Model-Checker SPIN

For proving correctness of process interactions
These are specified using buffered channels, shared
variables, or a combination
Focus - asynchronous control in software systems
has program-like notation for specifying design choices
(Promela)

— models are bounded and have countably many distinct

behaviors

powerful notation for expressing genera correctness
requirements (LTL)

methodology for establishing logical consistency of the
design choices against correctness requirements (model -
checker SPIN)

SPIN modechecker 1

Overview of SPIN

Promela
SPIN
— random simulations of the system’s exection
— generate aC program that performs an efficient online
verification of the system’s correctness properties
— check for absence of deadlock, unspecified receptions,
and non-executable code
— verify correctness of system invariants, find non-
program execution cycles, and verify correctness
properties expressed in LTL.
LTL (Linear Tempora Logic)
— How towrite LTL?
— How to store LTL formulae? (Buchi automata)
How does SPIN work?
Some examples

SPIN modechecker 3

Promela (Process M eta L anguage)

Model and verify relevant behavior
construct increasingly more detailed Promelamodels,
verified under different assumptions about the environment
once correctness has been established, it can beused in
verification of subsequent models
— programs consist of processes, message channels and
variables
— every statement is guarded by acondition. Itis
executable when the condition istrue. Otherwise, it
blocks until condition becomes true
while (a!= b)
skip /* wait for a ==b */
Vs
(a == b)
SPIN modechecker 5

Structure of SPIN smulation and
verification

Fig 1, p. 2 of TSE paper

SPIN modechecker 2

Extra References

[1] W. Thomas, “Automata on Infine Objects’, Handbook on
Theoretical Computer Science, J. Van Leeuwen, ed., pp.
133-187, Elsevier Science, 1990

[2] Vardi and Wolper, “Reasoning About Infinite
Computations”, Information and Computation, vol. 115,
pp. 1-37, 1994.

[3]Vardi and Wolper, “An Automata-Theoretic Approach to
Automatic Program V erification”, Proc. First |EEE Symp.
Logic in Computer Science, pp. 322-331, 1986.

SPIN modechecker 4

Process Types

« State of variable or message channel can only be changed
or inspected by processes (defined using pr oct ype)

e ; and- > are statement separators with same semantics.
- > isused informally to indicate causal relation between
statements

Example:
byte state = 2;
proctype A()
{ (state == 1) -> state = 3
}
proctype B()
{ state = state - 1

}
State hereisaglobd variable

SPIN modechecker

Process | nstantiation Process I nstantiation (Cont’d)

« Need to execute processes (pr oct ype only defines them) « |If have several processes allowed to read and write the value
« By default, process of typei ni t always executes. of ashared variable, have necessity for mutua exclusion.
. Hereis one solution:
I un starts processes #define true 1
* processes can receive parameters: al basic data types and #define fal se ? |
#define Aturn fal se
message channels. Data arrays and process types are not idofine Brurn true
allowed. bool x,y,t;
Example: proctype A() proctype B()
. { x = true; { y =true;
proctype A(byte state: short foo) t = Bturn: t = Aturn:
{ (state == 1) -> state = foo (y == false || t == Aturn); (x == false) ||
} /* critical section */ (t == Bturn);
init x = fal se /* critical section */
{ run A(1,3) i)nit y = false }
} { run AQ); run B()}
SPIN modechecker 7 SPIN modechecker 8
Atomic Sequences M essage Passing
« Keyword at om ¢ takes care of thetest and set problem chan gname = [16] of {short} -declaration
« this prohibits interleaving during this operation and gnane! expr - writing (appending) to the channel

reduces complexity of verification model

Example:
byte state = 1;

gname?expr - reading (from head) of the channel
gname! expr 1, expr 2, expr 3 - writing several vars

proctype A() gname?var 1, var 2, var 3 - reading severa vars
{ atomc ({S‘ ate==1) -> state = state+l gname! expr 1(expr 2, expr 3) - message type and
} qnane?var 1(var 2, var 3) params
?f oct YP:‘ ()Br(ri)c (gname?consl, var 2, cons2 - can send constants
(state == 1) -> state = state-1 |less parameters sent than received - others are undefined
} ! * more parameters sent - remaining values are lost

init {run A(); run B() } ¢ constants sent must match with constants received

SPIN modechecker 9 SPIN modechecker 10
M essage Passing - Example Rendez-Vous Communications
?’ octype q’;(_Cha” a1) « Buffersof size 0 - can pass but not store messages
q12q2; ' « these message interactions are by definition synchronous
} q2!123 « defined only on two processes, a sender and areceiver
proctype B(chan qf orb) Example‘
{ int x;

#define meqtype 33

qf orb?x; chan nane = [0] of { byte, byte };
printf(“x=%\n", x) proctype A(O
} { nane! nsgt ype(124);
init {) nane! nsgt ype(121); /* non-executable */
chan gname = [1] of { chan };
chan gforb = [1] of { int }; ?roct ype B() byte state:
run A(gnane); 2msgt yp t at
run B(qforb);) name?nsgt ype(st ate)

qnane! gf orb

t
} {m atomc { run A(); run B() }
this prints 123 }

SPIN modechecker 1 SPIN modechecker 12

Rendez-Vous Communications
(Cont’d)
« |If channel nane has zero buffer capacity:
handshake on message msgt y pe and transfer of value
123 tovariablest at e. The second statement in A
will be unexecutable since no matching receive
operationin B
 |f channel nane hassize 1:
process A can complete its first send, but blocks on
second since channel isfilled. B can retrieve the first
message and complete. Then A completes, leaving its
last message as aresidual in the channel
« |If channel nanme has size 2 or more:
A can finish its execution before B even starts

SPIN modechecker 13

Other Promela Features

¢ Canmode procedures and recursion

« all sorts of control flow (loops, cases, ifs, breaks, gotos)
* timeouts

* assertions

* message type definitions

¢ pseudo statements

See Web pages (Promelahtml) for more description

SPIN modechecker 15

Another Example

ntype = {ack, nak, err, next, accept};
proctype transfer(chan in,out,chin,chout)
{ byte o, I;
i n?next (0);
do
:: chin?nak(l) ->
out!accept (1) ;
chout !'ack(0)
:: chin?ack(l) ->
out!accept (1) ;
in?next (0);
chout !'ack(0)
i chin?err(l) ->
chout ! nak(o)
od

SPIN modechecker 17

{ chan AtoB

Example using Control-Flow:
Dijkstra Semaphor e using rendezvous
#define p 0
#define v 1
chan sema = [0] of { bit };

proctype dijkstra()
byte count = 1;
do
;2 (count == 1) -> sema!p; count =0
d (count == 0) -> sema? v; count =1
of

2)r octype user ()
{ do

sema? p;
/* crit. sect */
sema! v;
/* non-crit. sect. */
od
|}nit
{ run dijkstra(); run user();
) run user(); run user()

SPIN modechecker 14

Example - protocol

¢ Channels Ai n and Bi n areto befilled in with token
messages of typenext and arbitrary values (ASCII
chars) by unspecified background processes: the users of
thetransfer service.

¢ These users can also read received datafrom the channels
Aout and Bout .

¢ Thechannels areinitialized in asingle atomic statement,
and started with the dummy er r message.

SPIN modechecker 16

Example (Cont’d)
Init
[1] of { ntype, byte };

chan BtoA = [1] of { ntype, byte };

chan Ain = [2] of { ntype, byte };
chan Bin = [2] of { ntype, byte };
chan Aout = [2] of { mtype, byte };

chan Bout = [2] of { nmtype, byte };

atomc {
run transfer(Ain, Aout, AtoB, BtoA);
run transfer(Bin, Bout, BtoA, AtoB);
b
AtoB! err(0)

SPIN modechecker 18

LTL and Buchi Automata

¢ CanuseLTL to express safety and liveness properties

[1 (pU q) - dways p remainstrue at least until g becomes
true

! (<> (p U q)) - never isthere a point in the execution
such that p remains true at least until o becomes true

[1(<>(pll @) - a any point of execution it is guaranteed
that eventually either p or q will become true at least
once more

T(pU([1(qUr))) -itisnot truethat pistrueat least until
the point such that for all paths g istrue at least until r
istrue

SPIN modechecker 19

From LTL to Buchi Automata -

Examples
- $spin-f (1<)
never {
TOinit:
if
11 (1) ->goto TO.init
: (plla) -> goto accept _S10
fi
accept _S10:
if
11 (1) -> goto TO
fi
accept_al | :
skip

}

SPIN modechecker 21

Examples- Cont’d

s ospin-f “I([] (pUQ)"

never {
TOinit:
if
:: (1) -> goto TO.init
i (!'p & !'q) -> goto accept _all
:: (! q) -> goto accept_S2
fi;
accept _S2:
if
: ('p & 'q) -> goto accept_all
:: (!qg) -> goto accept_S2
fi;
TO S2:

if

: ('p & 'q) -> goto accept_all
:: (!'g) -> goto accept _S2

fi,;

s
accept_al |:
ski p
} SPIN modechecker 23

LTL and Buchi Automata (Cont’d)

Can automatically convert from an LTL formulato aBuchi
automaton expressed in terms of Promela code

The automaton accepts a system execution iff that
execution forcesit to pass through one or more of its
accepting states infinitely often (acceptance states).
Conditions are on the transitions of the automaton, not on
the states

To prove that no execution sequence of the system matches
the negated correctness claim, it suffices to prove the
absence of acceptance cyclesin the combined execution of
the system and the Buchi automaton representing the
claim.

This execution is formally defined by a synchronous
product of the system and the claim

SPIN modechecker 20

Examples (Cont’d)

© $spin -f “I[]<>(plla)"
never {
TOinit:
if
: (1) ->goto TOinit
: ('p & !'q) -> goto accept _S2

i (!'p & !'q) -> goto TO_S2
fi;

i (!'p & !'q) -> goto accept _S2
fi;

accept_al | :
ski p

}

SPIN modechecker 2

LTL to Buchi Automaton - Algorithm

Idea: compute the set of subformulas that must hold in each
reachable state and in each of its successor states

convert formulainto normal form

create initial state, marked with the formulato be matched
and adummy incoming edge

createaccept _al | state

recursively:
take subformulato be satisfied
leading operators much split the current state into two,
with each copy inheriting a different part of the subformula

make connectionsto accept _al | state (using until
operator)

SPIN modechecker 24

Nested Depth-First Search

Problem: need to determine cycles. And the method needs
to be compatible with al modes of verification

Solution (Tarjan) - construct strongly-connected
components in linear time by adding 2 integers: dfs-
number and lowlink-number (32 bits of storage each
because of huge state space)

Idea: visit each state twice, but storing every state only
once. Only 2 bits of overhead instead of 64 by using
encoding

For an accepting cycleto exist in the reachability graph, at
least one accepting state must be both reachable from the
initial system state (root) and must be reachable from itself

SPIN modechecker 25

Partial Order Reduction

Idea: validity of an LTL formulais often insensitive to the
order in which concurrent and independently executed
eventsare interleaved in the depth-first search

Thus can generate a state-space with only representatives
of classes of execution sequences that are indistinguishable
for agiven correctness property

Inatypical case, the reduction in the state space szeand in
the memory requirements are linear in the size of the
model, yielding savings in memory and runtime from 10 to
90 percent.

This method cannot lead to noticeable increase in memory
requirements

Method not sensitive to decisions about process or variable
orderings (unlike BDDs)

SPIN modechecker 27

State Compression

About 10-20 percent run-time overhead in return for 60-70
percent reduction in memory utilization

Every process and every channel inaPROMELA
specification has only relatively small number of unique
local states - so store them separately and use unique
indicesinto the loca state tables

So, 256 distinct local states = 1 byte of memory within the
global state descriptor. 256 and fever - 8 bits.

User can set up thisinformation (size of index) to 1, 2, 3,
or 4 bytes.

SPIN modechecker 29

Nested Depth-First Search (Cont’d)

Using depth-first search find accepting states reachable from
theroot.
For each such state
use depth-first search to see if this state is reachable from
itself
if so, we found an acceptance cycle: a counter-example to
auser-defined correctness claim
« can only generate one acceptance cycle, not al, but will
alwaysfind at least oneif it exists

« can aso extend the algorithm with weak fairness
constraint: every process that contains at |east one
transition that remains enabled infinitely long, is
guaranteed to execute that transition within finite time

SPIN modechecker 26

Memory Management

Size of interleaving product can grow exponentialy with
the number of processes!

For LTL properties, the verification timein the worst case
is exponentia in the number of temporal operators (unlike
branching-time logict!)

Goal: create algorithms that can economize the memory
requirement of a reachability anaysis, without incurring
unredigtic increases in runtime requirements.

Examples: state compression and bit-state hashing

SPIN modechecker 28

Bit-State Hashing

Sometimes cannot have exhaustive verification, so all

other techniques stop when they run out of memory.

With amount of memory M and number of statesR and S

bytes to store each state, the checker exhausts memory

after M/Sstates. Problem coverageisM/(R* S).
Example: with 64 bytes of memory to encode each state
and tota of 2 Mb, we can store 32,768 states.

Bit-state hashing usually does much better than that.

Each reachable stateis stored using two bits of information

command line:

cc -DBI TSTATE -0 run pan.c

Can specify amount of available (non-virtual) memory

directly, using -w N option, e.g., -w27 meansthat we

have 128 Mb of memory.

SPIN modechecker 30

Bit-Size Hashing

Exact algorithm could not be determined, but hereis an
example:

$ run

assertion violated (I == ((last_I + 1))

pan: aborted

search interrupted

hash factor: 67650.064516
(size 222 states, stack frames: 0/5)

Hash factor: maximum number of states/actual number
Maximum number of states is 222 bytes or about 32 million
bits = states

Hash factor > 100 - coverage around 100%

Hash factor = 1 -> coverage approaches 0%

SPIN modechecker 31

Mutual Exclusion (Cont’d)

Generate, compile and run the verifier to check for
deadlock and other major problems. Result:
$ spin -a hynan0
$ cc -0 pan pan.c
$ pan
full statespace search for:
assertion violations and invalid endstates
vector 20 bytes, depth reached 19, errors: 0
79 states, stored
0 states, |inked
38 states, matched total: 117
hash conflicts: 4 (resol ved)
(size 218 states, stack frames: 3/0)
unreached code _init (proc 0):
reached all 3 states
unr eached code P (proc 1):
reached all 12 states

SPIN modechecker 33

Mutual Exclusion (Cont’d)

Verifier says that assertion can be violated, and we can use
options -t -p to find out the trace (or do the same thing
using Xspin's nice graphic capabilities)

Another way of catching the error : having another process
with the assertion, allowing all possible relative timings of
the processes.

Thisis an elegant way to check the vaidity of asystem
invariant

SPIN modechecker 35

©CONO U A WN R

CONNNRWN =

©CRNDUOTAWN

Verification example: mutual

exclusion
bool want[2]; /* Bool array b */
bool turn; /* integer k */

proctype P(bool 1)

want[I] = 1;
do
(turn t=1) ->
('want[1-17);

turn =1
(turn ==1) ->
br eak
od
skip; /* critical section */
want[1] = 0
}

init { run P(0); run P(1) }

SPIN modechecker 32

Mutual exclusion (Cont’d)

Want to check mutual exclusion.

bool want[2]; /* Bool array b */
bool turn; /* integer k */
byte cnt;
roctype P(bool 1)
want[I] = 1;
do
(turn t=1) ->
('want[1-17);
turn =1
(turn ==1) ->
br eak
od
skip; /* critical section */
cnt = cnt+1;
assert(cnt == 1);
cnt = cnt-1
want[1] = 0
init { run P(O); run P(1) }
SPIN modechecker 4
Mutual Exclusion (Cont’d)
bool want[2]; /* Bool array b */
bool turn; /* integer k */
byte cnt;
proctype P(bool 1)
want[I] = 1;
do
(turn t=1) ->
('want[1-17);
turn =1
(turn ==1) ->
br eak

od

cnt = cnt+1;

skip; /* critical section */
cnt = cnt-1;

want[1] = 0

proct ype nonitor()
{ assert (cnt == 0 || cnt == 1) }
init { run P(0); run P(1); run nonitor() }
SPIN modechecker 36

Verification example: leader Election

Leader election in aunidirectiona ring. All processes
participate in the election (cannot join in after the
execution started)
Global property: it should not be possible for more than
one process to declare to be the leader of the ring
To check this property, either specify it using LTL:
[1 (nr_leaders <= 1)
Or (much more efficiently) use assertion (line 57)
assert (nr_leaders == 1)
Also want to specify that eventually aleader is elected:
<>[] (nr_leaders == 1)

SPIN modechecker 37

Verification Model of Leader Election
(Cont’d)

if
: Active ->
if

nr !'= maxi num - >
out!two(nr);
nei ghbourR = nr;

el se ->
/* max is the greatest nunber */
assert(nr == N);
know_wi nner 1
out !'wi nner(nr);

fi
el se ->
out ! one(nr)
fi

cooin?two(nr) ->
if

: Active ->
if

SPIN modechecker 39

Verification Model of Leader Election
(Cont’d)

fi;
break
od
}

init {
byte proc;
atomc {/* activate N copies of proc tenplate */
proc = 1,
do
proc <= N ->
run node (q[proc-1], q[procpercentN],
(N+I-proc)percent N+1) ;
proc++
proc > N ->
break
od

SPIN modechecker 4

©CRNDUTAWN

Verification Model of Leader Election

#define N 5 /* nr of processes */
#define | 3 /* node given the smallest nunber */
#define L 10 /* size of buffer (>= 2*N) */

ntype = { one, two, winner}, /* synb. Msg. Nanes */
chan g[N] = [L] of {ntype, byte} /* assynch. Chnl */

byte nr_leaders = 0; /* count the nunber of process
that think they are | eader of the ring */
proctype node (chan in, out; byte nynunber)
{ bit Active = 1, know winner = 0;
byte nr, maxi num = nynunmber, nei ghbourR;

xr in; /* claimexclusive recv access to in */
xs out; /* claimexclusive send access to out */

printf(“MSC: pecent\n”, nynunber);
out! one(nynunber) /* send nsg of type one */
end: do
in?one(nr) -> /* receive nsg of type one */

SPIN modechecker 38

Verification Model of Leader Election
(Cont’d)

nei ghbourR > nr && nei ghbour R > naxi mum
nmaxi mum = nei ghbour R;

out ! one(nei ghbourR)
el se ->
Active = 0

el se ->
out!two(nr)
fi
i1 in?wnner(nr) ->
if
nr !'= nynunber ->
printf(“MsC. LOST\n");
el se ->
printf(“MSC. LEADER n");
nr_| eader s++;
assert(nrleaders == 1)

know_wi nner
el se -> out!winner(nr)
SPIN modechecker

Conclusion

Distinction between behavior and requirements on
behavior (invariants, deadlock-detection, LTL formulae)
Requirements and behavior s are checked for both their
internal and their mutual consistency

Designisrevised until itscritical correctness properties
can be successfully proven. Then can refine the design
decisions further toward afull systems implementation
(PROMELA is not afull programming language - no data
structures, for example)

Can aso simulate the design before the verification starts,
to make sure that the design “seems” correct - no change
for “vacuous’ verification asin SMV.

SPIN modechecker 42

Comment

On-lineinformation is very good:
— lots of examples
— nicely-written manua and on-line help
— GUI-based input, xspin
— more familiar, C-like syntax
seems like no place where “black magic” isinvolved

bring to everyone' s attention if and how you can trick the
system into deding with vacuous models

SPIN modechecker 43

