in G and a true trace in H , yet both models satisfy

� I . If the maybe transition G B K�)�$# G B is refined to false, there are no possible traces in G , and
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therefore G satisfies every FLTL formula. On the other hand, if it is refined to true, then � B is a

true trace that satisfies � . Hence, G satisfies � , regardless of the value of G B K���$# G B .
We can use the above intuition to implement model-checking of our + -valued temporal

logics. For an MTS 0 , define 0 & to be the LTS obtained from 0 by converting all maybe

transitions into required transitions, and 0 � to be the LTS obtained from 0 by converting all

maybe transitions into false transitions. The following theorem is adapted from [4].

Theorem 1. ( + -valued Model-Checking via 0 & and 0 � ) For an MTS 0 and �  �, -/ or

�  FLTL:
���

If � is true in 0 & and 0 � , it is true in 0 ,
���

if � is false in 0 & and 0 � , it is false in 0 ;

+ � otherwise, � is maybe in 0

Hence, model-checking of these logics can be done by two calls to a classical model-

checker, e.g, + -valued FLTL model-checking can be supported by the LTSA tool [41].

For example, consider �>� ��� � � �JI � � 	 . If � is false in 0 � , then there exists 0 � � such that

0 � �� � � 0�� � and 0�� � K.� � . Since true transitions in 0 � correspond to true transitions in

0 , � is also false in 0 . Now suppose that � is true in 0 � . There may exist 0 � such that

0 �� � # 0�� and 0�� K.� � , which would not be taken into account in 0 � . Therefore, we must

also check if � is true in 0 & to conclude that � is true in 0 . Note that only checking if � is

true in 0 & is insufficient as well. It may be that case that whenever 0 �� � � 0�� , it is only

true that 0 � K� � # , making � maybe in 0 . Hence, the value of � must be checked in both 0 &

and 0 � in order to conclude its value in 0 .

If � is an FLTL formula, it is sufficient for � to be true (false) in 0 & ( 0 � ) in order

to conclude that � is true (false) in 0 , since true traces in 0 & and possible traces in 0
correspond, and true traces in 0 � and true traces in 0 correspond. If � is false in 0 & and

true in 0 � , then � is maybe in 0 .



Chapter 3

Merging Models

In this chapter, we review merging modal transition systems. Section 3.1 defines the notion

of a common observational refinement as the basis for merge. Section 3.2 defines the least

common refinement as the merge, if it exists, and a minimal common refinement otherwise.

Finally, Section 3.3 discusses the role of the greatest common abstraction in the case that the

least common refinement does not exist, and we end with a summary in Section 3.4.

Figure 3.1 provides an abstract summary of the concepts discussed in this chapter. In this

figure, arrows depict observational refinements (i.e., an edge from 
 to � indicates that � is a

refinement of 
 ). All models are assumed to be defined over the same alphabet, and transitive

relations are not depicted.

3.1 Common Observational Refinement

The intuition we wish to capture by merging is that of augmenting the knowledge we have

of the behaviour of a system by taking what we know from the two partial descriptions of

the system. Clearly, the notion of refinement underlies this intuition as it captures the “more

defined than” relation between two partial models. Hence, merging two models of the same

system is about finding a common refinement for these models, i.e., finding a model that is

more defined than both.

20
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It is possible that the models being merged have different alphabets, and therefore merging

these models results in a model whose alphabet is a superset of the original ones: both models

are extended with the information that the other has. When comparing such a merge to one

of the original systems, transitions on actions that are out of the scope of this system are ef-

fectively the same as internal activity (i.e., transitions on � ). In addition, the precise amount

of such activity arising from hiding actions that are out of the scope of one system is irrele-

vant, as this behaviour is unobservable to the system in question. Therefore, when comparing

a merge to one of the original systems, differences in internal activity occurring before and

after observable behaviour should, in essence, be ignored. Hence, the merge of two partial be-

havioural models should be an observational refinement of each of the original systems, with

the appropriate alphabet restrictions.

Definition 11. (Common Observational Refinement) An MTS 
 is a common refinement (CR)

of MTSs 0 and 1 if � 
���=�� 0  � 1 A , 0 � � 
 @ � 0 and 1 ��� 
 @ � 1 .

We write ;*<>= 0 � 1 A to denote the set of common refinements of models 0 and 1 . From

this point on, when we refer to common refinement, we always mean observational refinement.

Refer to Figure 2.1 for the following example. MTS � specifies the writers policy for

acquiring a read-write lock: i) readers exclude writers, ii) writers exclude readers, iii) at most

one writer can have the lock at any given time, iv) the number of concurrent readers allowed

is not known. We can merge � with the MTS � that states that there can be at least two

concurrent readers. Model � is a common refinement of these models. Note that � � � � ���
���
	�#��%$&	������������������#��%$�	����������� holds via the relation

� � ��= � 
 � � 
 A ��= � B � � B4A �&= � � � � � A ��= � 
 � � � A ���

and � ��� � holds via the relation

� ����= � 
 � � 
 A ��= � B � � � A �&= � �6� � � A ��= � �6� � B�A � �

� is a refinement of � and � and thus can simulate the required behavior of both models. For

example, like � , � allows up to two readers to access the lock concurrently, e.g., it admits the
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(a)
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M

Figure 3.1: Common refinements for consistent models 0 and 1 : (a) 0 and 1 have the least

common refinement; (b) 0 and 1 have no least common refinement.

trace

���
	�����������������(���
	����������'�������(��������������������*�(��������������������*� � � �

As in model � , � allows one writer to access the lock (e.g., it admits the trace ���
	�#��%$&	��������� ,

������#��%$&	��������� ,
� � �

). On the other hand, � and � can simulate the possible behaviour of � ,

i.e., � cannot introduce behaviour that is proscribed in � or � . If � had possible traces allow-

ing concurrent access to the lock by readers and writers, (e.g., ���
	�#��%$&	����'�������&���
	�������������� ),

then � would not be a refinement of � or � , as such traces are not possible in either model.

3.2 Merge as a Minimal Common Refinement

Note that common refinement allows model � to proscribe traces that were possible in models

� or � . In other words, � may not be able to simulate the possible behaviour of � and � .

For example, the trace ���
	��������������� , ���
	�������������� , ���
	��������������� ,
� � �

, which allows three

or more concurrent readers, is a possible trace of � and � , but is proscribed in � . Conse-

quently, the merged model � introduces knowledge that neither of the original models has,

e.g., proscribing three or more concurrent readers. Instead, we prefer a least refined common

refinement of the original models. For example, model � � is a common refinement of models �
and � that, unlike � , does not restrict the trace ���
	��������������� , ���
	��������������� , ���
	��������������� .



CHAPTER 3. MERGING MODELS 23

Model � � is called the least common refinement of � and � .

Definition 12. (Least Common Refinement) An MTS 
 is the least common refinement (LCR)

of modal transition systems 0 and 1 if 
  ;�<"= 0 �(1 A , � 
 � � 0  � 1 , and for any

�  ;�<>= 0 � 1 A , 
 ��� � @ � 
 .

Note that least common refinements are unique up to observational equivalence, and hence

we refer to the least common refinement, denoted , ;*< � � � for models 0 and 1
An LCR of the original systems may not exist for two reasons. Firstly, it is possible that

no common refinement exists. Secondly, a common refinement may exist, but there may be no

least one. We discuss these possibilities below.

Consider the models in Figure 2.1(a). Models
�

and � do not have a common refinement:

suppose some model 
 is a common refinement of
�

and � , with � 
 �H� � � � � , and let

� � ���
	�������������� , ���
	��������������� . We know that � -� � � ��� , and because � ��� 
 , there

exists 
 � such that 
 -� � � 
 � . Since
� ��� 
 , trace � should be possible in

�
, which is a

contradiction. In fact, model
�

is inconsistent with all models that give concurrent read access

to more than one process, namely � , � ,
�

, � and � � . Merge can therefore only be defined for

consistent models.

Definition 13. (Consistency) MTSs 0 and 1 are consistent if there exists an MTS 
 such that


 is a common refinement of 0 and 1 .

Now refer to the models shown in Figure 3.2(a). Models � and � do have common re-

finements, e.g., � , , and � , but no LCR. Intuitively, to find , ;*<�� � � , we must refine � into

�4� so that =�� � � �2��43)�2A ?� � � . Hence, we must transform the maybe transition on � in � to a

required transition, and also transform one of the maybe transitions on � or 3 . If we transform

all three transitions, we obtain the model � . However, if we choose not to transform the tran-

sition either on � or on 3 , then we obtain the models � and , , which are both refined by, but

not equivalent to � . These common refinements are not comparable (neither is a refinement
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Figure 3.2: (a) Example MTSs; Relationships between models: (b) with respect to the alphabet

k�zs� ; (c) with respect to the alphabet k°u�|&%�| z�� .
of the other) because of the different choices made on which non-shared maybe transition to

make required.

It is not possible to find common refinements of ' and ( which are less refined than )
and � . For example, � is less refined than both but is not a refinement of ( . Hence, we refer

to ) and � as the minimal common refinements of ' and ( . Note that models
�

and

�

are incorrect attempts of building minimal common refinements of ' and ( . These are not

refinements of ' because they can both transit on z from the initial state through (a sequence

of) required transitions, whereas ' cannot do so from its initial state.

Definition 14. (Minimal Common Refinement) An MTS � is a minimal common refinement

(MCR) of MTSs W and * if � ±,+.-®�&W | * ¦ , ´ �µjª´ W � ´ * , and there is no MTS /10243 �
such that / ±5+.-®�0Wª| * ¦ and / @ ´ �76 3 � .

Remark 1. �8+.-:9<; = is also an MCR of W and * . In addition, if � is the only MCR of W and

* (up to equivalence), then it is �8+.-,9<; = . Finally, if W and * are consistent, then they have

an MCR.

We write
� +.-®�&W | * ¦ to denote the set of MCRs of models W and * . We are now ready

to formally define merge.
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Definition 15. (Merge) The merge of two consistent MTSs 0 and 1 , written 0 � 1 , is either

, ;�< � � � , it if exists, or one of the models in ��;�<"= 0 � 1 A .

In Chapter 4, we give sufficient conditions for the uniqueness of merge (i.e., for the LCR to

exist), and in Section 3.3, we discuss a model that can be used as a starting point for the case

when merge is not unique.

3.3 Handling Multiple Merges

By definition of merge, if two models are consistent but have no LCR, their merge could result

in any of their MCRs. However, any choice of MCR rules out the others. Hence, it is helpful to

find a model that characterizes the point at which incompatible decisions must be made in order

to merge the two models and produce an MCR. This model is the greatest common abstraction

(GCA) of all MCRs: the most refined model from which we can arrive through refinement to

any one of the MCRs.

Definition 16. (Greatest Common Abstraction) Let 0 and 1 be consistent MTSs. An MTS

� is a common abstraction of all MCRs of 0 and 1 if � � � � 0  � 1 and for all 
  
��;*< = 0 � 1 A , it holds that � ��� 
 . A common abstraction (CA) � of all MCRs of 0 and

1 is the greatest common abstraction (GCA) if for any other common abstraction �� , it holds

that ��� ��� � .

Remark 2. By Remark 1, , ;*< � � � is also the GCA of all MCRs of 0 and 1 .

We denote the GCA of all MCRS of 0 and 1 by
� ; � � � � .

Proposition 2. (Existence and Uniqueness of GCA) The GCA between two MTSs always exists

and is unique up to observational equivalence.

Note that the GCA itself may not be a common refinement of the models being merged

(see 3.1). For example,
� ; � � � � (see Figure 3.2(a)) is model

*
. This model is not a refinement



CHAPTER 3. MERGING MODELS 26

of � , but could be refined to become one. Further, any refinement of this model rules out the

possibility of arriving at one of the MCRs � or , .

The relationship between models � through � of Figure 3.2(a) is shown in Figures 3.2(b)

and 3.2(c). As in Figures 2.1(b) and 2.1(c), each graph relates models with the same alphabets.

Since � does not have � or 3 in its alphabet, it cannot be compared to the other models unless

these have their alphabets restricted to � � . Hence, � does not appear in Figure 3.2(c), where

arrows depict observational refinement between models over the alphabet �2�'�@3�� ��� . However,

� does appear in Figure 3.2(b), where the compared models have the alphabet ����� .

3.4 Discussion

In conclusion, what should be the result of merging two consistent modal transition systems,

0 and 1 ? If , ;*< � � � exists, then this is the desired result of the merge. However, if 0 and 1
are consistent but their LCR does not exist, then the merge process should result in one of the

MCRs of 0 and 1 . Model merging should support the modeller in choosing which MCR is

the most appropriate. This can be done by producing
� ; � � � � and supporting its elaboration

to produce a particular MCR (see [49]). This would allow the modeller to choose, possibly

after validating with stakeholders, which is the appropriate way of combining two different

descriptions of the behaviour of the same system.



Chapter 4

Characterizing Merge

In this chapter, we address several questions related to merge: how can the consistent be-

haviours from two consistent models be described? When is the merge of consistent models

unique? What temporal properties are preserved in merge? How can we use temporal proper-

ties to determine if two systems can be merged?

Section 4.1 defines consistency relations between two models that captures the notion of

a common refinement, and discusses the role of the largest such relation. Section 4.2 gives

sufficient conditions for the uniqueness of merge. Section 4.3 proves that refinement is logi-

cally characterized by , -/ and preserves FLTL, and discusses the practical implications of these

results for modellers. Finally, Section 4.4 uses , -/ properties to characterize consistency.

4.1 Consistency Relations

In this section, we define and discuss issues related to consistency relations. These relations

are used throughout the thesis: in Section 4.2 to describe when merge is unique, in Section 4.4

to characterize consistency in terms of , -/ properties, and in Chapter 6 to define two merge

algorithms.

In order to merge two consistent models, it is necessary to understand precisely which of

their behaviours can be integrated. In particular, a state in any common refinement of two

27
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Figure 4.1: Example MTSs.

models is intuitively a combination of two consistent states: one from each of the original

models. In W j �R�.9 , ¡ 9 , £�� 9 , £�� 9 , ¤�¥ 9 ¦ and * j �R�.= , ¡ = , £�� = , £ � = , ¤ ¥ = ¦ , states

¤)± �.9 and �L± �.= are consistent if and only if there is a common refinement of W � and

*"! . Therefore, *#! @ ´ W should be able to simulate required behaviour at W � with possible

behaviour, and vice-versa. A consistency relation, which is similar to a two-way refinement

relation, is used to describe such pairs of reachable consistent states of two models.

Definition 17. (Consistency Relation) A consistency relation between MTSs W and * is a

binary relation $ 9 = ¨&%a'% such that �0W | * ¦ ± $ 9 = , and the following conditions hold

for all ( ± ����� � and all �0Wª| * ¦ ± $ 9 = :

1. W
)*j,+ � W K B ( ± ´ * � k��M� + -/. N |0.�O |P,P,P, |1. T |12 N�|329O |P,P, , |3254�±³� Act � ¶ ´ W ¦76

* )8:9j,+ � * 8:9 6;6;6 )8=<j>+ � * 8=< )*j,+ � *"? 9 )? 9j,+ � 6;6;6
)?A@j,+ � * K B

�&W K | * K ¦ ± $ 9 =SBCB,DE6��&W | * 8�F ¦ ± $ 9 =SBGB,DH6��&W K | * ? F ¦ ± $ 9 =
2. * )*j,+ � * K B ( ±·´ W � k��M� + -/. N§|1.�O�|P,P, , |1. T |32 N�|12HO | ,P,P, |12:4�±³� Act � ¶ ´ * ¦I6

W )8:9j,+ � W 8 9 6;6;6
)8=<j,+ � W 8=<

)*j,+ � W ? 9
)? 9j,+ � 6;6;6

)?A@j,+ � W
K B

�&W K | * K ¦ ± $ 9 =SBCB,DE6��&W 8 F | * ¦ ± $ 9 =SBCB,DE6��&W ? F | * K ¦ ± $ 9 =
3. W *j,+ � W K B (GJ± ´ * � k��M� + - * K 6 * Kj>+ � * K B®�0W K | * K ¦ ± $ 9 =
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4. 1 �� � � 1 � � � � � 0  "� � � � ,'0 � -�0 @� � � 0 � � = 0 � � 1 � A  �� � �

Hence, there is a consistency relation between 0 and 1 if whenever 0 can transit on a

shared action � through a required transition to 0 � ( 0
�
�� � � 0�� ), then 1 @ � 0 can transit on

a possible transition to 1 � ( 1 @ � 0
�
�� � � ) such that 0�� and 1 � are consistent. However, this

means that 1 can transit on � , possibly preceded and succeeded by zero or more observable

transitions on actions not in � 0  >� � � . In order for 0
�
�� � � 0�� and 1 @ � 0

�
�� � � 1 � to be

consistent, the successors of 1 preceding � must be consistent with 0 , and the successors of

1 succeeding � must be consistent with 0 � (Condition (1)). The case when 1 can transit on

a shared action through a required transition is analogous to Condition (1). If 0 can transit

on a non-shared action � through a required transition, then 1 can internally transit through

possible transitions to some 1 � that is consistent with 0 � (Condition (3)), since, as discussed,

transitions out of the scope of one system are in essence the same as internal activity to that

system. Finally, the case when 1 transits on a required transition is analogous (Condition (4)).

For example, consider the models in Figure 4.1 and assume that � � �!�2��43)� and � < �
��� � �2��435�6��� . ����� � ��= � 
 �4< 
 A , = � �&�4< B4A � is a consistency relation between

�
and < .

The transition < 
 ���� � < B is matched in
�

with
� 
 �� � # � � , and cannot be matched with

� 
 ����$# � B because
� B and < 
 are inconsistent on 3 , violating Condition (1) in Definition 17.

This matching makes sense because no common refinement of
�

and < includes a transition on

3 (e.g., <  >;�<>= � ��< A ). On the other hand, there is no consistency relation between models
�

and � . Suppose ���
	 was such a relation. Since � 
 ���� ���DB and � � �� �  � � � , the pair

= � 
&���DB@A must be in ����	 (Condition (4)). � B ��)� ��� � must be identified with
� 
 ����$# � B

because � � requires 3 and
� � proscribes it, and hence = � B �� � A is in ���
	 (Condition (2)). The

only internal behaviour at � � is a self-loop on I , which forces
� B ���� �

� � to be matched

with � � @� � � � � (Condition (1)), i.e., = � �6��� � A must be in ���
	 . However, since � � requires 3
and

� � proscribes all actions, Condition (2) is violated, and therefore there is no consistency

relation between
�

and � . Note that there is also no common refinement of these models.

Conditions (1) and (2) in Definition 17 require that the intermediate states are identified in
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the consistency relation, e.g., = 0 � 1��  A  � � � and = 0 � � 1��  A  � � � in Condition (1). For

example, refer to models < and
�

in Figure 4.1 with � < � �2��435�6��� and � � � �2��435�(�'� .
There is no consistency relation between these models because the only possible match for the

transition < 
 ���� � < B is the sequence
� 


����$# � B ���� �
� � , where ��� � < . However, <"B and

� B are inconsistent on 3 , violating Condition (1), and resulting in inconsistencies between these

models. In particular, Conditions (1) and (2) guarantee that when a single observable transition

in one model is identified with a sequence of observable transitions in the other model, possibly

on non-shared actions, then the states corresponding to the transitions on non-shared actions

are not sources of inconsistencies.

We now prove that our notion of the consistency relation is complete, i.e., consistent models

are precisely those that have a consistency relation between them.

Theorem 2. (Consistency Relations Characterize Consistency) Two MTSs are consistent if and

only if there is a consistency relation between them.

Proof:

We illustrate the case for equal vocabularies; the case for different vocabularies is similar. Let � and
�

be MTSs such that �	� - � � .

+�
 /
Assume � and

�
are consistent and let � !��� + ��� � /

. � � � � with refinement relation
� � , and

� � � � with refinement relation
� � . Define � � � as follows:

� � � - � + ��� � / $'& � � ) + ����� � / ! � � � + � ��� � / ! � � 0 9
(4.1)

We show that � � � is a consistency relation between � and
�

by showing that Conditions (1) and (2)

in Definition 17 hold. Clearly + ��� � / ! � � � . Let � ! + ��� � �
� / � ��� 0

.

�
�
�-. � � � . & � � ) � �

�-. � � �
� + � � � � � / ! � � �

(Equation (4.1))
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 �
�
�-. � � � . & � � ) � �

�-. � � �
� & � � ) + � � ��� � / ! � � � + � � ��� � / ! � �

(
� � � � )


 �
�
�-. � � � . & � � ) �

�
�-. � � � � + � � ��� � / ! � �

( � � � � )

- � 9

Condition (2) is proven in a similar fashion.

+ . /
This part of the proof is constructive, utilizing the � ��� operator presented in Section 6.4 for build-

ing a common refinement. In particular, if there is a consistency relation between � and
�

, then by

Theorem 11, ��� ��� � !  � + ��� � /
.

There is a notion of the largest consistency relation between two consistent models, which

is defined as the union of all consistency relations between them. Intuitively, the largest con-

sistency relation describes all reachable consistent behaviours between two consistent models.

For example, consider < and � in Figure 4.1 over the vocabulary �2��6��� . � ��� �!��= < 
&��� 
 A ,
= < B ���!B@A , = < B ��� � A�A � is the largest consistency relation between them, but ����� � � ��� �
��= < B ��� � A � is also a consistency relation. These two relations give rise to different common

refinements of < and � , namely � and � � . Unlike � � , model � does not rule out the possibility

of action � occurring after action � . We discuss this issue in more depth in Section 6.2, where

we give an algorithm for building the largest consistency relation between two models.

4.2 Uniqueness

We now give sufficient conditions for the merge of two consistent systems to be unique.

Recall that models � and � in Figure 3.2 do not have an LCR due to the fact that in

any LCR, at least one non-shared maybe transition in � must be transformed into a required

transition, yet multiple incompatible choices of which transition to transform are available.
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The following condition restricts the existence of such choices.

Definition 18. (Multiple-Maybe Condition) Let 0 and 1 be MTSs and let � � � be the largest

consistency relation between them. 0 and 1 satisfy the multiple-maybe condition if it is not

the case that for all = 0 � 1 A  � � � , Conditions (1) – (3) or Conditions (4) – (6) simultane-

ously hold, where �� 0� 0 F � 1 :

1. 1 �� � � � 0 �.� � ,

2. '*0�� - , �  =A� 0 �I� 1 A C -�0 -� �BA 0�� �� � � � = 0�� � 1 A( � � � � = � � � A ,

3. ,'0 � � 0 � � - , � B ��� �G =A� 0 �I� 1 A C -�= � B .� � � A � = 0 - $� � # 0 � �� � � A
� = 0 - 2� � # 0�� � �� � � A � = 0�� � 1 A  �� � ���>= 0�� � � 1 A( �� � � �

Conditions (4) – (6) are analogous to (1) – (3) with the roles of 0 and 1 reversed.

In Condition (1), 0 proscribes the shared action � , whereas 1 requires it. Condition (2)

says that if 0�� is reachable from 0 through one or more non-shared actions, and 0 � can

transition on � , then 0 � is only reachable via non-shared maybe behaviour. Condition (3)

guarantees that there are at least two different � � � and 0 � ’s in Condition (2), i.e., two different

non-shared maybe paths to states in 0 that can transition on � . If these three conditions hold,

then for any 
 in ��;�<"= 0 � 1 A , some non-shared maybe behaviours in 0 must be required

behaviours in 
 in order to guarantee that 
 @ � 1 �� � � (i.e, that 
 refines 1 ). However,

multiple choices of which maybe behaviours to convert to required behaviours in 
 exist, and

therefore multiple non-equivalent MCRs exist. Finally, Conditions (4) – (6) are the same as

Conditions (1) – (3), except the choices are made in 1 instead of 0 .

Consider models � and � in Figure 4.1 over the vocabulary �2��435�6��� . Both � and � have

two non-equivalent successors on � from the initial state, i.e., � ��*� ����B and � ��)� ��� �
such that ��B .�	��� � , and similarly for � . However, both � B and � � are consistent with � B
and � � . In particular, � is an MCR of � and � that corresponds to combining � B with � B ,
and � � with � � , whereas � corresponds to combining � B with � � , and � � with � B . � .

� ��� ,
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and therefore , ;*<�� � � does not exist. This example illustrates that different MCRs may arise

when there are multiple ways of combining non-deterministic behaviour on a shared action.

Definition 19. (Determinacy Condition) Let 0 and 1 be MTSs, � � � be the largest consis-

tency relation between them, and ��� � 0 F � 1 . 0 and 1 satisfy the determinacy condition

if for all = 0 �(1 A  �� � � , it is not the case that for some �  �! "� � � :

1. 0 @ �
�
�� � � 0 � � 0 @ �

�
�� � � 0 � � @ � � 0 � .�	� 0 � � ,

2. 1 @ �
�
�� � � 1 � @ � � 1 @ �

�
�� � � 1 � � @ � � 1 � .�	� 1 � � ,

3. ��= 0�� � 1 � A �&= 0�� � � 1 � � A � � � � ��� =�= 0�� � 1 � � A  �� � �  = 0�� � � 1 � A  �� � � A .

Intuitively, if the determinacy condition is violated at = 0 � 1 A , then without loss of gener-

ality, there is a successor 0 � of 0 via a shared action � that is consistent with at least two

non-equivalent successors of 1 via � , say 1 � and 1 � � . In addition, one of these successors, say

1 � � , is consistent with a successor 0 � � of 0 via � that is not equivalent to 0 � . Hence, if 0��
is combined with 1 � , then 0 � may or may not be combined with 1 � � , because 1 � � could be

combined with 0 � � instead. Since 0 � .� � 0 � � and 1 � .� � 1 � � , the different combinations of

non-determinism may lead to non-equivalent behaviours in 0 � � 1 � and 0 � � 1 � � , and hence

to the existence of multiple incomparable MCRs.

Finally, consider models
�

and � in Figure 4.1 and assume that � � � ����� and ��� � � 3)� .
Models � , � , and � over the vocabulary � 35�6��� are in ��;*< = � �	� A , yet none of them are

equivalent. Intuitively, , ;*<�
 � � does not exist because both models can transit on non-shared

actions:
� ���� � and � K�)� � , where �  �� � ����� and 3$ ��� ��� � . Hence, choices exist

on the order in which these actions appear in an MCR: the MCR � corresponds to putting the

transition on 3 first, the MCR � corresponds to putting the transition on � first, and the MCR

� corresponds to allowing both orders. The following condition restricts the existence of such

choices.
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Definition 20. (Non-Shared Condition) Let 0 and 1 be MTSs and let � � � be the largest con-

sistency relation between them. 0 and 1 satisfy the non-shared condition if for all = 0 �(1 A! 
� � � , it is not the case that 0 � $� � � and 1 � 2� � � , where � B  "� 0 �I� 1 and � �I � 1 �G� 0 .

The three conditions defined in this section are sufficient to prove the existence of the LCR

between two consistent models.

Theorem 3. (Sufficient conditions for the existence of LCR) If 0 and 1 are consistent MTSs

that satisfy the multiple-maybe condition, the determinacy condition, and the non-shared con-

dition, then , ;�< � � � exists.

Proof:

Let � and
�

be consistent MTSs with ��� - � � , and let � � � be the largest consistency relation

between them. Assume there exist � and � in �  � + ��� � /
such that ���� � � . Since ��� � � , there

are two possible cases:

1. & � ! �	� � �
� � ��� 0 ) & � � ) � ��	� � � � � 6 � � ),+ �

�
�-. � � � . � � � � � � / :

� ��	� � � � � � ! �  � + ��� � /
(Definitions 5 and 14)

. & � � � � � ) �
�
�-. � � � � � �

�-. � � �
� � � � � � � � � � � � � � � � � - � � � � �

( � � ! �� + � � � � � / )
. & � � � � � ) �

�
�-. � � � � � �

�-. � � �
� + � � � � � / ! � � � � � � - � � � � � 9

Without loss of generality, assume �
�
�-. � � � , otherwise � would not require � .

�
�
�-. � � � � � ! � �� + ��� � /

(Definitions 5 and 14)

. & � � ) �
�
�-. � � � � � � � � � � � � ! �  � + ��� � /
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(Definitions 5 and 14)

. & � � � � � ) � �
�-. � � � � � � � � � � � � �

�- . � � � �
� � � � � � � � � � � - � � � � � �

( � � ! �� + � � � � � � / )
. & � � � � � ) � �

�-. � � � � � �
�-. � � � �

� + � � � � � � / ! � � � � � � - � � � � � � 9

We can assume �
�� � � � � � and �

 � � � � � � � both exist; otherwise, we repeat the proof for � -
� � and

� - � � or � - � � and
� - � � � until they do. Hence:

� � � � � - � � � � � - � � � � � �
(By (1))

. � � � � � - � � � � � � - � � � � � �
(Proposition 4 in Section 5.1, since � � and � � are LCRs)

. � � �� � � � � 9

In addition, there is no � � � such that �
�
�-. � � � � and � � � - � � � � � , otherwise � � � � � � � , con-

tradicting ( �
/
. Since + � � � � � / ! � � � , there exists � � � such that �

�
�-. � � � � and + � � � � � � / !

� � � (i.e., in � ,
� � is combined with � � � instead of � � ). Hence, � � �� � � � � ; otherwise,

� � - � � � � � � � � � � � � � - � � , contradicting ( � ). Putting the above together:

�
�
�-. � � � � �

�
�-. � � � � � � � �� � � � � � � �

�-. � � �
� � �

�-. � � � �
� � � �� � � � �

� � + � � � � � / � + � � � � � � / � + � � � � � � /10 < � � � �

which violates the determinacy condition.

2. & � ! �	� � �
� � ��� 0 ) & � � ) � �� � � � �

� 6 � � ),+ �
�
�-. � � � . � � � � � �

/
:

Analogous to Case 1.

When �	� �- � � , the proof is similar, but with additional subcases in Cases � and � above, depend-

ing on whether � is a shared or non-shared action. In Case � above, if � is a shared action, either the

determinacy condition or the multiple-maybe condition is violated, and if � is a non-shared action, the

non-shared condition is violated. Case � is analogous.
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Note that the conditions in Theorem 3 are reasonable because they are consequences of the

modelling formalism. Specifically, the multiple-maybe condition is simply a consequence of

allowing multiple non-equivalent paths to the same state. The non-shared condition is a con-

sequence of the interleaving nature of MTSs, i.e., it is impossible to express simultaneous

transitions in an MTS, such as “ 0 transits on � and I ”, without specifying the order in which

the actions occur. Finally, non-determinism in MTSs is intuitively due to different choices of

how to abstract part of the system away. As these choices cannot be guaranteed to be equiva-

lent, non-determinism in both models on the same action may lead to multiple MCRs, as in the

determinacy condition.

It should also be noted that the multiple-maybe condition and the non-shared condition are

necessary conditions: if either one is violated, then the LCR does not exist. On the other hand,

the determinacy condition is sufficient but not necessary. This is due to the fact that 1 � .� � 1 � �
does not imply that 0 � � 1 � .� � 0 � � 1 � � . Therefore, different choices of how to combine

non-deterministic behaviour may lead to equivalent behaviours, even if the successors are not

equivalent. We leave for future work strengthening the determinacy condition to be a necessary

condition as well.

4.3 Property Preservation

The logic , -/ characterizes observational refinement and therefore merge. In the + -valued

world, this means that an MTS 0 is refined by an MTS 1 if and only if all true and false , -/
properties in 0 are preserved in 1 .

Theorem 4. ( , -/ Characterizes Refinement) If 0 and 1 are MTSs over the same vocabulary

with initial states ��
 � and ��
�� , then:

0 ��� 1 � ' �" , -/ -�=���
 �  � �+�,� � - � ��
��  � �$� � � - A � =���
 �  � �+�,� � 0 � ��
��  � �$� � � 0 A

Proof:

Follows from the fact that � / characterizes strong refinement [29], � � � � if and only if � @ � �
�
@ ,
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and � !
� -/ is true (false) in an MTS � if and only if � � ! � / is true (false) in � @ , where � � is obtained

from � by replacing every occurrence of a weak next operator with its strong counterpart.

Remark 3. Theorem 4 does not give insight into preservation of maybe properties: they can

become true, false, or remain maybe in the more refined model.

To illustrate Theorem 4, refer to the models in Figure 4.1. � �	� � with refinement relation

� � ��= � 
&� � 
(A , = ��B � �!B4A , = � �&� � � A � . It can be verified that all true and false properties in �

are preserved in � and vice-versa (e.g., �!�&� � � � � � 	 and �+� � � �!�&� � 
 ). On the other hand, ��� � �
since � can still perform a transition on 3 after every transition on � , whereas �!
 ���� � �GB and

�!B K.� � . In particular, �!�&� � � I � � 
 is true in � and only maybe in � .

The logic FLTL is also preserved under refinement. We begin with the following lemma.

Lemma 1. (Preservation of Trace Values) If 0 and 1 are MTS’s over the same vocabulary:

0 ��� 1 � ' �  � -�0 = � A ( � 1 � 1 = � A

The above lemma states that the information ordering on the values of traces is preserved under

refinement, which is fundamental for proving preservation of any linear time logic.

Theorem 5. (Preservation of FLTL) If 0 and 1 are MTSs over the same vocabulary:

0 ��� 1 � ' �" FLTL - � ��� � ( � 1 � � ��� � �

Proof:

Suppose � � � � and let � !
FLTL.

+�� � � � - �;/� +�� � � ��� � /
(Definition 10)

- +�� � � � - �;/� + &�� !	� ) � +
� /��>� � � �$ - � /



CHAPTER 4. CHARACTERIZING MERGE 38

(Definition 10 and
� +
� /��>� . � +
� /��E�

by Lemma 1)

. + 6 � ! � ) � +
� /��>� . � $ - � / � + &�� ! � ) � +
� /��>� � � �$ - � /
(Law of Contradiction)

- � 9

� � � � - �
(Definition 10)

- &�� ! � ) � +
� / - � � � �$ - �
( � +
� / - � . � +
� / - �

by Lemma 1)

. &�� ! � ) � +
� / - � � � �$ - �
(Definition 10)

- � � � � - � 9

Although FLTL is preserved by refinement, it does not characterize it (adapted from [19]).

For example, refer to models � , � , � , and � in Figure 4.1 all over the vocabulary �2�'�@3�� ��� .
Suppose that FLTL characterizes refinement, i.e., if 0 � � 1 , there is an FLTL property that

is true in 0 and false in 1 . Since � � ��� , there exists � in FLTL that is true in � and false in

� . By the fact that ��� � � and � B ��� , the property � � is true in � and false in � . However,

� �	�	� , contradicting Theorem 5. Hence, FLTL does not characterize refinement.

Theorems 4 and 5 are fundamental to understanding the properties of merge from a stake-

holder’s point of view. In particular, properties that are invariant under stuttering [1] (i.e.,

eventualities, invariants, and so forth) are guaranteed to be preserved, regardless of the un-

derlying semantics of the logic in which they are expressed. However, properties that rely on

precise amounts of internal activity, i.e., immediate nexts or counting properties, cannot be

guaranteed to be preserved by a merge. The case study in Chapter 7 illustrates the utility of
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these results on a realistic example.

4.4 Characterizing Consistency with Temporal Properties

In this section, we use Theorem 4 to characterize the case when two models can be merged

using properties that distinguish between two systems, i.e., that evaluate to true in one system

and false in the other.

As two models are consistent if and only if they have a common refinement, models over the

same vocabulary must agree on all concrete behaviours, i.e., there should be no distinguishing

, -/ property between them.

Theorem 6. (Consistency Characterization: Same Vocabularies) Two MTSs over the same

vocabulary are consistent if and only if no , -/ property distinguishes them.

Proof:

+ . /
If � and

�
are consistent with MCR � , and there is � !

� -/ that distinguishes them, then � would

be true and false in � by Theorem 4.

+�
 /
If � and

�
are inconsistent, then by Theorem 10 of Section 6.3, Algorithm � in Figure 6.4

returns � !
� -/ that distinguishes them.

For example, � and � in Figure 4.1 are inconsistent because after every transition on � in

� , a transition on either 3 or � is possible, whereas � 
 ���� ���!B and �!B proscribes both 3 and

� . The property ����� ��=3� I � � 	 �� � � � 	�A is false in � and true in � .

Before a distinguishing property is meaningful for models over different vocabularies, both

models must first be restricted to their shared vocabulary, because the presence of non-shared

actions may cause a property to distinguish between consistent systems. For example, consider

models � and � in Figure 4.1 and assume that ��� ��� 3)� and � �!� � 3�� ��� . These models

are consistent because � is a common refinement, but the property � I � � 	 is true in � and false



CHAPTER 4. CHARACTERIZING MERGE 40

7 : � ��� �
:

� ��� � :
* +� � � ���� � :

* + ?� � �

Figure 4.2: Inconsistent MTSs � and � ; 	 and � that are not in +.-®�
�w|���¦ .
in � . Additionally, it does not make sense to formulate a distinguishing property involving

a non-shared action, as one system has no knowledge of the action (e.g., $R� ( 3� cannot be

evaluated in � ). Therefore, to characterize consistency over different vocabularies, we must

establish that W and * are consistent if and only if W @ � ´ W ) ´ * ¦ and * @ ��´ W ) ´ * ¦
are consistent. By Theorem 6, it follows that W and * are consistent if and only if no � ��
property distinguishes W @ ��´ W ) ´ * ¦ and * @ ��´ W ) ´ * ¦ . We separate the soundness

and completeness of this characterization into Theorems 7 and 8.

Theorem 7. (Consistency Characterization (Soundness): Different Vocabularies) If W and *
are consistent MTSs, then W @ ��´ W ) ´ * ¦ and * @ � ´ W ) ´ * ¦ are consistent.

Proof:

If ����������������� , then ��� �!�"��� @ #$��� @ #�� by Lemma 2 in Section 5.1, where #&%(')�+*,'-� .

Hence, � @ # and � @ # are consistent.

The other direction of Theorem 7 does not hold in general. For example, consider models

� and � in Figure 4.2 with z J±ª´.� and v J±ª´/� . There is no common refinement of � and � .

Intuitively, any � in +.-®�
�w|���¦ must satisfy � 0j,+ � � K for some � K that proscribes % ; otherwise,

it would not refine � . Therefore, � @ ´.� Kj,+ � � K for some � K that proscribes % , whereas � can

still transition on % after every transition on 1 . This violates the conditions for refinement in

Definition 5, and therefore no common refinement exists. On the other hand, � @ ��´/� ) ´2��¦ and

� @ ��´3� ) ´2� ¦ are equal, and therefore consistent.

In the previous example, the inconsistency between models � and � is caused by the fact that

transitions on % in � are only proscribed after following a transition on z (unobservable to � ),

whereas transitions on % in � are only proscribed after following a transition on v (unobservable
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to 7 ). Since � .� � , these are clearly inconsistent policies. Furthermore, if 7 transits on � , the

resulting system 7 B is inconsistent with 8 , and if 8 transits on � , the resulting system 8 B is

inconsistent with 7 . Note that models 9 and : are incorrect attempts at building a common

refinement of models 7 and 8 , since upon restricting to the vocabulary � 35�6��� , both 9 and : can

internally transit to a state that proscribes 3 , and hence neither refines 7 (and similarly, neither

refines 8 ).

It is also possible that a single non-shared action is the source of an inconsistency between

two models. For example, consider models < and
�

in Figure 4.1 with � < � �2��435�6��� and

� � � �2��435�(�'� . There is no common refinement of these models since there is no consistency

relation between them. On the other hand,
�

@ =�� < F � � A is refined by < @ =�� < F � � A with

the refinement relation ��= � 
&��< 
 A ��= � � ��< B�A � , and therefore they are consistent. Intuitively, the

inconsistency between < and
�

is caused by the fact that action � (unobservable to < ) must

occur before
�

can transition on � , yet all successors on � in
�

are inconsistent with the starting

point of the required transition on � in < . Hence, no common refinement of these models exists.

On the other hand, the source of the inconsistency is removed when the alphabet is restricted,

since � is replaced by � .

Theorem 8. (Consistency Characterization (Completeness): Different Vocabularies) Let 0
and 1 be MTSs and let � � � 0 F � 1 . Suppose that 0 @ � and 1 @ � are consistent and

let � � @ � � @ � be the largest consistency relation between them. If the following conditions

hold for all = 0 # @ � � 1 1 @ � A( �� � @ � � @ � , then 0 and 1 are consistent:

1. 0 # �� � � 0 # � � �  � 0 �G� 1 � = 0 # � @ � � 1�1 @ �"A( �� � @ � � @ � ,

2. 1�1 �� � � 1�1 � � �� � 1 �I� 0 � = 0 # @ � � 1�1 � @ � A! � � @ � � @ � .

Proof:

Define the set � � � as follows:

� � � - � + � # � � 1 / $�+ � # @ � � � 1 @ �
/ ! � � @ � � @ �

0 9
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We show that � � � is a consistency relation between � and
�

. Clearly + ��� � / ! � � � . Let

+ � # � � 1 / ! � � � .

� #
�
�-. � � # � � � !

� � ��� 0 � + � # � � 1 / ! � � �
( � !

� � ��� 0
and Definition of � � � )

. � # @ �
�
�- . � � # � @ �

� � !
� � ��� 03� + � # @ � � � 1 @ �

/ ! � � @ � � @ �

(Definition 17)

. & � 1 � ) � 1 @ �
�
�-. � � 1 � @ �

� + � # � @ � � � 1 � @ �
/ ! � � @ � � @ �

(Properties of @, Condition (2), and Definition of � � � )

. & � 1 � ) &�� B � 9�9�9 � � � ��� B � 9�9�9 ��� ; ! Act ��� �	� ) � 1 �� $-. � � � $
�� 2-. � )�)�) ��  -. � � �  

�
� �  

�
�-. � � � $

�� $-. � )�)�) �� <-. � � 1 �
� 6�� ),+ � # � � �	� / ! � � � �

6�� ),+ � # � � � � � / ! � � � � + � # � � � 1 � / ! � � �

� # �-. � � # � � � ! ��� � � � � + � # � � 1 / ! � � �
(Definition of � � � )

. � # �-. � � # � � � ! ��� � � � � + � # @ � � � 1 @ �
/ ! � � @ � � @ �

(Condition (2))

. + � # � @ � � � 1 @ �
/ ! � � @ � � @ �

(Let
� 1 � - � 1 and Definition of � � � )

. & � 1 � ) � 1 @-. � � 1 �
� + � # � � � 1 � / ! � � � 9

Hence, Conditions (1) and (3) in Definition 17 hold for � � � , and Conditions (2) and (4) are shown

similarly. Therefore, � and
�

are consistent by Theorem 2.

We have seen that for models over the same vocabulary, consistency characterization with

respect to , -/ is as expected: the two systems cannot disagree on a property. For models over

different vocabularies, however, many subtle issues arise with respect to non-shared actions. In

particular, distinguishing properties are only meaningful for equal vocabularies, and therefore
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the systems must be restricted to their shared alphabet. In addition, we have seen that incon-

sistencies can be ultimately caused by non-shared actions, which are removed upon reducing

to the shared alphabet. Therefore, some of the allowable behaviours on these actions must be

restricted in order to characterize consistency in this context.

Because FLTL is preserved by, but does not characterize refinement (see discussion after

Theorem 5), it does not characterize consistency. In particular, if two MTSs over the same vo-

cabulary are consistent, no FLTL property distinguishes them (i.e., � of Theorem 6 holds for

FLTL), but there is not necessarily an FLTL property that distinguishes between inconsistent

systems (i.e., � of Theorem 6 does not hold for FLTL). In addition, if an FLTL property distin-

guishes two MTSs restricted to their shared alphabet, then the original systems are inconsistent,

but the other direction does not hold (i.e., Theorem 8 does not hold for FLTL).



Chapter 5

Algebraic Properties

In practical applications, there may be several system components and relationships between

them (e.g., through refinement or other compositional operators). In order for merge to ap-

plied in such cases, the merge operation must satisfy certain properties. For example, if we

elaborate the merge operands, will the merge of the elaborated views preserve the properties

of the original merge? Does the order of merge matter? What is the relationship to parallel

composition? In this chapter, we study such algebraic properties of the � operator, defined in

Section 3.2, both for the case when the LCR of the operands exists, and when multiple non-

equivalent MCRs exist. In the former case, we show that most of the desired properties hold

(Section 5.1). In the latter case, the existence of multiple non-equivalent MCRs impacts the

desired properties, but we show that the right choices of merge can be made in order to guar-

antee a particular algebraic property (Section 5.2). These results are applied to the case study

described in Chapter 7.

5.1 Properties of Least Common Refinements

Throughout this section, whenever we write 0 � 1 , it is assumed that 0 and 1 are consistent

MTSs and � results in , ;*< � � � . Note that by Theorem 3, the properties in this section are

guaranteed to hold when all merge operands satisfy the non-shared condition, the multiple-

44
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maybe condition, and the determinacy condition. We begin with a useful lemma.

Lemma 2. � � � � = 0 @ � ��� 1 @ � � 0 @ � ��� 1 @ � A .

That is, refinement is preserved by alphabet reduction.

Proposition 3. For MTSs 0 , 1 , and 
 , the � operator has the following properties:

1. (Idempotency) 0 � 0 � � 0 .

2. (Commutativity) 0 � 1 � � 1 � 0 .

3. (Associativity) = 0 � 1 A � 
 � � 0 � =?1 � 
 A .

Proof:

(1) and (2) follow from Definition 12. (3) Let � be �
�� � & � � � .

� � � � � � @ + � � � � � /
(Definition 12)


 � @ + � � � � � / !  � + � � � /
(Definition 11)


 � � � � @ � � � � � � � @ � �
(
� � � + � � � /

@ � � � � � @ � � by Lemma 2)


 � � � + � � � /
@ � � � + ��� � / � � � @ + ��� � � � /� � � � � @ � �

(Definition 15 and Definition 12)

- � 9

Since, � � � + � � � /
@ ��� � � � @ ��� by Lemma 2, it follows that � � + � � � / � � � by

Definition 12. The other direction is proven similarly.

A useful property of � is monotonicity with respect to observational refinement:

= 0 ��� 
 A � =?1 ��� � A � 0 � 1 ��� 
 � � � (5.1)



CHAPTER 5. ALGEBRAIC PROPERTIES 46

� :
� �� � :

� ���� � :
*��

:
* + ?�� 
 � :

* +� � :
* + ?� �

�
:
* + ?� �� � :

* +� 	 :
+ * ?
 
� � � �  ���



:
+ * ?
 

��� � � � ��

�
:
+ * ?
 

� � ���

Figure 5.1: Example MTSs for algebraic properties.

This allows for elaborating different viewpoints independently while ensuring that the proper-

ties of the original viewpoints put together still hold.

Proposition 4. (Monotonicity) The operator � is monotonic with respect to observational

refinement, i.e., Equation (5.1) holds.

Proof:

���  3�� ����� �� 3 � ��� ��� �� 3�� � �
(Definition 12)

� ���  3�� ����� �� 3 � ��� � � � � ������� �����
(Properties of � and � , and Definition 11)

� ���  3�� � �  3 � � � � � @ ')� ����� �� 3 ��� �� 3 � � � � � @ '-� �
(Since �  3 � � � � � @ ' � , �� 3 � � � � � @ ')� , ' � %(')� , and ')� %('-� )

% ���

We now look at distributing a parallel composition over merging. Assume that two stake-

holders have developed partial models W and * of the intended behaviour of a component

W . Each stakeholder will have verified that some required properties hold in a given context

(other components and assumptions on the environment � N , , ,P, , ��� ). It would be desirable if

merging viewpoints W and * preserved the properties of both stakeholders under the same

assumptions on the environment, i.e., in �0W � * ¦! � N" �6;6;6! ¢��� . This reasoning would be

supported if:

�0W# §� N� I6;6;6� §���w¦$� � *  §� N� 6;6;6� §���q¦ 6 3 �0W � * ¦� §� N� I6;6;6� §��� , (5.2)
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Unfortunately, Equation (5.2) does not hold in general, unless some restrictions are imposed

on the model vocabularies.

Example 1. Consider models � , 
 , and � in Figure 5.1 and assume that ��� � � . 
 ��� is

always equivalent to 
 , and by rule MT in Figure 2.3, so is = 
 ��� A � � . On the other hand,


 � � is equal to 
 and � � � is equal to � , by rules MT and TD, respectively. It follows that

=�� � � A � = 
 � � A is equivalent to � , and hence: =�� � � A � = 
 � � A�� � � ��� 
 �	� =�����
 A � � .

The desired property fails due to the parallel composition of � and � . Since � does not

belong to ��� , parallel composition does not restrict the occurrence of � when composing �

with � . However, this is methodologically wrong if we assume that � and 
 model the same

component (which is reasonable because � and 
 are being merged). From 
 , we know that

the system modelled by � can communicate over � . Hence, � should be included in ��� ;

otherwise, the communicating interface between the components modelled by � and � is

under-specified. Therefore, when composing two partial models in parallel, the stakeholders

must include the full alphabet of the component they are modelling in the alphabet of their

partial descriptions, i.e., we must assume that � 
 � � 0 F � 1 , where 
 � 
 B � -�-�- ��
 1 , for

the desired property to hold.

Proposition 5. (Distributivity) If 0 , 1 , and 
 are MTSs such that � 
 � � 0 F � 0 , then

= 0 ��
 A � = 1 ��
 A ��� = 0 � 1 A ��
 .

Proof:

+ � � � / � + � � � / � � + ��� � / � �
(Definition 12)


 + � � � / � � !  � + � � � � � � � /
(Definition 11)


 + � � � � � + + ��� � / � � / @ �	� / � + � � � � � + + � � � / � � / @ � � /
(Since � � < �	� � �

�
)


 + � � � � � + ��� � /
@ ��� � � /� + � � � � � + � � � /

@ � � � � /
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(Proposition 1)


 + � � � + � � � /
@ �	� / � + � � � + ��� � /

@ � � /
(Definition 15)

- �,9

Remark 4. If 0 and 1 are consistent, then 0 ��
 and 1 ��
 are consistent by monotonicity of

parallel composition (Proposition 1) and the fact that � 
 � � 0 F � 1 .

The other direction of Proposition 5 does not hold:

= 0 � 1 A ��
 ��� = 0	��
 A � =?1 ��
 A �

Intuitively, the composition of 0 with 
 may restrict the behaviours of 0 , for instance,

making certain states of 0 unreachable. It is possible that 0	��
 �!1 ��
 does not refine

= 0 � 1 A ��
 because inconsistencies are caused by those states of 0 that are unreachable in

0	��
 .

Example 2. Assume that models 
 , � , and � in Figure 5.1 are over the vocabulary �2��6��� .
Models 
 and � are consistent and their LCR is � . So, = 
 ��� A � 
 � � � by the rules in

Figure 2.3. On the other hand, 
 � 
 � 
 and � � 
 � 
 , and therefore by Idempotency,


 � 
 ��� � 
 �	��
 . Since � ��� 
 , the result follows.

In Example 2, 
 and � have a disagreement on � after following the maybe transitions on

� , which results in the merge � . The source of this disagreement is removed upon composing

both 
 and � with 
 , because 
 restricts the behaviour of � on � . The merge of 
 � 
 and � � 

therefore allows more behaviours, and does not refine = 
 ��� A � 
 .

5.2 Properties of Minimal Common Refinements

In this section, we present algebraic properties of � without assuming the existence of the

LCR. The algebraic properties are therefore stated in terms of sets and the different choices
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that can be made when picking an MCR. Idempotence is the only property in Section 5.1 that

still holds, since an LCR always exists between a system and itself. The rest of the properties

discussed in Section 5.1 require some form of weakening.

Commutativity does not hold in general: if 0 and 1 are any two MTSs that have at least

two different MCRs, then certainly not every 0 � 1 is equivalent to every 1 � 0 . On the

other hand, ��;*<"= 0 � 1 A is always equal to ��;*<"=?1 � 0 A , and therefore the same MCR can

be chosen.

Proposition 6. (Commutativity) ��;*<>= 0 � 1 A � ��;�<>= 1 � 0 A .

Associativity fails for the same reason that commutativity fails. The strongest form of

associativity in terms of sets is:

' �  ��;*<>= 0 � 1 A - ' �  ��;*<>=?1 � 
 A - ��;�<"= � � 
 A � ��;*<>= 0 � � A � (5.3)

The following example shows that Equation (5.3) does not hold in general.

Example 3. Consider models � , � , and � in Figure 5.1 and assume that � � � ����� , ��� �
� 3)� , and ��� � � �� . Model � is in ��;*< = � ��� A , and there is no �  ��;�<"=�� � � A such that

��;*< =�� ��� A � ��;*<"=�� ��� A .

In Example 3, � requires that action � precedes action 3 in every trace, and therefore so

does every MCR of � and � , since neither 3 nor � is in ��� . However, because 3 is not in

��� , � � , or ��� , for every � in ��;�<>=�� � � A , there is an MCR of � and � such that action

� follows action 3 . Hence, ��;�<>=�� ��� A .� ��;*<"=�� ��� A for any � in ��;�<"=�� � � A . In fact,

Example 3 shows that there exists 0 , 1 , and 
 such that:

, �  ��;�<>= 0 � 1 A - ' �H ��;*<>= 1 � 
 A - ��;*<"= � � 
 A .� ��;�<>= 0 � � A �

Therefore, set equality of ��;*< = � � 
 A and ��;�<"= 0 � � A for associativity is not possible.

A weaker form of associativity in terms of sets is:

' �  ��;*<"= 0 � 1 AD- ' �H ��;*< = 1 � 
 A -�= ;*<>= � � 
 A .� � � ;*< = 0 � � A .� ��A (5.4)

� ��;*<>= � � 
 A F ��;�<"= 0 � � A .� � �
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This form does not require that ��;*<>= � � 
 A and ��;*< = 0 � � A be equal, but rather that they

share an MCR (up to equivalence) if the models are consistent. Unfortunately, Equation (5.4)

does not hold either, illustrated by the following example.

Example 4. Consider models 
 and � in Figure 5.1 with � 
 ������� and ��� ��� 3)� . We show

that 
 � =�� � 
 A .� � = 
 � � A ��
 for � and
�

in ��;*< = 
 ��� A . , ;*<�� � � is � , and , ;*< � � � is
�

. Because � .
� �

�
, every MCR of � and 
 is incomparable with every MCR of 
 and

�
, and

so the desired form of associativity fails.

Examples 3 and 4 show that neither set equality nor fixing both � in ��;*<>= 0 � 1 A and

� in ��;*<>=?1 � 
 A are possible for associativity. Instead, the following proposition outlines

two forms of associativity, without set equality, that fix some � in ��;�<"= 0 � 1 A or some � in

��;*< = 1 � 
 A , but not both.

Proposition 7. (Associativity) If 0 , 1 , and 
 are MTSs, then:

1. ' �  ��;�<"= 0 � 1 AD- , �  ��;*<"=?1 � 
 A -�= ��;�<"= � � 
 A F ��;*< = 0 � � A .� ��A , and

2. ' �  ��;�<"= 1 � 
 A - , �  ��;�<"= 1 � 
 A -�= ��;�<"= � � 
 A F ��;*<>= 0 � � A .� ��A ,

where ;�<"= � � 
 A .� � and ;�<>= 0 � � A .� � .

Proof:

(Sketch) (1) Let �
! �  � + ��� � /

and � ! � �� + � � � / . By Definition 14,
� � � � @ � � and

� � � � @ ��� - � @ + ��� � � � /
. Hence, by Lemma 2,

� � � � @ � � � � � @ � � , and similarly

it follows that � � � � @ � � . Since � @ + � � � � � / is in
�� + � @ � � ��� @ � � / by Lemma 2, there

exists � in � �� + � � � / such that � � � � @ + � � � � � / (every CR refines some MCR). Hence, �
is in

�� + ���	� /
. Therefore,

�� + � � � / �
 � + ���	� /

is non-empty, which implies that � �� + � � � / �
�  � + ���	� /

is non-empty. (2) is proven similarly.

Condition (
�
) in Proposition 7 says that for any 0 �>1 , there exists some 1 � 
 such that the

same MCR for = 0 � 1 A � 
 and 0 � =?1 � 
 A can be selected. Condition (
�
) is analogous
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to condition (
�
) with the roles of 0 � 1 and 1 � 
 reversed. Note that Proposition 7 reduces

to Proposition 3 if all sets of MCRs are singletons (up to equivalence).

Monotonicity is also disrupted by multiple MCRs. It is not expected that any choice of 0 �

1 is refined by any choice of 
 � 1 when 0 is refined by 
 , because incompatible decisions

may be made in the two merges. Rather, there are two desirable forms of monotonicity: (
�
)

whenever 0 � 1 is chosen, some 
 � 1 can be chosen such that 
 � 1 refines 0 � 1 ;

and (
�
) whenever 
 � 1 is chosen, then some 0 � 1 can be chosen such that 
 � 1 refines

0 � 1 . Form (
�
) does not hold, as the following example shows.

Example 5. Models 
 and � in Figure 5.1 with � 
 � ����� and � � � � 3)� are consistent,

and their merge 
 � � may result in model � . Also, 
 � � � (assuming that ��� � ����� ) and

models � and � are consistent. However, , ;�<�� � � is equivalent to � over � 35�6��� , and since

� ��� � , no MCR of � and � that refines � can be chosen.

Form (
�
) fails because there are two choices of refinement being made. On the one hand,

by picking a minimal common refinement for 0 and 1 over others, we are deciding over

incompatible refinement choices. On the other hand, we are choosing how to refine 0 into


 . These two choices need not be consistent, leading to failure of monotonicity. This tells us

that choosing an MCR adds information to the merged model, which may be inconsistent with

evolutions of the different viewpoints that are represented by the models being merged. Form

(
�
) always holds, as stated below.

Proposition 8. (Monotonicity) If M, N, P, and Q are MTSs, then:

0 ��� 
 � 1 ��� � � ' �  ��;*< = 
.� � A - , �  ��;*<>= 0 � 1 A - � ��� �

Proof:

� � � is always in
�� + ��� � /

, and thus refines some MCR of � and
�

.

Thus, once 
 � � is chosen, there always exists some 0 � 1 that it refines, and so the
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properties of 0 and 1 are preserved in 
 � � . Note that if ��;�<"= 0 �(1 A is a singleton set,

Proposition 8 reduces to Proposition 4, as expected. In practical terms, this means that if the

various viewpoints are still to be elaborated, the results of reasoning about one of their possible

merges (picked arbitrarily) are not guaranteed to carry through once the viewpoints have been

further refined.

We now address distributivity in the context of multiple MCRs. Similar to monotonicity,

there are two desirable forms of this property: (1) given any � in ��;�<"= 0 ��
 �(1 ��
 A , there is

some � in ��;�<>= 0 �(1 A such that � is refined by � ��
 ; and (2) given any � in ��;*<>= 0 � 1 A ,
there is some � in ��;�<"= 0	��
.� 1 ��
 A such that � is refined by � ��
 . Form (2) does not hold,

as the following example shows.

Example 6. Consider models � , � , � , and � in Figure 5.1 and assume that ��� � ���� ,
and � ��� ��� �!� �'��I&�������'� . Additionally, consider models � , � , � , and � in Figure

3.2 over the vocabulary � �'��I&�������� . By the rules in Figure 2.3, � � � � � and � � � � � .

Furthermore, recall from Section 4.2 that �H ��;*<"= � � � A . On the other hand, , ;�<
	 � � is

� , and � � � � � , which is not a refinement of � .

In the previous example, , ;*<�	 � � exists by Theorem 3 because the required transitions on

� in these models restrict the choices that can be made with respect to combining the non-

determinism on action � : ( �IB and � B ) and ( � � and � � ) are consistent, but neither ( �IB and � � )
nor ( � � and �IB ) are consistent. Upon composing with � , the source of the inconsistencies

between ( �GB and � � ) and ( � � and �IB ) is removed, and consequently, , ;*< 	 � � � � � � does not

exist. In particular, similar to Example 2 in Section 5.1, parallel composition may remove

inconsistencies between 0 and 1 , allowing for more common refinements of 0	��
 and 1 ��
 .

On the other hand, Form (
�
) holds, and is of particular utility when elaborating models

from different viewpoints, as we show in the case study in Chapter 7.

Proposition 9. (Distributivity) If 0 , 1 , and 
 are such that � 
 � � 0 F � 1 , then:

' �  ��;*< = 0 � 1 AD- , �  ��;*<"= 0	��
.� 1 ��
 A - � ��� � ��
 �
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Proof:

Analogous to Proposition 8.

In this section, we have shown that when � does not necessarily produce an LCR, most

properties studied in Section 5.1 fail to hold. Intuitively, the existence of inequivalent MCRs

implies that merging involves a choice that requires some form of human intervention: a choice

which is loaded with domain knowledge. This impacts the results on algebraic properties when

moving from LCRs to MCRs. However, we have shown that the right choices of MCRs can

usually be made in order to guarantee a particular algebraic property, if desired.



Chapter 6

Algorithms

In this chapter, we describe algorithms related to constructing merge that are intended to sup-

port the process outlined in Figure 6.1. We begin by motivating the use of observation graphs

for constructing merge (Section 6.1). In the subsequent sections, we describe four algorithms:

Algorithm 1 for checking consistency and computing the largest consistency relation (Section

6.2), Algorithm 2 for building an , -/ property that distinguishes between inconsistent systems

(Section 6.3), the � ��� operator for building a common refinement (Section 6.4), and the � ���

operator for building a common abstraction of all MCRs (Section 6.5). Finally, Section 6.6

discusses the results obtained in this section and their relationship to the desired merge process

in Figure 6.1.

6.1 Using Observation Graphs to Construct Merge

MTSs are equipped with two transition relations that describe simple transitions (i.e., on ��� ).

On the other hand, we are interested in building a common observational refinement, which

preserves observable transitions (i.e., on � � ). In particular, to build a merge of two MTSs, it

may be necessary to combine observable transitions that pass through states that must be omit-

ted from the merge because they are the source of an inconsistency. For example, models � and
�

in Figure 6.3 are consistent with consistency relation ����� � ��=��D
&� � 
 A , =�� �&� � B@A , =�� � � � � A �

54
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MERGE. (The Merge Process)

Input: MTSs � and
�

Output: If � and
�

are consistent, return the desired merge;
Otherwise, return a distinguishing property.

1: If ( � and
�

are consistent (Algorithm 1))
2: If (stakeholders do not require minimality)
3: return element of

�� + ��� � /
( � ��� operator);

4: Else
5: If (LCR exists (Theorem 3)) return �

 � � � � ( � ��� operator);
6: Else return �

�� � � � ( � ��� operator);
7: Else return distinguishing property (Algorithm 2);

Figure 6.1: An algorithm for the merge process.

and
�

is in ;*<>=�� � � A . The transition
� 
 ���� �

� B is matched in � � � with �D
 �� � # � � , and

cannot be matched with �4
 ����$# � B because � B and
� B are inconsistent. Thus, in order to

merge � and
�

, we must combine �4
 �� � # � � and
� 
 ���� �

� B without including intermediate

states in � . Thus, merging these two transitions cannot be done by combining multiple simple

transitions, as some lead to inconsistencies. Instead, we must build the transition relations for

the merged model from the observable transition relations, which are naturally computed using

the observation graphs of the original systems. In particular, the transition � ����$# � in � @ can

be consistently combined with � ���� �
�

in
�
@ (see Figure 6.3).

In addition, consistency relations and distinguishing properties in , -/ also utilize observ-

able transitions. Hence, through this chapter, our algorithms are stated in terms of observable

transitions, which can be obtained by first computing the observation graphs. Doing so for an

MTS 0 � =�� � , � � , � � � , � � � , ��
 � A using standard techniques for computing products and

transitive closures of relations takes time � =�� � � � � � � � � � A [9].

6.2 Building the Largest Consistency Relation

Ideally, information from the stakeholders should be used to compute a consistency relation.

Behaviours that can be combined via a consistency relation � � � , but that do not affect whether
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� � � is a consistency relation may not be desirable behaviours of the merge, and may overly

complicate it. Instead, we show how to compute the largest consistency relation between two

systems, which captures all possible areas of agreement. This consistency relation can either

be used to construct the merge directly (see Sections 6.4 and 6.5), or can first be modified and

subsequently used to construct the merge. For example, ����� �!��= � 
 , � 
 A , = � B , � B A , = � B , � � A ,
= � � , � � A , = � � , � ��A , = � � , ���&A � is the largest consistency relation between

�
and � in Figure 6.3.

However, if it is known that = � B���� �&A should not be combined, then ���	� � ��= � B���� ��A � , which

is still a consistency relation by Definition 17, can be used instead.

Algorithm 1 (or 
������$��	����)��� ) in Figure 6.2 computes the largest consistency relation

between two MTSs. The algorithm takes three arguments: two MTSs 0 and 1 , and a set

� � � that is initially empty. We assume that pairs = 0 � 1 A have a �	��
	��� variable that is

initially set to �����5$��$&	���� . A possible transition in one model is fixed (Lines 5, 17, 24, and 26)

and recursively matched with (a sequence of) consistent possible transitions in the other model

(Lines 6 – 13, 18 – 20, 25 and 27), according to the conditions in Definition 17. This process

continues until all reachable states that can be combined are identified or until a disagreement

that makes the models inconsistent is found (Lines 14 – 16 and 21 – 23). Upon termination,

if 0 and 1 are consistent, � � � is the largest consistency relation between 0 and 1 and

Algorithm 1 returns 	����� ; otherwise, it returns ������
� .

For example, consider models
�

and � in Figure 6.3, and suppose 
������$��	����)��� (
�

, � ,

���	� ) is called, where ���	� is initially the empty set. The pair = � 

��� 
4A is not in ���	� , is

not 3�$����� ��
	����!�$"�'��� , and has not been ���
	����!�$"�'��� . Hence, Line 5 is reached. Because
� 
 ���� �

� B , the For loop on Line 5 considers
� B . Line 7 finds � B such that � 
 �� � � � B , and

therefore 
������$��	���)��� (
� B , � B , ���	� ) is called on Line 10. In 
������$��	����)��� (

� B , � B , ����� ), the

For loop on Line 5 considers
� � , since

� B K�)�$# � � . Line 7 searches for matching transitions

in � , but because � B cannot transition on 3 , Line 14 is reached. The set #�
	%��$'�% is empty,

but the transition
� B K���$# � � is not required (i.e., not the source of an inconsistency), and

so the algorithm continues. Since � B has no outgoing transitions, the pair = � B����IB A is added
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ALGORITHM 1. (Consistency Algorithm)

Input: MTSs � and
�

, and a set � � � (initially empty).
Output: if � and

�
are consistent, returns ������� and � � � is the the largest consistency

relation between � and
�

; otherwise, returns �	��
	��� .

1: ������������	������� ( � ,
�

, � � � )
2: If ( + ��� � / ! � � � or + ��� � /

. ����������� -�� ������������������ !������" ) return ������� ;
3: Else If ( + ��� � /

. ����������� - "��������� !������" ) return �	��
���� ;
4: + ��� � /

. ����������� -�� ������������������ !������" ;

5: For ( � � such that �
�
�-. � � � for some � ! + ��� � �

� / � ��� 0
)

6: #�������$���� - �
; // the set of matches in

�
for � �

7: For (
� �� $-. � � � $ )�)�)

��  - . � � �  
�
�- . � � � $

�� $-. � � � 2 )�)�)
�� <-. � � � ,

where � B � � � � 9�9�9 � � � ��� B ��� � � 9�9�9 ��� ; ! + Act � � ��� /
) // find matches for � �

8:  �������$ - ������� ; // keeps track of whether the paths in � and
�

can be matched
9: For ( + � � � � � / - + � � � � � / � + ��� � � $

/ � 9�9�9 � + ��� � �  
/ � + � � � � � $

/ � 9�9�9 � + � � � � � <
/
)

10: If (
F

Consistency( � � , � � , � � � )) // the paths cannot be matched
11:  %���&��$ - �	��
���� ;
12: break; // exit For loop on Line 9
13: If ( %���&��$ ) #����&��$���� - #����&��$���� � � � � 0 ; // the paths match

14: If ( #�������$���� - �
and �

�
�- . � � � ) // a required transition could not be matched

15: + ��� � /
. �'�	�����%� - "����	���� !������" ;

16: return �	��
	��� ;

17: For ( � � such that � �-. � � � for some � ! ��� � � � )
18: #����&��$���� - �

;
19: For (

� � such that
� @-. � � � ) // find matches for � �

20: // analogous to Lines 8 – 13

21: If ( #�������$���� - �
and � �- . � � � ) // a required transition could not be matched

22: + ��� � /
. �'�	�����%� - "����	���� !������" ;

23: return �	��
	��� ;

24: For (
� � such that

� �
�-. � � � for some � ! + ��� � �

� / � ��� 0
)

25: // analogous to Lines 6 – 16

26: For (
� � such that

� �-. � � � for some � ! � � � �	� )
27: // analogous to Lines 18 – 23
28: + ��� � /

. ����������� - "��������� !������" ;
29: � � � = � � � � � + ��� � /10

;
30: return ������� ;

Figure 6.2: An algorithm for computing the largest consistency relation.

to ���	� on Line 29, and 
�����$��	����)��� (
� B , � B , ���%� ) returns 	�� �� on Line 30. Hence, back in


������$��	����)��� (
�

, � , ���	� ), � B is added to #'�
	%��$�� on Line 13. Next, the For loop on Line 7

considers � � , since � 
 �� � � � � , and therefore 
������$��	����)��� (
� B , � � , ����� ) is called on Line

10. Similarly, the transition
� B K���$# � � is considered on Line 5, but no match in � � is found
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(Lines 6 – 13). Again, since the transition on 3 in
�

is maybe, the algorithm continues. The

required transition � � ��)� ��� � considered on Line 24 cannot be matched in
� B , and therefore

= � B���� �(A is not a consistent pair and 
�����$��	����)��� (
� B , � � , ����� ) returns ������
� (analogous to

Lines 14 – 16). The set #��	%��$�% in 
������$��	����)��� (
�

, � , ���	� ) is already non-empty since it

contains � B , and so the fact that
� B and � � are inconsistent does not imply that

�
and � are

inconsistent (i.e., the If condition on Line 14 is not satisfied). Continuing in this way, the con-

sistency relation constructed by Algorithm 1 is ���	� � ��= � 
����(
�A , = � B���� B A , = � � ��� �4A , = � ����� � A � ,
which is indeed the largest consistency relation between

�
and � .

As mentioned above, there is no consistency relation between models � and � in Figure 6.3.

In particular, the required transition �G
 ���� � � B cannot be consistently matched by �G
 ���� � � B
or � 
 ���� ��� � because � B K.� � and � � K.� � . Upon reaching Line 14, the set #��	%��$�% is empty

and �(
 ���� � , and thus Algorithm 1 returns ������
� on Line 16, as expected.

Theorem 9. (Correctness of Algorithm 1) Algorithm 1 called with parameters 0 , 1 , and

� � � � � returns 	�� �� and sets � � � to be the largest consistency relation between 0 and 1
if and only if 0 and 1 are consistent.

Proof:

+ . /
Suppose � � � is initially empty and � are

�
are consistent. Upon termination of Algorithm 1,

� � � is a consistency relation between � and
�

: Condition (1) in Definition 17 is satisfied due to

Lines 5 – 16, Condition (2) is satisfied due to Lines 24 – 25, Condition (3) is satisfied due to Lines 17 –

23, and Condition (4) is satisfied due to Lines 26 – 27. � � � is the largest consistency relation because

Lines 5, 17, 24, and 26 consider possible transitions, and the For loops on Lines 7 and 19 search for all

possible matches.

+�
 /
If � and

�
are inconsistent, there is no consistency relation between them by Theorem 2, and

hence at least one of the conditions in Definition 17 is violated: a required transition in one model

cannot be matched in the other. The set #����&��$���� will remain empty and therefore Algorithm 1 returns

�	��
���� (e.g., Lines 16 and 23).
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Figure 6.3: Example MTSs for illustrating merge.

We now address complexity issues. Algorithm � contains backtracking, and therefore the

naive implementation of this algorithm has running time exponential in 7 # 7 , where W j��R� 9 ,

¡ 9 , £ � 9 , £ � 9 , ¤�¥ 9 ¦ , * j���� = , ¡ = , £ � = , £�� = , ¤ ¥ 9 ¦ , 7 # 7 = 7 #.9F7 + 7 #.= 7 , and 7 # T 7 j 7 ¡ T 7°;7D� T 7 O
for Q ± k9W | * � . However, we believe that it is possible to apply techniques that are similar to

those used to efficiently compute bisimulation relations [42] to compute the largest consistency

relation between two observation graphs, which takes time � � 7D� 7����� ��� 7 # 7 ¦[¦ [44, 13], where

7D� 7�j 7D�.9?7 � 7 �.= 7 . We leave for future work improving the complexity of Algorithm 1 using

these techniques.

6.3 Finding a Distinguishing Property

If two systems are inconsistent, it is desirable to have a property that gives insight into the

specific areas of disagreement. In this section, we give an algorithm for finding such a property

for inconsistent systems over the same vocabulary, and show that it can be applied to certain

models with different vocabularies.

By Theorem 2, there is no consistency relation between two inconsistent systems. There-

fore, if W and * are inconsistent, at least one of the conditions in Definition 17 is violated for

the pair �0W | * ¦ . This gives rise to Algorithm 2 in Figure 6.4 for finding an � �� property that

distinguishes between inconsistent systems over the same vocabulary. Intuitively, Algorithm

2 traverses simultaneously reachable inconsistent paths until a disagreement is found along all
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branches, while building a , -/ property that keeps track of the paths that are traversed. Be-

cause there is no consistency relation, following such paths will always lead to a disagreement.

Specifically, 0 and 1 over the same vocabulary are inconsistent if (without loss of generality)

0
�
�� � � 0�� and either 1

�
�.� � , or for every 1 � such that 1

�
�� � � 1 � , the MTSs 0�� and 1 � are

inconsistent. If 1
�
�.� � , then �=H� � ��� distinguishes between 0 and 1 ; otherwise, �%H� � �&= � � � A (in

some cases � H� � � = � � � A ) is added into the formula, and the process continues by visiting the pair

= 0 � � 1 � A , for every such 1 � .
For example, suppose that Algorithm 2 is called for inconsistent models � and

�
(both with

alphabet �2��6��� ) in Figure 6.3. Initially, � � �!��= � � � A � (Line 3) and � � ��� � � (Line 4). The

For loop on Line 6 considers the pair = � � � A . Since �G
 ���� � � B and
� 
 ���� �

� B (which is

the only transition on � in
�

), and � B and
� B are inconsistent on � and are �����5$��$&	���� , the If

condition on Line 14 is satisfied. Therefore, ��� � � is replaced by �!�&� ��� � $ � � $ (Line 16), and � �
is set to ��= � B4� � B4A � (Lines 17 and 22). The For loop on Line 6 then considers = ��B�� � B4A . Since
� B ���� �

� � and � B
�.� � , the If statement on Line 11 is satisfied. Therefore, � � $ � � $ is replaced

by � � � � � (Line 12) and ��� becomes empty (Lines 13 and 22). Therefore, Algorithm 2 returns

� ���!�&� � � � � � � , which is true in � and false in
�

.

Theorem 10. (Correctness of Algorithm 2) If 0 and 1 are inconsistent MTSs over the same

vocabulary, Algorithm 2 called with 0 and 1 returns an , -/ property that distinguishes be-

tween them.

Proof:

Lines 8 – 13 handle disagreements (i.e., one system requires a transition and the other proscribes it),

Lines 14 – 17 handle required behaviour in � that cannot be simulated in
�

, and Lines 18 – 21 handle

required behaviour in
�

that cannot be simulated in � . The While loop (Lines 5 – 22) only exits when

all inconsistent paths have been followed to a disagreement. The property returned corresponds to a tree

(since Lines 14 and 18 consider �������������	��" pairs) of inconsistent paths between the two models, where

the leafs represent disagreements.
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ALGORITHM 2. (Finding a distinguishing property)

Input: MTSs � - + � � , � � , � � � , � � � ,
� 
 � /

and
� - + � � , � � , � � � , � � � ,

� 
�� / .
Output: if � and

�
are inconsistent, return � !

� -/ that is true in � and false in
�

;
otherwise, return ���&
�
 .

1: For (
� ! � � and � !#� � ) + � J � ��� /

. �'�	�����%� - �����&�����'�	��" ;
2: If ( � and

�
are inconsistent)

3: � � - � + ��� � /10
;

4: � - � � � � ; // a placeholder for the subformula distinguishing � and
�

5: While + � � �- � /
// there are more inconsistent pairs to traverse

6: For ( + ��� � / ! � � )
7: + ��� � /

. �'�	������� - �������'�	��" ;

8: If ( � �-. � � � and
� ��-. ) //

� � � ��� is true in � and false in
�

9: � - � [ � � � � � � � � ��� ]; // substitute
� � � ��� for � � � �

10: � � � - � � � � + ��� � /10
;

11: Else If (
� �-. � � � and � ��-. ) //

� � � � � is true in � and false in
�

12: � - � [ � � � � � � � � � � ]; // substitute
� � � � � for � � � �

13: � � � - � � � � + ��� � /10
;

14: Else If (( � �-. � � � ) and (6 � � ) �
�
�-. � � � implies � � and

� � inconsistent
and + � � � � � / . ����������� - ��� �&����������" ))

// � � is inconsistent with each
� � ; therefore add + � � � �
	 � � � � � � 

/
to �

15: Let � - � � � $ �
�
�-. � � �

0
;

16: � - � [ � � � � � �
�� � � + � � � �
	 � � � � � � 
/
];

17: � � � - + � � � � + � � � � �� / $ � �� ! � 0;/ � � + ��� � /10
;

18: Else If ((
� �-. � � � ) and 6 � � ) �

�
�-. � � � implies � � and

� � inconsistent
and + � � � � � / . ����������� - ��� �&����������" ))

//
� � is inconsistent with each � � ; therefore, add +� � �

 
� B � � � � � �

/
to �

19: Let
� - � � � $ �

�
�-. � � � 0 ;

20: � - � [ � � � � � �
�� � � +� � � � B � � � � � �
/
];

21: � � � - + � � � � + � �� � � � / $ � �� !(� 0;/ � � + ��� � /10
;

22: � � - � � � ;
23: return � ;
24: Else return ���&
�
 ;

Figure 6.4: An algorithm for finding a distinguishing property.

Algorithm 2 can also be used for models over different vocabularies. Recall from Section

4.4 that distinguishing properties are defined for models over the shared vocabulary, and, in

addition, the models need to satisfy the conditions in Theorem 8. Thus, we begin by checking

these conditions, and then call Algorithm 2 with the models restricted to the shared alpha-

bet. For example, consider models � and � in Figure 6.3 and assume that � ��� �2��6��� and
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� ��� �2��435�6��� . These systems are inconsistent, because �G
 ���� � � B and � B
�.� � , whereas

� can still perform a transition on � after every transition on � . They also satisfy the condi-

tions of Theorem 8, and therefore there is an , -/ property that distinguishes � @ �2�'� ��� and

� @ �2��6��� . Similar to the previous example, it can verified that Algorithm 2 called with param-

eters � @ �2�'� ��� and � @ �2��6��� returns � �
�!�&� � � � � � � , which is true in � @ �2��6��� and false in

� @ �2��6��� .
Observe that Lines 2, 14 and 18 in Figure 6.4 must determine whether two systems are

inconsistent. Instead of calling Algorithm 1 each time, it is possible to modify Algorithm 1 to

compute a list of reachable inconsistent pairs of MTSs (i.e., an “inconsistency relation”) with

respect to the original systems, which makes the consistency check in Algorithm 2 an � = � A
operation. For example, ��= �G
 � � 
 A , = � B�� � B�A , = � B(� � � A�A � is such a list for � and � in the previous

example. Furthermore, each iteration of the For loop on Line 6 is � =�� ��� � A , and the worst-case

complexity occurs when all pairs are �5$��$&	���� , making the algorithm � =�� � � � � � ��� � � � �	� � A .

6.4 Building a Common Refinement

In this section, we introduce the � ��� operator and show that if 0 and 1 are consistent, 0 � ���

1 builds an element of � � = 0 �(1 A , which preserves the properties of the original systems.

Although ����� does not build an MCR in general, we give sufficient conditions for it to build

the LCR, if it exists.

Definition 21. (The ����� operator) Let 0 � =�� � , � � , � � � , � � � , ��
 � A and 1 � =�� � , ��� , � � � ,

� � � , ��
�� A be MTSs and let � � � be the largest consistency relation between them. 0 � ���)1 is

the MTS =�� � � ��� ��� �  ���> >� I ����� � ��������=���
 � �	��
�� A4A , where � � and ��� are the smallest

relations that satisfy the rules given in Figure 6.5, assuming that ��= 0 � 1 A , = 0 � � 1 � A � � � � .

Remark 5. In Definition 21, rules TM, MT, TT, and MM may introduce self-loops on � , but we

assume they are subsequently removed because they do not affect observable behaviour.



CHAPTER 6. ALGORITHMS 63

TD

� ���� � ��� � �������� � �
� &	� � � ���� � � � &	� � � � �

. � 1  
��� DT

� ������ ��� � � ���� � � �
� &	� � � ���� � � � &	� � � � �

. ��� � 
���

TM �
������� �������

������� ���
�! � � �

�"$# � � �  � � � �
%'&

Act ( MT �
�����)� ���*�$�

������� �+�
�! � � �

�"$# � � �  � � � �
%�&
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MD �
������ � � ��� ������ � �

�! � � �
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Figure 6.5: Rules for the :<;>= operator.

Intuitively, the areas of agreement (described by the consistency relation) of the models being

merged are run in parallel, synchronizing on shared actions and producing transitions in the

merged model that amount to merging knowledge from both models. Thus, maybe transitions

in one model can be overridden by transitions that are required or proscribed in the other. For

example, if � can transit on
%

through a required transition and
0

can do so via a maybe

transition, then � :!;>= 0 can transit on
%

through a required transition, captured by rules TM

and MT in Figure 6.5. Also, if � can transit on a shared action
%

through a required transition

and
0

cannot transit on
%
, then � :<;>= 0 cannot either.

The cases in which the models agree on a transition are handled by rules TT and MM in

Figure 6.5. If both � and
0

can transit on
%

through required transitions, then � :?;>= 0 can

transit on
%

through a required transition, and similarly for maybe transitions.

The rules discussed so far construct a merge that is a CR of the original models. Required

transitions are preserved in the composition, and possible transitions are introduced only if one

of the original models has a possible transition. We now address states in which the models

disagree on whether the action is required or proscribed, i.e., for some @ &BAC. � D .�0FE �

���

, either ( G ) � HI1J = and
0 H,I1J or ( K ) � H,I�J and

0 HI1J = . Suppose that � HILJ =
and

0 H,I1J , yet � and
0

are consistent. If we allow � :<;>= 0 to transit on @ , i.e., � :!;M=
0 HI1JON , then

A � :P;M= 0QE @ .�0
is not a refinement of

0
. However, we must ensure that
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A � :P;>= 0FE @ . � is a refinement of � . Since � HI1J = , by Condition (1) in Definition 17, we

are guaranteed that
0

@
. � �H��� N , and therefore

A � :!;>= 0QE @ . � should be able to transit

through required transitions on
�

to a state in which it can perform a required transition on @ :
A � :P;>= 0QE @ . � �H��� = .

The rules mentioned so far do not apply to non-shared actions. If
% ,� �

is not in a model

alphabet, then that model is not concerned with
%
. Therefore, if one model can transit on a

non-shared action
%

through a required transition, the merge can as well, and the other model

may move internally on zero or more
�

transitions. This is captured by rules TD and DT in

Figure 6.5. For example, consider models � and � in Figure 6.3 and assume that
. � � 
��	��
L

and
. � � 
��	

. The consistency relation computed by Algorithm 1 in Figure 6.2 is ���� �

 A ��� � ��� E � A ��� � ��� E  . � HI1J =���� , but

A ��� � ��� E<,& ���� , and therefore ����:P;M=���� H,I1J ���+:P;M=���� .
However, ��� (I1J =���� , and

A ��� � ��� E�& ���� . By rule TD, � :!;>=�� has a required transition on
�
,

i.e., ����:P;>=���� HI1J =����+:P;>=���� . In fact, �Q:P;M=�� is precisely � , which is in  "! A � , � E .
Similar reasoning explains rules MD and DM, except if one model can transit on

%
through

a maybe transition, then the merge constructed with : ;>= can transit on a required transition.

That is, :!;>= is conservative with respect to rules DM and MD.

Special care must be taken in order to combine only consistent behaviours of the two sys-

tems (i.e., elements in the consistency relation). For example, suppose that # :?;>=$# (see Figure

6.3) is built without this restriction. There are two transitions on
�

from the initial state of

# , and therefore four ways of combining them with the rules in Figure 6.5. This composi-

tion results in model % , which is not a refinement of # . On the other hand, the pairs
A #�� � #'& E

and
A #(& � #)� E are not in any consistency relation between # and itself, and so abiding by the

restriction, # :!;>=�# is equivalent to # , as desired.

The operator :!;>= builds a CR of any two consistent models.

Theorem 11. ( :!;>= builds common refinements) If � and
0

are consistent, then � : ;>= 0 is

in  �! A � � 0QE
.

Proof:
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Assume � and � are consistent and let � �!� be the largest consistency relation between them. We

show that � �������
	 ;>= ��� @ �� and ���������
	 ;>= ��� @ �� .

� ���� = ��������������
 !����#"%$'&)(������+*,���-�.� �!�
(Condition (1) in Definition 17)

/ 021 � * 1 & *4343435* 1�6 *87 � *87 & *4343435*87'9:��� Act (-; ��<��=
� �>@?A / N � >@? =4=4= �>CBA / N � >CB ��A / N �ED ? �D ?A / N �FDHG�=4=4= �DJIA / N � �
��KMLN=O���+*,� >'P �Q�R� �!� �SKMLE=T��� � *,�ED P �Q�.� �!� ����� � *,� � �Q�R� �!�
(Rules DM, DT, TM, TT in Figure 6.5 and $T����*,� > P � , ��� � *,�ED P � , ��� � *,� � �H(EUV� �!� )

/ ���
	 ;M= ��� >@?��� = =4=4= >CB��� = ���W	 ;>= � >CB � ���� = �����O	 ;>= �FD ? �
D ?�)� = =4=4= DJI�X� = ��� � 	 ;>= � � �Y����� � *,� � �Q�R� �!�

(Definition 4)

/ ���
	 ;M= ��� @ �� ��A / = ��� � 	 ;M= � � � @ ��Z������*,� � �Q�R� �!� 3

� ���� = � � ���������� ; ����#������*,���-�R� �!�
(Condition (3) in Definition 17)

/ 0 � � ='� [A / N � � ����� � *,� � �Q�%� �!�
(Rule TD in Figure 6.5 and ���+*,� � �\�R� �!� )

/ ���
	 ;M= ��� ���� = ���+�O	 ;M= �R�]�#�^���+�_*,�%�`�Q�%� �!�
(Definition 4)

/ ���
	 ;M= ��� @ �� �A / = ���+�O	 ;M= �R�a� @ ��Z�������b*,�R�a�\�.� �!� 3

In a similar fashion, it can be shown that:

���W	 ;>= ��� @ �� ��X� N ��� � 	 ;>= � � � @ ��
������*,���Q�.� �!�
/ � ��A / N � � ����� � *,� � �Q�R� �!� 3

Thus, � ���c��� 	 ;>= ��� @ �� . The proof that � �d����� 	 ;>= ��� @ �� is analogous, and hence

�W	 ;>= �e�gfMh.����*,��� .
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Suppose we are interested in computing # :�� , where # and � are in Figure 6.3, and
. # �

. � ��� �	��
 ���  . The largest consistency relation is ���	� �
� A #(� � ��� E , A #(& � � � E , A #�� � ��& E  , and

# [ and � [ are in Figure 6.3, which we use to compute the merged model via simple transitions.

Since  HI1J�� K in # [ ,  HI1J =/G in � [ , and
A #(& � � � E)& ���	� , it follows that

A  �  E HI�J = A K � G E in

#F:!;>=�� by rule MT. Since K ;I1J =�� in # [ , G
;I1J =�K in � [ , and

A #�� � ��& E�& ���	� , it follows that
A K � G E ;I1J = A � � K E in # :P;>=�� by rule TT. Additionally, the self-loops on � in both models are

matched by rule TT, but are subsequently removed (see Remark 5). Hence, # :?;>=�� � � , as

desired.

Refer to the models shown in Figure 3.2 of Chapter 3. � : ;>=�� ��� , but as discussed

in Chapter 3, MCRs of � and � are � and � . Therefore, the : ;>= operator is imprecise: it

computes a CR that is not necessarily minimal, because rules DM and MD convert all non-

shared maybe transitions to required transitions in the composition. We address this problem

by introducing another operator in Section 6.5. On the other hand, if the LCR exists, then :?;M=
builds it when the determinacy condition holds (Definition 19).

Theorem 12. (Sufficient Conditions for :<;>= to build the LCR) If �) "! ��� � exists and � and
0

satisfy the determinacy condition, then � : ;>= 0 is �  �! ��� � .

Proof:

If � fMh �P� � exists, the non-shared condition (Definition 20) and the multiple-maybe condition (Defini-

tion 18) are satisfied: no choice with respect to the order of non-shared actions can be made, and no

non-shared maybe transitions must be converted to required transitions. Since the determinacy condition

holds, all choices with respect to non-determinism are equivalent, and therefore 	 ;>= builds the LCR.

To see why the determinacy condition is in Theorem 12, consider model � in Figure 6.3.

Clearly, �) "!�� � � exists, but
A �'� :!;>=��'� E HI1J = A ��� :P;>=�� � E �I1J = A � �':��'� E , whereas � cannot

transit on a required
�

followed by a required



, so � : ;>= � ,! � � .

Finally, assuming the largest consistency relation and the observation graphs have been

computed, the number of transitions in ��: ;>= 0 is " A$# % �
#'&(# %

�
# E

, where
# % 6 # � #*) 6 #'&(#,+ 6 # & ,
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MD �
�3�4�� ������� 23�4�5 ���

�! 6�� �
�"�# � � �  6�� � �

%-,&/.�0 � ���  DM � 23�4�5 �������
�3�4�� ���

�! 6�� �
�"�# � � �  6�� � �

%7,&/. � � ��� 

Figure 6.6: Rules for the :<; H operator.

and therefore the rules in Figure 6.5 are applied at most " A # % �
# & # %

�
# E E

times. Furthermore,

removing subsequent self-loops on � is an " A # % �
# & # %

�
# E

operation, and thus computing

� :P;M= 0 is " A # % �
# & # %

�
# E

. The operator :!; H defined Section 6.5 also shares this complexity.

6.5 Building a Common Abstraction of Minimal Common

Refinements

The operator :!;>= introduces imprecision through rules DM and MD by converting all non-

shared maybe transitions into required transitions in the composition. Consequently, it does

not build a minimal common refinement in all cases. The operator : ; H , defined below, takes

the opposite approach of leaving all non-shared maybe transitions as maybe in the composition.

Definition 22. (The :!; H operator) The :!; H operator is defined in same way as : ;>= in Definition

21, except rules MD and DM of Figure 6.5 are replaced by those in Figure 6.6.

The operator :!; H does not build CRs. For example, refer to models
�

and � in Figure 6.3

and assume that
. � ��� �  and

. � ��� �	���  . � :<; H � is � , and � @ � �  is not a refinement of
�

because
� ;I1J = and � @ � �  ;��� � . Instead, it is reasonable to expect that :<; H builds a common

abstraction of all MCRs (see Definition 16 in Chapter 3) of the models being merged, due to

rules DM and MD in Figure 6.6. However, it may not be the case in general. For example,

recall from Section 4.2 that � is an MCR of models � and � (see Figure 4.1). By rules TD

and DT and the fact that ��� and ��� are consistent, �)� :P; H �'�
�I1J =	� � :P; H ��� . Since �

�,��� ,

model � does not refine � :<; H � , and therefore � :!; H � is not a CA of all MCRs of � and � .

Intuitively, to find an MCR of � and � , a choice must be made with respect to the order of the

transition on
�

in � and the transition on



in � . Model � corresponds to putting the transition
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on
�

first, but the operator :!; H always makes both choices, resulting in model � that is not a CA

of all MCRs. Hence, we must limit non-shared behaviour of the models being merged in order

to restrict the existence of such choices, i.e., we must assume that the non-shared condition

(Definition 20) holds. Similarly, we also require that the determinacy condition (Definition 19)

holds (e.g., for the models in Figure 3.2, � : ; H
��� ��� , where � &��  "! A � � � E

).

Theorem 13. ( :!; H is a common abstraction of all MCRs) If � and
0

are consistent MTSs

that satisfy the determinacy condition and the non-shared condition, then:

	�
 &��  "! A � � 0FE� � :P; H
0�� � 
 @

A � :P; H
0QE��

Proof:

Let � ��� fMh�����*,��� . The given conditions guarantee that � and � 	 ; H � differ (up to observa-

tional equivalence) only in the application of rules DM and MD: some non-shared maybe transitions in

�W	 ; H � may be required transitions in � .

Hence, � :!; H
0

approximates �  �� ��� � from below: � :!; H
0 � � �  �� ��� � . Unfor-

tunately, :!; H does not compute the actual GCA. For example, consider models � ,
�
, and � in

Figure 6.3 with
. � � � ��� and

. � � . � � � �	����� . �) "!�� � � is � , and therefore, by Remark 2,

�  ���� � � is also � . Since
� :P; H �

� � , :P; H produces a model that is refined by, but is not equiv-

alent to the GCA. On the other hand, if rules DM and MD are never applied, then � : ; H
0 �

� :P;>= 0 . Therefore, by Theorem 12 and Remark 2, if the LCR exists, � and
0

satisfy the

determinacy condition, and rules DM and MD are not applied, then : ; H builds the LCR, which

is equivalent to the GCA.

In summary, it is not always clear which non-maybe transitions should be converted to

required and which should be left as maybe. If all are converted, as is the case for :?;>= , then

minimality is lost. In fact, the correct rules for computing the GCA of all MCRs are somewhere

between rules MD and DM of :<;>= and :P; H (i.e., some should be converted to required and some

should stay maybe in the composition). Preliminary work on this problem has been addressed
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in [49] in the form of an algorithm that supports the elaboration of a CA into a desired MCR.

In particular, the algorithm helps the modeller choose which non-shared maybe transitions to

convert to required transitions in the merge. We leave for future work exploring this problem

in more detail.

6.6 Discussion

Throughout this chapter, we have developed algorithms to support the merge process in Figure

6.1. Below, we summarize our results with respect to this process, and discuss how they relate

to automating merge.

Given MTSs � and
0

, consistency can be decided by Algorithm 1 (Line 1). If � and
0

are inconsistent, after checking the sufficient conditions in Theorem 8, Algorithm 2 can

be used to return a property that distinguishes between them (Line 8). If the conditions fail,

then Algorithm 1 can be easily modified to return the inconsistent states as an alternative form

of feedback. If � and
0

are consistent, Algorithm 1 builds the largest consistency relation

between them, which, in some cases, may be modified due to unwanted matches. If minimality

is not required (Line 2), :!;M= constructs a CR that preserves the desired properties and can be

returned (Line 3). Otherwise, a minimal merge is required. If �) "! �P� � exists (which can

decided in most cases using Theorem 3) and � and
0

satisfy the determinacy condition,

� :P;>= 0 is their LCR and can be returned (Line 5). On the other hand, if �) �! ��� � does

not exist and � and
0

satisfy the non-shared condition and the determinacy condition, then

a CA to all MCRs of � and
0

can be constructed with :<; H (Line 6). Note that :!; H does not

construct the GCA, as desired, but can still be elaborated into an MCR, or used to construct the

set of MCRs [49] (Line 6). We leave for future work improving : ; H to construct the GCA.

In the above process, some assumptions on the MTSs must hold in order to ensure complete

automation, e.g., the non-shared condition and determinacy condition must hold for : ; H to

produce a CA. However, theses cases naturally correspond to the cases that require human
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intervention. For example, we have noted that : ; H cannot make decisions with respect to

the order of non-shared actions, and therefore these decisions must be made by appropriately

modifying the consistency relation. The only case that requires an assumption that is not a

consequence of human interaction is that the determinacy condition must hold on Line 5, which

we plan on weakening in future work. Hence, our algorithms fully support the process outlined

in Figure 6.1, employing automation when possible.



Chapter 7

A Case Study: the Mine Pump

In this chapter, we apply our results to a case study known as the mine pump [34]. In Section

7.1, we give a high level overview and introduce some components of the case study. In Section

7.2, we show that by using our algorithms for detecting inconsistencies between stakeholders’

models, we can gain insight into whether the desired properties of the stakeholders are in

fact reasonable. Finally, Section 7.3 shows that by relaxing the required properties from the

stakeholders (based on the insight gained in Section 7.2), we can merge updated consistent

models from the stakeholders to create an overall model that satisfies the desired behaviours.

7.1 Description

A pump controller is used to prevent the water in a mine sump from passing some threshold,

and hence flooding the mine. To avoid the risk of explosion, the pump may only be active

when there is no methane gas present in the mine. The pump controller monitors the water and

methane levels by communicating with two sensors.

We model the mine pump with four components: WaterLevelSensor, MethaneSensor, Pump-

Control, and Pump. The complete system, MinePump, is the parallel composition of these

components. WaterLevelSensor models the water sensor and includes assumptions on how

the water level is expected to change between low, medium, and high. Methane keeps track

71
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(a) � � �
medWater highWater

medWaterlowWater

(b) � �
methAppears

methLeaves

(c) � �
switchOn

switchOff

Figure 7.1: The MTSs for: (a) WaterLevelSensor, (b) MethaneSensor, and (c) Pump.

of whether methane is present in the mine, and Pump models the physical pump that can be

switched on and off. The LTSs for these components are shown in Figure 7.1, where we assume

initially that the water is low, the pump is off, and no methane is present.

PumpControl describes the controller that monitors water and methane levels, and controls

the pump in order to guarantee the safety properties of the pump system. Note that the informal

description given above leaves open the exact water level at which to turn the pump on and off.

For example, the pump could be turned on when there is high water or possibly when the water

is not low, (e.g., at a medium level). The pump could be turned off when there is low water

or possibly when the water is not high. In what follows, we investigate models for the pump

controller from different stakeholders, which are intended to be merged to create a model of

the entire system, namely MinePump.

7.2 On and Off Policies: A First Attempt

In this section, we assume that there are two stakeholders for the pump controller: one with

the knowledge of when the pump should be on (referred to as the on policy) and another with

knowledge of when the pump should be off (referred to as the off policy). The stakeholders’

properties are shown in Table 7.1, and are expressed in FLTL using the following fluents:

AtHighWater � �
highWater 	�
 lowWater 	 medWater ���	

AtLowWater � �
lowWater 	�
 medWater 	 highWater �� Initially true 	

PumpOn � �
switchOn 	 switchOff �	

MethanePresent � �
methAppears 	 methLeaves ���
 switchOn ���	
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� ��� � � PumpOn / ��� switchOn ��� PumpOn �8�
� the pump can only be turned on if it is currently off �� &�� � ��� PumpOn / ��� switchOff � PumpOn �8�
� the pump can only be turned off if it is currently on �� ��� � � AtHighWater �	� MethanePresent /�
 PumpOn �
� the on policy: the pump is turned on when there is high water and no methane ��� � � � AtLowWater � MethanePresent /�
 � PumpOn �
� the off policy: the pump is turned off when there is low water or methane present �

Table 7.1: Desired properties of MinePump.

Both stakeholders wish to satisfy properties � � and ��& , which express that the pump should

only be turned on if it is already off, and should only be turned off if it is already on, re-

spectively. In addition, the stakeholder for the on policy desires to satisfy property � � , which

expresses that when there is high water and no methane, the pump should be immediately

turned on if it is not already. The stakeholder for the off policy desires to satisfy property � � ,
which expresses that if there is low water or methane present, the pump should be immediately

turned off if it is not already.

The stakeholders’ models are OnPolicy and OffPolicy, shown in Figure 7.2, which use the

abbreviation WATER = � lowWater,medWater,highWater
�
. OnPolicy turns the pump on when

there is high water and no methane present, and leaves the possibility open for turning the

pump on when there is medium water. OffPolicy turns the pump off when there is low water

or methane appears. In addition, OffPolicy models a danger light with actions dangerLightOn

and dangerLightOff (unobservable to OnPolicy), which is turned on when methane is present

in the mine.

Both OnPolicy and OffPolicy can be composed with PumpControl, MethaneSensor, and

WaterLevelSensor to obtain two partial models of the entire system, referred to as MinePump �
and MinePump & (see Appendix A). Properties � � to ��� are true in MinePump � , and ��� , ��& , and

� � are true in MinePump & , as desired. Note that to specify the OnPolicy, it is necessary to refer

to the event switchOff in order to ensure that � � and ��& are satisfied. However, OnPolicy leaves
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(a)

� � � �

�

� � � �

�
lowWater �

medWater �
methLeaves �

highWater switchOn
�
lowWater � medWater �

highWater

�
lowWater �
medWater �

methLeaves �

switchOn?

switchOff?

methAppears

methLeaves

methLeaves

methAppears

methLeaves

methAppears

methLeaves

�
lowWater �

medWater �
methAppears � �

highWater �
methAppears �

�
highWater �

methAppears �

�
lowWater

medWater �
methAppears �

highWater�
lowWater � medWater �

switchOff?
�
lowWater � medWater �

highWater

switchOff?

switchOff?�
highWater �

methLeaves �

methAppears

�
highWater � methLeaves �

(b)

�

�

	


 �
�

 �

switchOn?

lowWater

switchOff

�
WATER �

methLeaves �

�
medWater �

highWater �
methLeaves �

methAppears dangerLightOn

methLeavesdangerLightOff

methAppears dangerLightOn

switchOff

�
WATER �

methAppears �

Figure 7.2: The MTSs for: (a) OnPolicy, and (b) OffPolicy.

the off policy open by modelling possibilities for turning the pump off with maybe behaviour,

and similarly, OffPolicy leaves the on policy open. Hence, properties ��� and ��� evaluate to

maybe in MinePump � and MinePump � , respectively.

Our goal is to build MinePump using the knowledge contained in OnPolicy and OffPol-

icy, while preserving the properties of the individual stakeholders’ models MinePump � and

MinePump � . In other words, we wish to construct MinePump � (OnPolicy � OffPolicy)
�
WaterLevelSensor

�
MethaneSensor

�
Pump and ensure that it satisfies properties ��� – ��� .

Unfortunately, by Algorithm 1 in Section 6.2, OnPolicy and OffPolicy are inconsistent, and

thus cannot be merged. To understand the sources of inconsistencies, we note that these mod-

els satisfy Conditions (1) and (2) in Theorem 8. Therefore, there exists an ��� property that

distinguishes OnPolicy and OffPolicy when restricted to the shared alphabet !"�$# lowWater,

medWater, highWater, methLeaves, methAppears, switchOn, switchOff % , and we can use Al-
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gorithm 2 in Section 6.3 to find one. In particular, one such property is:

�
highWater � � � switchOn � � � methAppears � � � methAppears � ��� �

This property is true in OnPolicy@ � since  highWaterI1J = G switchOnI1J = K methAppearsI�J = � methAppearsI1J = � ,

and false in OffPolicy@ � since after following the observable trace highWater, switchOn, and

methAppears, either state � or � is reached, both of which proscribe the action methAppears.

This property highlights the fact that in OffPolicy, whenever the pump is on and methane ap-

pears, the danger light is immediately turned on and the pump is immediately switched off:

states � and � in OffPolicy proscribe all actions other than dangerLightOn and switchOff. An-

other distinguishing property is:

�
methLeaves � � � highWater � � � medWater � ��� �

which expresses the fact that when methane is absent and the water is high, it may no longer

be possible for the water to move to a medium level. This property is true in OnPolicy@ �
since  methLeavesI1J =  highWaterI1J = G and G

medWater,��� , and false in OffPolicy@ � since every transition on

methLeaves and highWater from state  is a self-loop, and  medWaterILJ = . Upon inspection, we see

that this inconsistency is due to the fact that OnPolicy immediately turns the pump on whenever

there is high water and no methane is present.

One possible resolution to the above inconsistencies is to model some of the the self-loops

in OnPolicy and OffPolicy with maybe behaviour (e.g., in state � of OnPolicy and state  of

OffPolicy), but this unnecessarily reduces the definite behaviour of both models and does not

address the source of the inconsistencies: properties � � and � � in Table 7.1 are too strong,

because they utilize the next operator, which is not closed under stuttering [1]. In particular,

this forces the presence of immediacy in the on and off policies, which was shown to ultimately

cause inconsistencies. We discuss this case in Section 7.3, where we weaken properties � � and

� � to obtain consistent pump control policies.
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� � � � � �8� AtHighWater �	� MethanePresent � � tick / � tick � PumpOn �
� the on policy: if there is high water and no methane for a given amount of time, the pump is on �� �� � � �8� AtLowWater � MethanePresent � � tick / � tick � � PumpOn �
� the off policy: if there is low water or methane for a given amount of time, the pump is off �

Table 7.2: Desired Properties of MinePumpNoIm.

7.3 On and Off Policies: A Second Attempt

In the previous section, we saw that explicit immediacy caused inconsistencies in the pump

controller models. We therefore desire a weaker form of immediacy: one that still enforces the

pump control policies, but does not require, for example, that the pump is turned on as soon

as the proper conditions are true. Rather, if the conditions for turning the pump on hold, then

other actions may occur, but before a certain amount of time passes, the pump must be turned

on if the conditions for turning the pump on still hold. Hence, we must explicitly model time

events in the pump controller models.

In particular, we weaken properties ��� and � � in Table 7.1 to properties � � � and � �� in Table

7.2. These properties involve the special tick event of asynchronous FLTL [39], which is used

to indicate the passage of time. In particular, � � � says that if it is the case that no methane is

present and the water is high for a given amount of time, then the pump is turned on before

the next tick event, and � �� says that when methane is present or the water is low for a given

amount of time, the pump is turned off before the next tick event. That is, these properties

do not enforce immediacy in the sense of the previous section, but rather if the respective

conditions for the on and off policies hold until the next unit of time has occurred, then the

status of the pump is changed before this.

As in the previous section, there are two stakeholders for the pump controller, which are

composed with the components in Figure 7.1 to obtain two partial models of the entire system.

The on and off policies remain the same, except that immediacy is no longer enforced and

the special tick event is used. OnPolicyNoIm models the on policy, OffPolicyNoIm models
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� � � �

� � � �

highWater

�
lowWater �

medWater �
highWater

�
lowWater �

medWater �
highWater

�
lowWater �

medWater �
highWater

�
lowWater �

medWater �

methAppears

methLeaves

switchOff? methLeaves

methAppears

methAppears

methLeaves

switchOff? methLeaves

methAppears

switchOn?

switchOff?

switchOn
switchOff?

�
lowWater

medWater �
methLeaves �

�
highWater �

methLeaves �

�
lowWater

medWater �
methLeaves �

�
highWater �
methLeaves �

tick? �

�
lowWater �

medWater �
�
methLeaves �

tick? �

�
lowWater �medWater � tick? �

methLeaves �

�
highWater � tick? �

methAppears �

�
highWater � tick? �

methAppears �

tick? tick?

Figure 7.3: The MTS for OnPolicyNoIm.

the off policy (including the danger light), and MinePumpNoIm � and MinePumpNoIm � (see

Appendix A) are the stakeholders’ respective partial models of the entire system. The MTS

for OnPolicyNoIm is shown in Figure 7.3, and the FSP code [41] for OffPolicyNoIm is given in

Figure 7.4. Both MinePumpNoIm � and MinePumpNoIm � satisfy properties
� � and

� � in Table

7.1, and additionally MinePumpNoIm � satisfies
����

and MinePumpNoIm � satisfies
����

. Similar

to the previous section,
����

evaluates to maybe in MinePumpNoIm � and
����

evaluates to maybe

in MinePumpNoIm � .
Recall that we wish to build MinePumpNoIm using the information in OnPolicyNoIm and

OffPolicyNoIm, while ensuring that MinePumpNoIm 	 (OnPolicyNoIm 
 OffPolicyNoIm) �
WaterLevelSensor � MethaneSensor � Pump satisfies

� � , � � , ���� , and
����

. By Algorithm 1 in

Section 6.2, OnPolicyNoIm and OffPolicyNoIm are consistent, and hence the full pump con-

troller can be defined as PumpControl = OnPolicyNoIm + OffPolicyNoIm. Additionally, the

alphabet restrictions in Proposition 9 are satisfied by MinePumpNoIm � and MinePumpNoIm � ,
and therefore there exists a merge of MinePumpNoIm � and MinePumpNoIm � that is refined by

MinePumpNoIm. Hence, by Definition 15 and Theorem 4, properties
� � , � � , ���� , and

����
hold

in MinePumpNoIm. In particular, the maybe properties
����

and
����

of MinePumpNoIm � and

MinePumpNoIm � become true properties of MinePump, which corresponds to the on and off

policies being refined into concrete behaviours in the merge.
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OffPolicyNoIm 3�� � ,
� � 3 ��� lowWater, methLeaves, tick? � # � � � � 3 � switchOff # � ��

switchOn? # � � � � lowWater, methLeaves � # � ��
methAppears # � � �

methAppears # � &� � highWater, medWater � # ���
	 � � � highWater, medWater � # � � � 	 �� & 3 � methLeaves # � � � � 3 � methLeaves # � �� � lowWater, methAppears � # � & �
switchOn? # � &�

switchOff # � � � � lowWater, methAppears, tick? � # � ��
dangerLightOn # ��� �

dangerLightOn # � �� � highWater, medWater � # � � � 	 � � � highWater, medWater � # � � & 	 �� � 3 ��� lowWater, methAppears, tick? � # � � ��� 3 � switchOff # � ��
switchOn? # ��� � � lowWater, methAppears � # ����
methLeaves # �� �

methLeaves # ���� � highWater, medWater � # � � � 	 � � � highWater, medWater � # � � � 	 ���� 3 � dangerLightOff # � � �� 3 � dangerLightOff # � ��
methAppears # ��� �

methAppears # � �� � lowWater, methLeaves � # ��� �
switchOn? # ����

switchOff # �� � � lowWater, methLeaves, tick? � # ��� � highWater, medWater � # � � �
	 � � � highWater, medWater � # ���
	 ���� 3 � lowWater # �� ��� 3 � lowWater # � �� � highWater, medWater, methLeaves � # ��� � � highWater, medWater, methLeaves � # ����
tick? # ��� �

tick? # ����
dangerLightOff # ��� �

switchOn? # � � ��
methAppears # � � � �

methAppears # � � & 	 ��
switchOn? # � � �
	 � � � � 3 � lowWater # � &� � � 3 � lowWater # � � �

methLeaves # � � �� � highWater, medWater, methLeaves � # � � � �
switchOff # � � &�

tick? # � � � � � highWater, medWater, methAppears � # � � ��
methAppears # � � � 	 � �

dangerLightOn # � � � 	 �� � & 3 � lowWater # � � � � � 3 � lowWater # � ��
methLeaves # ��� � � highWater, medWater, methAppears � # � � ��
tick? # � � & �

tick? # � � ��
switchOn? # � � � �

methLeaves # ���� � highWater, medWater, methAppears � # � � & �
switchOn? # � � � 	 ��

dangerLightOn # � � � 	 � � � � 3 � lowWater # ���� � � 3 � lowWater # ��� �
dangerLightOff # � � ��

switchOff # � � � �
methAppears # � � �� � highWater, medWater, methAppears � # � � � � � highWater, medWater, methLeaves � # � � �
	���

methLeaves # � � �
	 �
Figure 7.4: The FSP code for OffPolicyNoIm.

Since there are no non-shared maybe transitions between OnPolicyNoIm and OffPolicyNoIm,

the :P;>= and :P; H operators build the same system, say PumpControl ;M= � OnPolicyNoIm :!;M=
OffPolicyNoIm. By Theorem 12, we know that both merge operators build the LCR of these

models, i.e., PumpControl ;>= ! � PumpControl. PumpControl ;>= can then be composed with

the components in Figure 7.1 to obtain MinePumpNoIm ;>= � PumpControl ;>=�� WaterLevelSen-

sor � MethaneSensor � Pump, which is equivalent to MinePumpNoIm. The FSP code for

MinePumpNoIm (and therefore for MinePumpNoIm ;>= ) is shown in Figure 7.5.

Now consider the case when the LCR of OnPolicyNoIm and OffPolicyNoIm does not ex-

ist. By Theorem 11, PumpControl ;>= is a common refinement of OnPolicyNoIm and Off-

PolicyNoIm. By Proposition 9, the fact that PumpControl ;M= refines some MCR of OnPoli-
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MinePumpNoIm 3 � � �
� � 3 � tick? # � � � � 3 � switchOff # � � � & 3 � methLeaves # � ��

switchOn? # � � �
methAppears # � & �

dangerLightOn # � ��
methAppears # � & & �

medWater # � & � 	 � �
medWater # � & ��

medWater # � & � 	 � � � 3 � tick? # � � �
switchOff # � & & 	 �� � 3 � switchOff # � � �

methLeaves # ��� ��� 3 � dangerLightOff # � ��
methLeaves # � � � �

medWater # � �  	 � �
methAppears # � ��

medWater # � � �
	 � � 	3 � tick? # �  �
tick? # ������ 3 � lowWater # ��� �

highWater # ��� �
medWater # ����

tick? # ��� �
lowWater # � � � �

switchOn? # � � �
	 ��
switchOn? # �� �

methAppears # � � � ��� 3 � medWater # ���
highWater # � � � �

dangerLightOff # � & � 	 � �
tick? # ����

methAppears # � �  � � � 3 � methLeaves # ��� �
dangerLightOff # ����

dangerLightOff # � & � 	 � �
switchOff # � � � �

methAppears # � � �
	 ���� 3 � tick? # ��� �
dangerLightOn # � � � � � � 3 � tick? # � � ��

methAppears # � � � �
medWater # � & � 	 � �

dangerLightOn # � � &�
medWater # � & � 	 � � � � 3 � switchOn # ��� �

methLeaves # � � �� � & 3 � tick? # � � & �
tick? # � � � �

medWater # � � �
	 ��
methLeaves # � � � �

dangerLightOff # � � � 	 � � � � 3 � switchOn # ����
medWater # � �  	 � � � � 3 � methLeaves # ��� �

tick? # � � � 	 �� � � 3 � highWater # � � � �
switchOff # � � & � �  3 � lowWater # � ��

tick? # � � � �
medWater # � � �
	 � �

methLeaves # ����
dangerLightOn # � �  � � � 3 � lowWater # � � �

highWater # � � &�
lowWater # � & & �

methLeaves # �� �
tick? # � �  	 ��

methLeaves # � & � 	 � —highWater # � � � � & � 3 � lowWater # � &� � � 3 � dangerLightOff # � � �
switchOff # � �  	 � �

highWater # � � ��
methAppears # � � � & & 3 � methLeaves # � � �

switchOff # � � ��
switchOff # ��� �

dangerLightOn # � � �
dangerLightOn # � � ��

medWater # �� 	 � �
medWater # � � � �

methLeaves # � & � 	 �� & � 3 � lowWater # � � �
tick? # � & & 	 � � & � 3 � lowWater # � ��

highWater # ��� �
highWater # � � ��

methAppears # � & � �
methAppears # � � ��

tick? # � & � 	 � �
switchOn? # � & ��
tick? # � & � 	 �

Figure 7.5: The FSP code for MinePumpNoIm and MinePumpNoIm ;>= .

cyNoIm and OffPolicyNoIm, and Proposition 1, we know that the properties of MinePump-

NoIm � and MinePumpNoIm & are preserved in MinePumpNoIm ;>= . That is, we obtain an over-

approximation of MinePumpNoIm that satisfies the desired properties. Alternatively, if the

assumptions in Theorem 13 hold, the : ; H operator can be used to obtain a common abstraction

of all MCRs of OnPolicyNoIm and OffPolicyNoIm, which can then be elaborated into a given

MCR [49].

In conclusion, we have shown that by using merge as the underlying notion, we can utilize

partial models from different stakeholders and combine them to obtain an overall model that

satisfies the desired properties. In general, it is useful that the properties of MinePumpNoIm �
and MinePumpNoIm & are preserved rather than those of OnPolicyNoIm and OffPolicyNoIm, as

the environment of the pump controller (for instance, the assumptions on the behaviour of the
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water level) may be necessary for proving certain properties. In fact, OnPolicyNoIm could be

modified to be under-specified enough so as not to satisfy � � unless the assumptions modelled

in WaterLevelSensor hold.



Chapter 8

Conclusion

In this chapter, we summarize the thesis, compare our work with related approaches, and dis-

cuss directions for future research.

8.1 Summary

The motivation for the work presented in this thesis comes from the need to support the elab-

oration of partial behavioural models. In particular, our work has been motivated by existing

limitations of scenario-based model synthesis techniques, and hence we have focused on ob-

servable behaviour, rather than on model structure. However, our work could also be applicable

in the context of composing models that cover different viewpoints [26] or aspects [6].

In this thesis, we have instantiated and studied a general merging framework for merge

based on MTSs [49]. For such models, Chechik and Uchitel have argued that observational re-

finement is the formal underlying principle of model merging and that merging is a process that

should produce a minimal common observational refinement of two consistent models [49].

We have characterized several aspects of this merge. Specifically, the merge of two consistent

systems preserves � -valued weak � -calculus and FLTL properties, giving rise to a sound spec-

ification language for our framework. On the other hand, if two systems are inconsistent, we

have seen that distinguishing properties can be used as a form of feedback: such properties

81
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give insight into areas of disagreement. Furthermore, to ensure that our framework supports

component-wise merging of complex systems (common in practical applications), we have

proven several positive and negative results with respect to algebraic properties, and related

these results to modelling decisions. Most desired properties hold when merge is unique, but

when multiple incomparable merges exist, the right choice of merge must be made in order to

guarantee a particular property, i.e., human involvement may be required. Finally, we have de-

scribed algorithms for supporting the merge process, and shown that such algorithms facilitate

automation, when possible, and enable human intervention, when required.

The above results give rise a framework for partial model elaboration, based on merging

MTSs, suitable for use in practice, that is fully supported algorithmically.

8.2 Related Work

Below, we survey related work along two directions: ( G ) merging, and ( K ) abstraction and prop-

erty preservation with respect to partial models.

Merging. Larsen et. al. [38] introduce an operator with a behaviour similar to our merge

(called conjunction), but defined only for MTSs over the same vocabulary with no � tran-

sitions, and for which there is an independence relation (at which point the least common

refinement exists). Their goal is to decompose a complete specification into several partial

ones to enable compositional proofs. Although not studied in depth, the operator in [38] is

based on strong refinement. We have shown that the existence of multiple MCRs introduces a

number of subtle issues for a similar operator based on observational refinement. In addition,

our sufficient condition for building a common refinement (i.e., the existence of a consistency

relation) is more general than their notion of an independence relation, even for models over

the same vocabulary. In particular, MTSs for which there is an independence relation also

satisfy the determinacy condition, which is not a necessary condition for constructing merge
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in our framework. In [36], Larsen and Xinxin define a conjunction operator for Disjunctive

MTSs (DMTSs), for which the least common refinement also exists, similar to the one in [38].

DMTSs are an extension of MTSs where the set of required transitions is a set of required

hyper-transitions (i.e., a disjunction of multiple transitions on different actions). Larsen and

Xinxin use a notion of a consistency relation, similar to ours, but defined over a single DMTS.

Two DMTSs are then consistent if there is a consistency relation in the conjunction. However,

the goal in [36] is to characterize equation solving in process algebra, rather than to support

model elaboration. In particular, consistency is used to prove satisfiability of a given specifica-

tion.

Hussain and Huth [27] also study the problem of finding a common refinement between

multiple MTSs, but they focus on the complexity of the relevant model-checking procedures:

consistency, satisfiability, and validity. Instead, our merge addresses the more general problem

of supporting engineering activities in model elaboration (i.e., we see merging as the process of

selecting the most appropriate common refinement). Finally, our models are more general than

the models of Hussain and Huth in that we merge models with different vocabularies and �

transitions, but less general in that Hussian and Huth handle hybrid constraints (e.g., restricting

the number of states a given proposition is evaluated in) and compute the set of all consistent

pairs.

Nejati and Chechik [43] present a framework for merging � -valued Kripke structures, where

the fourth value indicates disagreement. Their merge is defined as a common strong refine-

ment, and is therefore characterized by � -valued � -calculus. Like [38, 36], the least common

refinement is guaranteed to exist between consistent models, but it is shown that it may not

be expressible in a � -valued model. In our framework, a unique merge is not guaranteed, but

we maintain a high level of readability by expressing merge in a � -valued model, making it

suitable for use in practice. Nejati and Chechik also allow the models being merged to have

different vocabularies, but unify them before merging by assuming that a proposition outside

of the scope of a given model evaluates to maybe in each state of that model. This interpre-
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Figure 8.1: Example MTSs for illustrating vocabulary unification.

tation does not preserve the fact that a symbol outside of the vocabulary of a system in our

framework cannot cause a change of state in that system, and hence does not ensure that a

common observational refinement is constructed. For example, consider models � and � in

Figure 4.1 with ��� � 
�� � and ��� � 
�� � , and recall that � , � and � are possible merges for

these models in our framework. We can use the translation in [18] to obtain the corresponding

Kripke Structures for these models and perform vocabulary unification as in [43]. Translating

back to MTSs yields models � � and ��� in Figure 8.1. Clearly, the semantics of these models

is not equivalent to models � and � , for example, because action � may cause a change of

state in model � � . In particular, the merge of these two models is � � , which is not a common

refinement of � and � , since �!� @ 
�� � can internally transit to a state that proscribes � , but �
cannot. Finally, the goal of Nejati and Chechik’s work is to provide a framework that supports

a negotiation process for inconsistency resolution, intended to help users identify and prioritize

disagreements through visualization. In particular, " -valued Kripke structures are intended for

expressing inconsistencies, whereas # -valued models are not.

MTSs are defined over flat state spaces: $&% and $(' give a partial description of the be-

haviours over a finite set of states. Huth et al. [28] use the mixed powerdomain of Gunter [20]

to generalize MTSs to non-flat state spaces, modelled as domains. Elements of the mixed pow-

erdomain are (roughly) pairs )+* 	-,/. , where * and , are “special” sets that satisfy a consistency

condition, which is a generalization of *102, . The analogy to MTSs is that a state in an MTS

should be characterized by the set of properties that are true in that state (i.e., * ), and the set

of properties that are possible in that state (i.e., , ), and these sets should be consistent in some

way (i.e., *304, ). Furthermore, there is a natural ordering 5 over the mixed powerdomain

that generalizes the notion of refinement of MTSs: )�* 	-,/.657)+* � 	8,9�:. if and only if *;0<*�� and

,=�>0?, . Intuitively, all true properties in state )�* 	-,/. are true in state )�* � 	-,=�@. (i.e., *A0B*�� ),
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and all possible properties in state
A ) � ��� � E are possible in state

A ) ��� E
(i.e.,

� ��� �
). In ad-

dition, an embedding of standard flat MTSs (and a subset of Mixed Transition Systems [11])

into this domain-theoretic framework is given. Hence, it is conceivable that some results in

this thesis can be expressed quite succinctly in terms of the order structure of the mixed pow-

erdomain (e.g., Theorem 3). However, as our results are intended to be explicitly understood

by modellers, we have so far refrained from the analogy to mixed powerdomains in order to

maintain practicality, and may explore this connection further in future work.

In this thesis, the states that can be merged are those that satisfy consistent sets of temporal

properties. However, these assumptions are not universal to all merge frameworks. Finkel-

stein et al. [15] use first-order logic to express consistency rules, and the models being merged

must be consistent prior to merging. Other approaches support merging inconsistent and in-

complete views, i.e., enable reasoning in the presence of inconsistencies [14, 45]. Chechik

and Easterbrook [14] assume that only states with the same label can be merged, and a similar

consistency assumption is made in [54] in the context of UML differencing. Easterbrook and

Sabetzadeh [45], on the other hand, give a more general category-theoretic approach based on

the observation that it is not always clear how to relate two views. They use graph morphisms

to express such relationships, enabling the user to provide this as a third argument to merge.

However, their emphasis is on preserving model structure (e.g., states and the accessibility

relation between them), rather than on behavioural properties.

The operation of merging also arises in several other related areas, including synthesis of

State Chart models from scenarios [53, 22], program integration [25], and combining program

summaries for software model-checking [2].

Abstraction and Property Preservation. Explicit partiality corresponds naturally to the lack

of information at modelling time. Our work has focused on finding a more elaborate model,

based on refinement, that preserves the properties of two consistent partial models. The re-

verse of this process is abstraction, in which a less refined model is constructed. Unlike merge,
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abstract models are usually hidden from the user for use in automatic procedures, e.g., for ef-

ficient model-checking of large or infinite state systems. In addition, the notion of consistency

is irrelevant in abstraction, as there is always a model that refines an abstraction, namely the

original model itself. However, like merge, soundness of abstractions with respect to prop-

erty preservation is of fundamental importance in order for abstractions to be of any use when

checking properties.

The approach of extending transition systems with a second transition relation describing

unknown behaviour was originally proposed by [37], and independently by [11]. Larsen and

Thomsen introduced MTSs as a solution to the completeness limitation of LTSs, and proved

that Hennessy-Milner logic [23] characterizes strong refinement. Dams’ Mixed Transition Sys-

tems [11, 10], which are MTSs that do not assume that all required transitions are possible tran-

sitions, are used for abstracting Kripke structures. It is shown that � -valued CTL* properties

are preserved by the refinement preorder between these models [11]. Bruns and Godefroid in-

troduced partial Kripke Structures (PKs) [4], which have a single unlabelled transition relation

and � -valued state propositions. They show that � -valued CTL defined over PKs characterizes

their completeness preorder. Huth et al. [28] introduced Kripke MTSs (KMTSs), which are a

state-based version of MTSs. KMTSs have two transition relations, as in an MTS, but rather

than labelled transitions, each state is labelled with a set of � -valued propositions. It is shown

that � -valued � -calculus characterizes refinement defined over KMTSs, which is used as the

basis for a � -valued framework for program analysis.

When a property evaluates to maybe in an abstract model, this model must be further re-

fined (where refinement corresponds to splitting abstract states). Shoham and Grumberg [47]

show that even standard methods of refining abstract models (e.g. [17]) are not monotonic

with respect to property preservation. They define Generalized KMTSs (GKMTSs), an exten-

sion of KMTSs with hyper-transitions, as a solution to this problem, and obtain a monotonic

abstraction-refinement framework with respect to � -valued CTL.

Finally, MTSs, KMTSs, and PKs have the same expressive power [18], and in addition, � -
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valued Kripke structures and Mixed Transition Systems share the same expressive power [21].

8.3 Future Work

In the near future, we plan to work on the efficiency of the algorithms presented here, and

implement them in the LTSA tool [41]. We also intend to conduct larger case studies that

illustrate model elaboration (i.e., when the least common refinement does not exist). Finally,

we plan to work on strengthening the determinacy condition to be a necessary condition with

respect to uniqueness of merge, improve : ; H to build the GCA, and further study algebraic

properties.

Our long-term goal is to provide a sound engineering approach to the development of soft-

ware systems via automated support for constructing partial behavioural models from scenario-

based specifications, merging and elaborating these partial behavioural models, as well as en-

abling users to choose the desired merge from the set of possible minimal common refinements.

In particular, we plan to develop a synthesis algorithm for constructing behavioural models

from scenarios and integrate this into our approach to merging partial behavioural models.
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Appendix A

Additional Case Study Code

Here we provide additional FSP code for the components in the mine pump case study de-

scribed in Chapter 7.

A.1 FSP Code for Generating Models

The following FSP code is used to generate the MTSs and explicit state FSP code.

/* The Mine Pump Case Study */

const False = 0
const True = 1
range Bool = False..True

WaterSensor = LOW,
LOW = (medWater -> MIDDLE),
MIDDLE = (lowWater
-> LOW | highWater -> HIGH),
HIGH = (medWater -> MIDDLE).

MethaneSensor = NOTPRESENT,
NOTPRESENT = (methAppears -> PRESENT),
PRESENT = (methLeaves -> NOTPRESENT).

Pump = OFF,
OFF = (switchOn -> ON),
ON = (switchOff -> OFF).

/**********************************************
* Inconsistent Policies that enforce immediacy
**********************************************/

/* without danger light */
OffPolicy = PUMP[True][False][False],
PUMP[lowWater:Bool][methane:Bool][pumpOn:Bool] = (

// maybes: leave on policy open
when (!pumpOn) switchOn -> PUMP[lowWater][methane][True] |
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medWater -> PUMP[False][methane][pumpOn] |
when (pumpOn) lowWater -> switchOff -> PUMP[True][methane][False] |
when (!pumpOn) lowWater -> PUMP[True][methane][pumpOn] |
when (pumpOn) methAppears -> switchOff -> PUMP[lowWater][True][False] |
when (!pumpOn) methAppears -> PUMP[lowWater][True][pumpOn] |
methLeaves -> PUMP[lowWater][False][pumpOn]

).

/* with danger light */
OffPolicyDL =
PUMP[True][False][False][False],
PUMP[lowWater:Bool][methane:Bool][pumpOn:Bool][dangerLight:Bool] =
(

lowWater -> PUMP[True][methane][pumpOn][dangerLight] |
{medWater,highWater} -> PUMP[False][methane][pumpOn][dangerLight] |
methAppears -> PUMP[lowWater][True][pumpOn][dangerLight] |
methLeaves -> PUMP[lowWater][False][pumpOn][dangerLight] |
// off policy: switch off at lowWater
when (pumpOn) lowWater -> switchOff -> PUMP[lowWater][methane][False][dangerLight] |
// maybes: leave on policy open
when (!pumpOn) switchOn -> PUMP[lowWater][methane][True][dangerLight] |
when (!dangerLight && pumpOn) methAppears -> dangerLightOn
-> switchOff -> PUMP[lowWater][True][False][True] |
when (!dangerLight && !pumpOn) methAppears -> dangerLightOn
-> PUMP[lowWater][True][False][True] |
when (dangerLight) methLeaves -> dangerLightOff -> PUMP[lowWater][False][pumpOn][False]

).

OnPolicy = PUMP[False][False][False],
PUMP[highWater:Bool][methane:Bool][pumpOn:Bool] = (

medWater -> PUMP[False][methane][pumpOn] |
// maybes: might turn it on at medWater (we do not enforce immediacy here)
when (!pumpOn && !methane && !highWater) switchOn -> PUMP[highWater][methane][True] |
// on policy: enforces immediacy
when (!pumpOn && !methane) highWater -> switchOn -> PUMP[True][methane][True] |
when (pumpOn || methane) highWater -> PUMP[True][methane][pumpOn] |
// maybes: leave off policy open
when (pumpOn) switchOff -> PUMP[highWater][methane][False] |
methAppears -> PUMP[highWater][True][pumpOn] |
when (highWater && !pumpOn) methLeaves -> switchOn -> PUMP[highWater][False][True] |
when (!highWater || pumpOn) methLeaves -> PUMP[highWater][False][pumpOn]

).

||MinePump1 = (OnPolicy || WaterLevelSensor || MethaneSensor || Pump).
||MinePump2 = (OffPolicyDL || WaterLevelSensor || MethaneSensor || Pump). ).

/***************************************************************
* Consistent timed policies that do not enforce strict immediacy
****************************************************************/

/* without danger light */
OffPolicyNoIm = PUMP[True][False][False],
PUMP[lowWater:Bool][methane:Bool][pumpOn:Bool] = (

lowWater -> PUMP[True][methane][pumpOn] |
{medWater,highWater} -> PUMP[False][methane][pumpOn] |
methAppears -> PUMP[lowWater][True][pumpOn] |
methLeaves -> PUMP[lowWater][False][pumpOn] |
// off policy: switch off at lowWater
when (pumpOn && lowWater) switchOff -> PUMP[lowWater][methane][False] |
// off policy: switch off if methAppears
when (pumpOn && methane) switchOff -> PUMP[lowWater][methane][False] |
// maybes: leave on policy open
when (!pumpOn) switchOn -> PUMP[lowWater][methane][True] |
// maybe ticks
when (!(methane || lowWater) || !pumpOn) tick -> PUMP[lowWater][methane][pumpOn]

).
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/* with danger light */
OffPolicyNoImDL = PUMP[True][False][False][False],
PUMP[lowWater:Bool][methane:Bool][pumpOn:Bool][dangerLight:Bool] = (

lowWater -> PUMP[True][methane][pumpOn][dangerLight] |
{medWater,highWater} -> PUMP[False][methane][pumpOn][dangerLight] |
methAppears -> PUMP[lowWater][True][pumpOn][dangerLight] |
methLeaves -> PUMP[lowWater][False][pumpOn][dangerLight] |
// off policy: switch off at lowWater
when (pumpOn && lowWater) switchOff -> PUMP[lowWater][methane][False][dangerLight] |
// off policy: switch off if methAppears
when (pumpOn && methane) switchOff -> PUMP[lowWater][methane][False][dangerLight] |
// maybes: leave on policy open
when (!pumpOn) switchOn -> PUMP[lowWater][methane][True][dangerLight] |
when (!dangerLight && methane) dangerLightOn -> PUMP[lowWater][True][pumpOn][True] |
when (dangerLight && !methane) dangerLightOff -> PUMP[lowWater][False][pumpOn][False] |
// maybe ticks
when (!(methane || lowWater) || !pumpOn) tick
-> PUMP[lowWater][methane][pumpOn][dangerLight]

).

OnPolicyNoIm = PUMP[False][False][False],
PUMP[highWater:Bool][methane:Bool][pumpOn:Bool] = (

{lowWater,medWater} -> PUMP[False][methane][pumpOn] |
highWater -> PUMP[True][methane][pumpOn] |
methAppears -> PUMP[highWater][True][pumpOn] |
methLeaves -> PUMP[highWater][False][pumpOn] |
// maybes: might turn it on at low or medium water
when (!pumpOn && !methane && !highWater) switchOn -> PUMP[highWater][methane][True] |
// on policy: turn on when highWater, pump off, and no methane
when (!pumpOn && !methane && highWater) switchOn -> PUMP[highWater][methane][True] |
// maybes: leave off policy open
when (pumpOn) switchOff -> PUMP[highWater][methane][False] |
// maybe ticks

when (!(highWater && !methane) || pumpOn) tick -> PUMP[highWater][methane][pumpOn]
).

||MinePumpNoIm1 = (OnPolicyNoIm || WaterLevelSensor || MethaneSensor || Pump).
||MinePumpNoIm2 = (OffPolicyNoImDL || WaterLevelSensor || MethaneSensor || Pump).

A.2 FSP Code for Generated Models

Here we provide explicit state FSP code for the components omitted from Chapter 7, generated
by the code found in Section A.1 above. Because FSP cannot explicitly handle maybe transi-
tions, they must be added in manually.

MinePump1 = Q0,
Q0 = (methAppears -> Q1 |methAppears -> Q7 |medWater -> Q8

|switchOn? -> Q11 |medWater -> Q10), |methLeaves -> Q11),
|medWater -> Q12), Q6 = (methAppears -> Q3 Q10 = (highWater -> Q5

Q1 = (methLeaves -> Q0 |medWater -> Q12), |methAppears -> Q8
|medWater -> Q2), Q7 = (switchOff? -> Q3 |lowWater -> Q11

Q2 = (lowWater -> Q1 |methLeaves -> Q5 |switchOff? -> Q12),
|highWater -> Q3 |medWater -> Q8), Q11 = (switchOff? -> Q0
|methLeaves -> Q12), Q8 = (switchOff? -> Q2 |methAppears -> Q9

Q3 = (medWater -> Q2 |highWater -> Q7 |medWater -> Q10),
|methLeaves -> Q4), |lowWater -> Q9 Q12 = (lowWater -> Q0

Q4 = (switchOn -> Q5), |methLeaves -> Q10), |methAppears -> Q2
Q5 = (switchOff? -> Q6 Q9 = (switchOff? -> Q1 |highWater -> Q4

|switchOn? -> Q10).
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MinePump2 = Q0
Q0 = (switchOn? -> Q1 Q11 = (methLeaves -> Q0

|methAppears -> Q11 |switchOn? -> Q8
|methAppears -> Q12 |medWater -> Q13),
|medWater -> Q20), Q12 = (dangerLightOn -> Q4),

Q1 = (methAppears -> Q2 Q13 = (switchOn? -> Q9
|methAppears -> Q8 |{highWater, lowWater} -> Q11
|medWater -> Q16), |methLeaves -> Q20),

Q2 = (dangerLightOn -> Q3), Q14 = ({highWater, lowWater} -> Q4
Q3 = (switchOff -> Q4), |methLeaves -> Q7
Q4 = (methLeaves -> Q5 |methLeaves -> Q15),

|methLeaves -> Q6 Q15 = (dangerLightOff -> Q20),
|medWater -> Q14), Q16 = ({highWater, lowWater} -> Q1

Q5 = (dangerLightOff -> Q0), |methAppears -> Q9
Q6 = (methAppears -> Q4 |methAppears -> Q17

|medWater -> Q7), |lowWater -> Q19),
Q7 = ({highWater, lowWater} -> Q6 Q17 = (dangerLightOn -> Q18),

|methAppears -> Q14), Q18 = (switchOff -> Q14),
Q8 = (methLeaves -> Q1 Q19 = (switchOff -> Q0),

|medWater -> Q9), Q20 = ({highWater, lowWater} -> Q0
Q9 = ({highWater, lowWater} -> Q8 |methAppears -> Q13

|lowWater -> Q10 |switchOn? -> Q16
|methLeaves -> Q16), |methAppears -> Q21),

Q10 = (switchOff -> Q11), Q21 = (dangerLightOn -> Q14).

MinePumpNoIm1 = Q0,
Q0 = (tick? -> Q0 Q4 = (tick? -> Q4 |tick? -> Q8),

|switchOn? -> Q1 |highWater -> Q5 Q9 = (lowWater -> Q1
|methAppears -> Q10 |lowWater -> Q10 |methAppears -> Q3
|medWater -> Q11), |methLeaves -> Q11), |highWater -> Q7

Q1 = (switchOff? -> Q0 Q5 = (medWater -> Q4 |tick? -> Q9
|tick? -> Q1 |tick? -> Q5 |switchOff? -> Q11),
|methAppears -> Q2 |methLeaves -> Q6), Q10 = (methLeaves -> Q0
|medWater -> Q9), Q6 = (methAppears -> Q5 |medWater -> Q4

Q2 = (methLeaves -> Q1 |switchOn -> Q7 |tick? -> Q10),
|tick? -> Q2 |medWater -> Q11), Q11 = (lowWater -> Q0
|medWater -> Q3 Q7 = (switchOff? -> Q6 |methAppears -> Q4
|switchOff? -> Q10), |tick? -> Q7 |highWater -> Q6

Q3 = (lowWater -> Q2 |methAppears -> Q8 |switchOn? -> Q9
|tick? -> Q3 |medWater -> Q9), |tick? -> Q11).
|switchOff? -> Q4 Q8 = (medWater -> Q3
|highWater -> Q8 |switchOff? -> Q5
|methLeaves -> Q9), |methLeaves -> Q7

MinePumpNoIm2 = Q0,
Q0 = (tick? -> Q0 Q8 = (medWater -> Q7 |switchOn? -> Q8

|switchOn? -> Q1 |tick? -> Q8 |methAppears -> Q12
|methAppears -> Q22 |dangerLightOff -> Q9 |dangerLightOff -> Q13
|medWater -> Q23), |methAppears -> Q15), |tick? -> Q16),

Q1 = (switchOff -> Q0 Q9 = (tick? -> Q9 Q17 = (lowWater -> Q4
|methAppears -> Q2 |methAppears -> Q10 |methLeaves -> Q6
|medWater -> Q21), |medWater -> Q21), |highWater -> Q12

Q2 = (methLeaves -> Q1 Q10 = (methLeaves -> Q9 |tick? -> Q17
|dangerLightOn -> Q3 |switchOff -> Q11 |switchOn? -> Q19),
|medWater -> Q20 |dangerLightOn -> Q15 Q18 = (dangerLightOff -> Q1
|switchOff -> Q22), |medWater -> Q20), |methAppears -> Q3

Q3 = (switchOff -> Q4 Q11 = (switchOn? -> Q10 |switchOff -> Q5
|methLeaves -> Q18 |tick? -> Q11 |medWater -> Q7),
|medWater -> Q19), |dangerLightOn -> Q12 Q19 = (lowWater -> Q3

Q4 = (switchOn? -> Q3 |methLeaves -> Q13 |methLeaves -> Q7
|tick? -> Q4 |medWater -> Q14), |highWater -> Q15
|methLeaves -> Q5 Q12 = (tick? -> Q12 |switchOff -> Q17),
|medWater -> Q17), |switchOn? -> Q15 Q20 = (lowWater -> Q2

Q5 = (dangerLightOff -> Q0 |methLeaves -> Q16 |highWater -> Q10
|methAppears -> Q4 |medWater -> Q17), |switchOff -> Q14
|tick? -> Q5 Q13 = (switchOn? -> Q9 |dangerLightOn -> Q19
|medWater -> Q6 |methAppears -> Q11 |methLeaves -> Q21),
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|switchOn? -> Q18), |tick? -> Q13 Q21 = (lowWater -> Q1
Q6 = (lowWater -> Q5 |medWater -> Q23), |highWater -> Q9

|tick? -> Q6 Q14 = (highWater -> Q11 |methAppears -> Q20
|switchOn? -> Q7 |tick? -> Q14 |tick? -> Q21),
|highWater -> Q16 |dangerLightOn -> Q17 Q22 = (methLeaves -> Q0
|methAppears -> Q17 |switchOn? -> Q20 |switchOn? -> Q2
|dangerLightOff -> Q23), |lowWater -> Q22 |dangerLightOn -> Q4

Q7 = (tick? -> Q7 |methLeaves -> Q23), |medWater -> Q14
|highWater -> Q8 Q15 = (methLeaves -> Q8 |tick? -> Q22),
|lowWater -> Q18 |switchOff -> Q12 Q23 = (lowWater -> Q0
|methAppears -> Q19 |medWater -> Q19), |highWater -> Q13
|dangerLightOff -> Q21), Q16 = (medWater -> Q6 |methAppears -> Q14

|switchOn? -> Q21
|tick? -> Q23).


