Closure Under Stuttering

References

+ D. Paun, M. Chechik, B. Biechelle, “Production Cell Revisited”, in
Proceedings of SPIN'98, November 1998.

¢ D. Paun, M. Chechik, “Events in Linear-Time Properties”, in
Proceedings of International Symposium on Requirements
Engineering, June 1999.

¢ M. Chechik, D. Paun, “Events in Property Patterns”, in
Proceedings of SPIN'99, September 1999.

+ D. Paun, “On Closure Under Stuttering”, M.S. Thesis, University
of Toronto, Department of Computer Science, May 1999.

Closure Under Stuttering

Desired property of LTL formulas is closure under stuttering :
interpretation of the formula remains the same under state

sequences that differ only by repeated states [Abadi,Lamport'91].

+ Guaranteed [Lamport¥4] for a subset of LTL without the o
operator

Examples:
= Oa is closed under stuttering

Using LTL to Specify Production Cell
System

= oa is not closed under stuttering

Legend:
O @ ®© @ @ O aisfalse
O O @ @ @ @ aistrue

Notation: <<F>> - F'is closed under stuttering

+ Case study initiated by Forchrungszentrum Informatik (FZI)
+ Aimed to show applicability of formal methods to real-world
examples
Example property:
The magnet of the crane may be deactivated only when the
magnet is above the feedbelt.

Resulting LTL formula:
O((activate 0o-activate) O o(head ver = DOWN))

Is this formula closed under stuttering?!!

Related Work

+ Determining whether an arbitrary LTL formula is closed under
stutterung is PSPACE-complete [Peled, Wilke,Wolper96]
= Tableu-based, $$$ approach
+ A computationally-feasible algorithm for determining closure
under stuttering for a subclass of formulas has been proposed
[Holzmann, Kupferman‘96] but not implemented in SPIN
= Algorithm cannot be applied by hand
= How useful in practice?

QOur goal:
= Want to have syntactical restrictions on LTL (like “no next
state”) that guarantee that the resulting formula is closed
under stuttering
= Want the approach to apply to real-life problems

Edges

O((activate Do-activate) 0 o(head ver = DOWN))

an edge (a change of value)

Formally, if 4 is an LTL formula, then
tA=-4004 -- up orrising edge
1A=400-4 -- down or falling edge
T4=14014 -- anyedge

Example: 104

Edges = events

(Logical) edges = signal edges

I

Main Result

Observation:

stuttering does not add or delete edges (or change their
relative order)

O @ @ @ ©

Theorem:
<<4>> 0<>0 << O (~4Do400B)>>

Proof: in [Paun99]

Some Properties of Edges

+ Edges are related: + Edges interact with each other:
t-A=14 114 =14
1-A=14 114 =bi4
7-4=04

+ Edges interact with boolean operators:
t1(4A0B)=(1400B)0(1B00A)
+ Edges interact with temporal operators
tod=o0o14
104 = false
104 =14000-4
tAUB)=-(40B)0o(AUB)

Some Properties of Closure Under
Stuttering

ais avariable or a constant 0 <<a>>
<<A>> = <<=A4>>
<<A>>k> 0 <<4 OB>>
<<A>> 0 <<0O4>>

<<d>> 0 << 04>>
<<A>><> 0 <<4 UB>>
<<A>>0<> [0 <<4 *B>>,
where *04{C,C,0,0,=

Formulas of the form <<4>> 0 f (14): edges t and | can be
used interchangeably.

Closure Under Stuttering Properties

Property 1 (Existence)
<<d>>0<>k<C>> 0 << V(14 00BOC)>>
with simplified versions:
<<d>>0<> 0 << (14 OB)>>
<<A>>0<> 0 << (14 DOB)>>

Property 2 (Universality)
<<A>>k>k<C>>0 << O(t4A 0 (OB OC)>>
with simplified versions:
<<A4>>k> 0 << 0O(14 0 B)>>
<<A4>>0<> 0 << 0O(14 0 0B)>>

Closure Under Stuttering Properties
(Cont'd)

Property 3 (Until)
<<A>>k>K<C>> 0 <<D>>[K<E>><F>>
0 << (~1A00BOC)U(1D OCE OF)>>
with many simplified versions.
Examples:
The magnet of the crane may be deactivated only when the
magnet is above the feedbelt.

O(: activate O O(head ver = DOWN))

Initially, no items should be dropped on the table before
the operator pushes and releases the GO button

- Lhold U 1 button

Quick Summary

+ We introduced the notion of edges for LTL
+ We provided a set of theorems that enable syntax-based
analysis of a large class of formulas for closure under stuttering.
+ Such theorems can be added to a theorem-prover for
mechanized checking.
11 But the language of edges is not closed !!

Example: 14

Are the properties that can be identified using our method
useful in practice?

Application: Property Patterns

+ Pattern-based approach [Dwyer,Avrunin,Corbett'98,'99]
= Presentation, codification and reuse of property
specifications
= Easy conversion between formalisms: CTL, LTL, QRE, GIL...

= Goal: to enable novice users to express complex properties
effectively

= LTL properties are state-based

+ Apply our theory to
= extend the pattern-system with events for LTL properties
= check closure-under-stuttering of resulting formulas

Pattern Hierarchy

FPropesty Paterms
Ocomzace
Abence /\ Eounded Precedende Response Chain Chain
Existrnce Precedence Response

Uniweesaliy Exfstence

Absence A condition does not occur within a scope

Existence A condition must occur within a scope

Universality A condition occurs throughout a scope

Response A condition must always be followed by another
within a scope

Precedence A condition must always be preceded by another
within a scope. 14

* o o0

*

Scopes

Scopes are regions of interest over which the condition is evaluated.
Fipdal |
Bafore B | e
After & I_
Betwaen 3 and & I_ —_
| 2
I

After O Uatil R

Srate/Event
Fequence

Example

LTL formulation of the property
S precedes P between Q and R
(Precedence pattem with “between O and R" scope) is

O((Q oOR) O (-P U(SORY))

Note that S, P, Q, R are states.

Extending the Pattern System

+ Want to extend LTL patterns to reasoning about events
+ “next” operator: are resulting properties closed under stuttering?
Assumptions:

= Multiple events can happen simultaneously

= Intervals are closed-left, open-right, as in original system

0 R

Extending the Pattern System

+ We have considered the following possibilities:

0. P, S -- states Q, R - states
1. P, S - states Q, R — up edges
2. P, §S--up edges Q, R - states
3. P, §-- up edges Q, R — up edges

Note: down edges can be substituted for up edges

+ We extended Absence, Existence, Universality, Precedence, and
Response patterns.

+ Some of properties from other patterns, e.g. Chain Precedence,
are not closed under stuttering [paun,chechik'99]

A Note on Edges

Definition of an edge:
t4d=-4A004
Thus, an edge is detected in a state before it occurs.

State” %,

Example: P always becomes true after Q.
Formulations:

+» O(QoD OP) if Q and P are states
» O(tQODO oOP) if P is a state and Q is an event

Extension of Patterns - Existence
Pattern

& P Exists Before R
0. 0RO -(-P UR)
1. 01RO (~1RUP)
2. 0RO ~(~1PUR)
3. OtR0O -(~tPU1R)
® P Exists Between Q and R
0. O(@oOR DO ~(~-P UR)O-R)
1. o(tQoORO O(-1RUP)O-1R)
2. O(QOOR O ~(~tPUR)O-R)
3. 0(tQootR O ~(~1P UtR)O-1R)

20

Using the Pattern System: Example

Example property:
The robot must weigh the blank after pickup from the feedbelt,
but before depositing it on the press.
Variables:
(state) mgn - true when the magnet is on
(state) sc! - the scale reports a successful weighing
This is the Existence pattern: weighing (state) must happen between
(events) pickup and deposit. Scope is Between R and Q.
Pattern Formula:
o(tQ 00RO o(-1RUP)O-1R)
Resulting Formula:
O(t mgn 0C1mgn 0 O(~1mgn Usel) O-1mgn)

Proving Closure Under Stuttering

+ Can use properties of closure under stuttering, the algebra of
edges, and rules of logic to show

(<<P>> 0<<@>> 0<<R>>)0
<<O(tQ 0O1R 0 O(=1R UP)O-1R)>>
in roughly 8 steps (see paper) completely syntactically.
+ We proved all new edge-based formulas for closure under
stuttering.
 Users can use these without worrying

22

Summary of the Problem

+ The “next” operator in LTL is required for reasoning about
events

+ ““next” is present => the result is not closed under stuttering”
+ Solution: introduce extra variables to simulate events:

= Clutter the model, make harder to analyze

¥ Results of verification cannot be interpreted correctly,

without complete understanding of the modeling language
and LTL. So, novice users will be making mistakes!!!

Summary of Solution

+ We introduced the notion of edges for LTL
+ We provided a set of theorems that enable syntax-based
analysis of a large class of formulas for closure under stuttering.
+ Such theorems can be added to a theorem-prover for
mechanized checking.
+ The language is not closed (unlike “next’-free LTL)
+ But it can express properties useful in practice:
= Properties of Production Cell [Paun,Chechik,Biechele’98]
= Property patterns + events [Paun,Chechik'99]
+ For more information:
http://www.cs.toronto.edu/~chechik/edges.html

24

