Appendi x A
-- The TCP state nmchine

MODULE nmi n
VAR t1: tcp;

MODULE tcp
VAR

-- Al the possible states in a connection lifetine.
state: {LISTEN, SYN SENT, SYN RECEl VED, ESTABLI SHED, FIN-WAIT-1,
FIN-WAI T-2, CLOSE-WAIT, CLOSING LAST-ACK, TIME-WAIT, CLOSED};

-- The activity of the TCP can be characterized as responding to events.
-- The events that occur can be cast into three categories: user calls,
-- arriving segnents, and tineouts.

event: {USERCALL, SEGVENT, TI MEQUT};

-- Six usercalls are included in the npodel, which are OPEN-P, OPEN A,
-- SEND, RECEIVE, CLOSE, ABORT. STATUS is elimn nated.
usercall: {OPEN-P, OPEN-A, SEND, RECEI VE, CLOSE, ABORT};

-- active_flag is used to indicate if the latest OPEN is an active OPEN
active_flag: bool ean;

-- prc_flag is used to indicate if the security and the precedence of
-- the segnent match the connection.
prc_flag: {LON EQUAL, H G};

-- In TCP, 6 bits are used as control bits
-- urg flag is to indicate Ugent Pointer field significant
urg flag: bool ean;

-- ack_flag is to indicate Acknow edgnent field significant
ack_flag: bool ean;

-- psh_flag is to Push Function
psh_flag: bool ean;

-- rst_flag is to Reset the connection
rst_flag: bool ean;

-- syn flag is to Synchroni ze sequence nunbers
syn_flag: bool ean;

-- fin_flag is to indicate No nore data from sender
fin_flag: bool ean;

-- there are 3 kinds of tineout as defi ned bel ow

ti meout: {USER-TI MEQUT, RETRANSM SSI ON- TI MEQUT, TI MEWAI T- TI MEQUT} ;
-- In TCP, 32 bits are used as Acknow edgnent Nunber and Sequence
-- Nunber. In this program we use boolean to indicate if the Ack
-- Nunber and Seq Nunber are ok.

ack_ok: bool ean;
seq_ok: bool ean;

-- The following section is to initial all the varables

ASSI GN
init(event) := {USERCALL, SEGVENT, TI MEQUT};
next (event) := {USERCALL, SEGVENT, TI MEQUT};
init(active_flag) := {0, 1};
next (active flag) := case
event = USERCALL & usercall
event = USERCALL & usercall
1: active_flag;

esac;
init(prc_flag) {LOW EQUAL, H GH;

OPEN- A: 1;
OPEN- P: O;

next(prc_flag) := {LOW EQUAL, H GH;
init(urg_flag) := {0, 1};
next (urg_flag) := {0, 1};
init(ack_flag) := {0, 1};
next (ack_flag) := {0, 1};
init(psh_flag) := {0, 1};
next (psh_flag) := {0, 1};
init(rst_flag) := {0, 1};
next(rst_flag) := {0, 1};
init(syn_flag) := {0, 1};
next (syn_flag) := {0, 1};
init(fin_flag) := {0, 1};
next(fin_flag) := {0, 1};

init(timeout) = { USER- TI MEQUT, RETRANSM SSI ON- TI MEQOUT,
TI MEWAI T- TI MEQUT} ;

next (timeout) := {USER— TI MEQUT, RETRANSM SSI ON- TI MEQOUT,
TI MEWAI T- TI MEQUT} ;

i nit(ack_ok)
next (ack_ok)
i nit(seq_ok)
next (seq_ok)

’

’

I
A A A Ay
oco0o0oo”
|l el el
e

’
’
’
’ ’

init(state) := {LISTEN, SYN SENT, SYN RECEI VED, ESTABLI SHED, FI N-WAIT-1
FIN-WAI T-2, CLOSE-WAIT, CLOSING LAST-ACK, TIMe-WAIT, CLOSED};
next (state) := case

-- The following section is to handle the situation when state = CLOSED

state = CLOSED :
case
event = USERCALL

-- Wien the event is usercall, and the usercall is to open a connection
-- and at the tine active _flag is on, then the next state is SYN SENT;
-- if at the time active_flag is off, the the next state is LISTEN

case
usercall = OPEN- A: SYN SENT;
usercall = OPEN-P: LI STEN
1: CLOSED

esac;

-- Al the coming SEGVENT event will be |led to CLOSED state.
event = SEGVENT: CLOSED:

-- When event is TIMEQUT, and it’'s a USER-TI MEQUT, then the next state

-- is CLCSED.
event = TI MEQUT:
case
ti meout = USER- TI MEQUT: CLOSED;
1. state;
esac;

esac;
-- The follow ng section is to handle the situation when state = LI STEN

state = LI STEN :

case
event = USERCALL

case
usercal |l = OPEN-A: SYN- SENT;
usercall = SEND: SYN- SENT
usercall = CLOSE: CLCSED;
usercal | = ABORT: CLCSED;
1 : LISTEN

esac;

-- Wien the state is LISTEN and the event is SEGQVENT, if it is not a
-- reset or an acknow edgnent, rather it is a syn segnent with correct
-- precedence and security level, then the next state is SYN RECElI VED
-- Al the other segnent will make the state keep unchanged.

event = SEGQVENT:
case
Irst flag & 'ack flag & syn flag & (prc_flag = EQUAL):
SYN- RECEI VED,
1. LI STEN
esac;
event = TI MEQUT:
case
ti meout = USER- TI MEQUT: CLOSED;
1. state;
esac;
esac;

-- The follow ng section is to handl e the situation when state =
- - SYN- SENT.

state = SYN SENT :

case
event = USERCALL
case
usercal |l = SEND: SYN- SENT;
usercal |l = CLOSE: CLCSED;
usercal | = ABORT: CLCSED;
1 : SYN SENT;
esac;

-- In the state of SYN-SENT, we will first check if the comi ng segnent
-- is an ack with the correct ack nunber: if the ack nunber is wong,
-- then the following state will be SYN-SENT, else state is remain

-- unchanged,;

-- secondly, if the coning segnent is a reset ack with correct ack

-- nunber, then it will go to the state of CLOSED, else go to SYN SENT;
-- Thirdly, if the precedence and security level is not normal, then

-- the next state nust be SYN SENT.

-- Next if the coming segnent is a syn information with correct ack

-- nunber then the next state nust be ESTABLI SHED, el se SYN- RECEl VED

event = SEGQVENT:

case
ack_flag & !'ack_ok: SYN SENT;
rst_flag & ack_flag & ack_ok: CLOSED
rst_flag & !'ack_ok: SYN- SENT,;
I'(prc_flag = EQUAL) : SYN- SENT;
syn_flag & ack_ok: ESTABLI SHED
syn_flag & !ack _ok: SYN RECEIl VED;
1. SYN SENT
esac;
event = TI MEQUT:
case
ti meout = USER-TI MEQUT: CLOSED;
1. state;
esac;
esac;

-- The following section is to handle the situation when state =
- - SYN RECEI VED

state = SYN- RECEI VED :

case
event = USERCALL

case
usercall = OPEN-P | usercall = OPEN A: SYN RECEI VED
usercall = CLOSE: FIN-WAI T-1;
usercal |l = ABORT: CLOCSED;

1 : SYN RECEI VED

esac;

-- In the state of SYN-RECEIVED, we will first check if the com ng

-- segnment is with a correct sequence nunber, if the sequence nunber is
-- wong, the state remain unchanged.

-- secondly, if the comng segnent is a reset with active_flag off then
-- the next state is LISTEN, if the active flag is on, then it wll

-- goes to the state of CLOSED

-- Thirdly, if the precedence and security level is not normal, then

-- the next state nust be SYN RECEI VED

-- Next if the coming segnent is a syn then the next state nust be

-- CLGOSED

-- If the com ng segnent is not a ack, then it will go to SYN RECElI VED
-- State; if the coming segnent is an ack and with incorrect ack

-- nunber, the next state is al so SYN RECEl VED

-- If the ack with correct ack nunber and the fin flag is o
-- successfully enter the state of ESTABLISHED, while if t
-- is on, then next state is CLOSE-\WAIT.

event = SEGQVENT:
case
I seq_ok: SYN RECEI VED

rst_flag & !active_flag: LISTEN;
rst flag & active flag: CLOSED,
I'(prc_flag = EQUAL): SYN- RECEI VED
syn_flag: CLOSED

lack_flag: SYN RECEI VED,

lack_ok: SYN- RECEIl VED

ack_ok & !'fin_flag: ESTABLI SHED,
fin flag: CLOSE-WAIT,

1. SYN RECEI VED

esac;
event = TI MEQUT:
case
ti meout = USER- TI MEQUT: CLOSED;
1. state;
esac;
esac;

-- The follow ng section is to handl e the situation when state =
-- ESTABLI SHED

state = ESTABLI SHED :

case
event = USERCALL

case
usercall = OPEN-P | usercall = OPEN A : ESTABLI SHED
usercall = CLOSE: FIN-WAI T-1;
usercal | = ABORT: CLCSED;

1 : ESTABLI SHED:

esac;

-- In the state of ESTABLISHED, we will first check if the com ng

-- segnent is with an correct sequence nunber, if the sequence nunber
-- is wong the state renai n unchanged.

-- secondly, if the coning segnent is a reset the next state will be
-- CLGCSED

-- Thirdly, if the precedence and security level is not normal, then
-- the next state nust be ESTABLI SHED.

-- Next if the coming segnent is a syn then the next state nust be

-- CLCSED.

-- If the coning segnent is not an ack, then it will go to ESTABLI SHED
-- State; if the comng segnent is an ack and with incorrect ack

-- nunber, the next state is al so ESTABLI| SHED

-- If the ack with correct ack nunber and the fin_flag is on, then next
-- state is CLOSE-WAIT.

event = SEGQVENT:
case
'seq_ok: ESTABLI SHED
rst_flag: CLOSED,
I'(prc_flag = EQUAL): ESTABLI SHED
syn_flag: CLOSED
lack flag: ESTABLI SHED,;
l'ack_ok: ESTABLI SHED
fin_flag: CLOSE-WAIT,
1. ESTABLI SHED;
esac;
event = TI MEQUT:
case

ti meout = USER- TI MEQUT: CLOSED;
1. state;
esac;
esac;

-- The follow ng section is to handl e the situation when state
-- FINWAIT-1.

state = FINNVAIT-1 :

case
event = USERCALL
case
usercall = ABORT: CLOSED;
1: FINWAIT-1;
esac;

-- In the state of FINWAIT-1, we will first check if the com ng
-- segnment is with a correct sequence nunber, if the sequence nunber is

-- wong,the state renmai n unchanged.

-- Secondly, if the coning segnent is a reset then it will go to the

-- state of CLOSED

-- Thirdly if the coming segnent is a syn then the next state nust be

-- CLGsED

-- If the comi ng segnment is not an ack, then it will go to FINWAIT-1

-- State; if the comng segnent is an ack and with incorrect ack

-- nunber, the next state is also FIN-WAIT-1.
-- If the ack with correct ack nunber and the fin flag is off,

-- either enter the state of FINWAIT-1 or FINNWAIT-2; while if

-- fin_flag is on, then next state is TIMEEWAIT or CLOSING To
-- which state to enter, we need to know if the com ng ACK
acknowl edgnent

-- is in response to the FIN nessage which we have sent before
-- won't deal with in this nodel.

event = SEGQVENT:
case

I'seq_ok: FINWAIT-1
rst_flag: CLOSED
syn_flag: CLOSED
lack flag: FIN-WAIT-1;
lack _ok: FIN-WAIT-1;
ack_ok & !'fin_flag: {FINNWAIT-1, FINWAIT-2};
fin_flag: {TIME-WAIT, CLOSING ;
1. FINWAIT-1 ;

esac;
event = TI MEQOUT:
case
ti meout = USER- TI MEOQUT: CLOSED;
1: state;
esac;
esac;

-- The follow ng section is to handl e the situation when state
-- FIN-WAIT-2.

state = FINNVWAIT-2 :
case
event = USERCALL

it wll

det erm ne

whi ch we

case

usercal | = ABORT: CLCSED;
1: FINWAIT-2;
esac;

-- In the state of FINWAIT-2, we will first check if the com ng

-- segnment is with a correct sequence nunber, if the sequence nunber is
-- wong,the state remai n unchanged.

-- Secondly, if the coning segnent is a reset then it will go to the
-- state of CLOSED

-- Thirdly if the com ng segnent is a syn then the next state nust be
-- CLGSED

-- If the com ng segnent is not a ack, then it will go to FINWAIT-2
-- State; if the conming segnent is an ack and with incorrect ack

-- nunber, the next state is also FIN-WAIT-2.

-- If the ack with correct ack nunber and the fin flag is off, it wll
-- either enter the state of FINWAIT-2; while if the fin_flag is on,
-- then next state is TIM-WAIT.

event = SEGVENT:
case

I'seq_ok: FIN-WAIT-2;
rst_flag: CLOSED,
syn_fl ag: CLOSED;
lack_flag: FIN-WAIT-2;
lack_ok: FIN-WAIT-2;
ack ok & !'fin_flag: FINWAIT-2;
fin flag: TIME-WAIT;
1. FINWAIT-2 ;

esac;
event = TI MEQUT:
case
ti meout = USER-TI MEQUT: CLOSED;
1. state;
esac;

esac,

-- The following section is to handle the situation when state =
-- CLOSE-WAIT

state = CLOSE-WAIT :

case
event = USERCALL

case
usercall = OPEN-P | usercall = OPEN-A : CLCSE-WAIT;
usercall = CLOSE: LAST- ACK
usercal |l = ABORT: CLGCSED,
1: CLOSE-WAIT;

esac;

-- In the state of CLOSE-VWAIT, we will first check if the com ng

-- segnment is with a correct sequence nunber, if the sequence nunber is
-- wong,the state renmai n unchanged.

-- Secondly, if the comng segnent is a reset then it will go to the

-- state of CLOSED

-- Thirdly if the coming segnent is a syn then the next state nust be
-- CLGCSED.

-- If the coning segnent is not an ack, then it will go to CLOSE-WAIT

-- State; if the comng segnent is an ack and with incorrect ack

-- nunber, the next state is al so CLOSE-WAI T.

-- If the ack with correct ack nunber and the fin flag is off, it wll
-- either enter the state of CLOSE-WAIT; while if the fin flag is on,
-- then next state is CLOSE-WAIT.

event = SEGVENT:
case
I'seq_ok: CLOSE-WAIT;
rst_flag: CLOSED
syn_fl ag: CLOSED;
lack_flag: CLOSE-WAIT,
lack_ok: CLOSE-WAIT,
ack ok & !'fin_flag: CLOSE-WAIT;
fin flag: CLOSE-WAIT,
1: CLOSED ;
esac;
event = TI MEQUT:
case
ti meout = USER-TI MEQUT: CLOSED;
1. state;
esac;
esac;

-- The follow ng section is to handl e the situation when state =
-- CLOSI NG

state = CLOSI NG :

case
event = USERCALL
case
usercal | = ABORT: CLCSED;
1 : CLOSING
esac;

-- In the state of CLOSING we will first check if the com ng segnent
-- is with a correct sequence nunber, if the sequence nunber is wong,
-- the state remai n unchanged.

-- Secondly, if the coning segnent is a reset then it will go to the
-- state of CLOSED

-- Thirdly if the com ng segnent is a syn then the next state nust be
-- CLGSED

-- If the coming segnent is not an ack, then it will go to CLOSING

-- State; if the conming segnent is an ack and with incorrect ack

-- nunber, the next state is al so CLOSI NG

-- If the ack with correct ack nunber and the fin flag is off, it wll
-- either enter the state of CLOSING or TIME-WAIT; while if the

-- fin_flag is on, then next state is CLOSING To determ ne which

-- state to enter, we need to know if the com ng ACK acknow edgnent

-- is in response to the FIN nessage which we have sent before which
-- we won't deal with in this nodel.

event = SEGQVENT:
case
I'seq_ok: CLOSI NG
rst_flag: CLOSED;
syn_flag: CLCSED;
lack _flag: CLOCSI NG

lack_ok: CLOSI NG
ack_ok: {CLOSING TI ME-WAIT};
fin_flag: CLOSING

1: CLOSI NG ;
esac;
event = TI MEQUT:
case
ti meout = USER-TI MEQUT: CLOSED;
1. state;
esac;

esac,

-- The follow ng section is to handl e the situation when state =
-- LAST- ACK

state = LAST- ACK

case
event = USERCALL
case
usercal | = ABORT: CLCSED;
1 : LAST- ACK
esac;

-- In the state of LAST-ACK, we wll first check if the com ng

-- segnment is with a correct sequence nunber, if the sequence nunber is
-- wong, the state remai n unchanged.

-- Secondly, if the coning segnent is a reset then it will go to the

-- state of CLOSED

-- Thirdly if the com ng segnent is a syn then the next state nust be
- - CLGSED

-- If the com ng segnent is not an ack, then it will remain in LAST-ACK
-- State; if the conming segnent is an ack and with incorrect ack

-- nunber, the next state is al so LAST- ACK

-- If the ack with correct ack nunber and the fin flag is off, it wll
-- either enter the state of LAST-ACK or CLOSED; while if the fin_flag
-- is on, then next state is LAST-ACK. To determ ne which state to

-- enter, we need to know if the com ng ACK acknow edgnent is in

-- response to the FIN nmessage which we have sent before which we

-- won't deal with in this nodel.

event = SEGQVENT:
case

I seq_ok: LAST-ACK
rst_flag: CLOSED
syn_flag: CLOSED
lack _flag: LAST-ACK;
lack _ok: LAST-ACK;
ack_ok: {LAST-ACK, CLOSED};
fin_flag: LAST-ACK

1: LAST- ACK
esac;
event = TI MEQOUT:
case
ti meout = USER- TI MEQUT: CLOSED;
1: state;
esac;

esac;

-- The follow ng section is to handl e the situation when state =
-- TIME-VWAIT.

state = TIME-VWAIT :

case
event = USERCALL
case
usercal | = ABORT: CLCSED;
1: TIME-WAIT;
esac;

-- In the state of TIME-WAIT, we will first check if the comng

-- segnment is with a correct sequence nunber, if the sequence nunber is
-- wong, the state remai n unchanged.

-- Secondly, if the conming segnent is a reset then it will go to the
-- state of CLOSED

-- Thirdly if the com ng segnent is a syn then the next state nust be
-- CLGSED

-- If the com ng segnent is not a ack, then it will go to TIME-VWAIT
-- State; if the conming segnent is an ack and with incorrect ack

-- nunber, the next state is also TIME-WAIT.

-- If the ack with correct ack nunber and the fin flag is on, it wll
-- either enter the state of TIM=-WAIT.

event = SEGQVENT:
case
I'seq_ok: TINMe-WAIT,
rst_flag: CLOSED
syn_fl ag: CLOSED;
lack_flag: TIME-WAIT;

ack_flag & fin_flag: TIME-WAIT; --start tinmer 2MSL
fin flag: TIMe-WAIT;
1. TIME-WAIT ;
esac;
event = TI MEQUT:
case
ti meout = USER- TI MEQUT: CLOSED;
ti meout = TI MEWAI T- TI MEQUT: CLOSED,
1. state;
esac;
esac;
DEFI NE
out _rst := case

event = SEGVENT: case _
-- If a segnments arrives, there are three cases for reset generation

-- 1. If the connection does not exist (CLOSED) then a reset is sent
-- in response to any incom ng segnment except another reset.

state = CLOSED & !'rst_flag: 1;

-- If the connection is in any non-synchroni zed state (LISTEN, SYN SENT,
-- SYN RECEI VED), and the incom ng segnent acknow edges sonet hi ng not
yet -- sent (the segnment carries an unacceptable ACK), or if an incom ng
-- segnment has a security level or conpartnent which does not exactly

-- match the level and conpartnment requested for the connection, a reset
-- is sent.

10

(state = LISTEN | state = SYN-SENT | state = SYN RECEI VED) &
((ack _flag & 'ack_ok) | !'(prc_flag = EQUAL)): 1;

If the connection is in a synchroni zed state (ESTABLI SHED, FI N-WAI T-

FIN-WAI T-2, CLOSE-WAIT, CLOSING LAST-ACK, TIME-WAIT), any
unaccept abl e segnent (out of w ndow sequence nunber or unacceptible
acknowl edgnment nunber or a security level or conpartnent which does
not exactly match the level and conpartnment requested for the
connection, a reset is sent.

(state = ESTABLISHED | state = FINWAIT-1 | state = FINNWAIT-2 |

state = CLOSE-WAIT | state = CLOSING | state = LAST-ACK | state =
TIME-WAIT) & (!seq ok | (ack flag & 'ack ok) | !(prc_flag = EQUAL)):
1;
1. O;
esac;

|f the connection is in the state SYN RECElI VED or ESTABLI SHED or
FINWAIT-1 or FINWAIT-2 or CLOSE-WAIT and there is a usercall
ABORT, then a reset is sent.

event = USERCALL: case
usercall = ABORT & (state = SYN- RECEI VED |
state FINWAIT-1 | state = FlI
state CLOSE-WAIT): 1;

state ESTABLI SHED |
N- WAl T-

N I

1: 0;
esac;
1. O;

11

Appendi x B.

State 1. 1:
_process_selector _ = main
out rst =0

state = CLOSED

event = TI MEQUT

usercall = ABORT
active_fl =0

prc_flag H GH

urg flag
ack flag
psh_fl ag
rst_flag
syn_fl ag
fin flag
ti meout = TI MEWAI T- TI MEOUT

o
«
o

0
0
0
0
0
I

ack ok =0
seq_ok =0
State 1.2:
_process_selector_ = main

out rst =0

state = CLOSED
event = USERCALL
usercall = OPEN-P
active_fl
prc_flag
urg flag
ack flag
psh _flag
rst_flag
syn_fl ag
fin_flag
ti meout = TI MEWAI T- TI MEOUT

Q
(o]
;II
Ro

0
0
0
0
0
0
I

ack ok =0
seq_ ok =0
State 1.3:
_process_selector_ = main

out rst =0
state = LI STEN
event = SEGVENT
usercall = ABORT
active_fl =0
prc_flag EQUAL
urg_flag
ack flag
psh _fl ag
rst_flag
syn_fl ag
fin_flag
ti meout = TI MEWAI T- TI MEOUT
ack ok
seq_ok
-- loop starts here --
State 1.4:

_process_sel ector_ = main
out rst =0

state = SYN RECEI VED

T T 1 O 1 I <]
«
o

0
0
0
1
0
I

oo

event = TI MEQUT
usercall = ABORT
active_fl =0
prc_flag H GH
urg_flag
ack_fl ag
psh_fl ag
rst_flag
syn_fl ag
fin flag
ti meout = TI MEWAI T- TI MEQUT
ack_ok
seq_ok
State 1.5:
_process_selector _ = main
out rst =0

state = SYN RECEI VED
event = TI MEQUT

usercall = ABORT
active_fl =0

prc_flag H GH

urg flag
ack_fl ag
psh_fl ag
rst_flag
syn_fl ag
fin flag
ti meout = USER- TI MEQUT
ack_ok
seq_ok
State 1.6:
_process_selector _ = main
out rst =0

state = CLOSED

event = USERCALL

usercall = OPEN-P
active_fl
prc_flag
urg flag
ack flag
psh_fl ag
rst_flag
syn_fl ag
fin flag
ti meout = TI MEWAI T- TI MEOUT
ack ok
seq_ok
State 1.7:
_process_selector_ = main
out rst =0

state = LI STEN

event = SEGVENT

L 1 I 1 I T I <]
«
o

0
0
0
0
0
I

[eoXe]

[1 A O I A 1 <]
«
o

0
0
0
0
0

[eoXe]

Q
«Q
;II
Qo

0
0
0
0
0
0
I

oo

usercall = ABORT
active_flag =
prc_flag = EQUAL
urg flag = 0

ack flag = 0

psh flag = 0

13

rst_flag
syn_fl ag
fin flag
timeout = T
ack_ok
seq_ok
State 1.8:
_process_selector _ = main
out rst =0

state = SYN RECEI VED
event = TI MEQUT

usercall = ABORT
active_flag = 0

prc_flag H GH

urg flag
ack flag
psh_fl ag
rst_flag
syn_fl ag
fin flag
ti meout = TI MEWAI T- TI MEOUT
ack ok
seq_ok

(I |
—Oro

MEWAI T- TI MEQUT

[eo)e]

o

0
0
0
0
0
I

oo

14

