
Problem and
Principles for AI
verification

Paper of Sanjit A. Seshia, Dorsa Sadigh and S.

Shankar Sastry

Presented by Nick Feng

Formal Verification

Formal Verification of Autonomous Vehicle

Property : Safely arrive at
destination?

M

Verify Yes, Proof

System
Environment

No, CEX

1

2

3

4

Design

5

Problems for AI verifications:

1. Environment modeling

2. Formal specification

3. Model system that learns

4. Computation engine for training, testing and verification.

5. Correct-by-construction system.

Problem 1: Environment Modeling

● We want to model environment to capture (typically over-approximate) its behaviors

and its interaction with the system.

Environment

Non-determinism

Human agent modeling High uncertainty

Spurs bugs

We want methods of environment modeling to provide provable guarantees on the system’s
behavior even when there’s high uncertainty about the environment.

Strategy 1: Introspect Environmental Modeling

System S Assumptions A

Environment E

monitor

Specification Φ

|=

Come up with a strong enough A
about E for Φ with 2 requirements.

1. S monitor A during runtime.

state(S) ^ observed(E) -> A

1. A can be explained to human.

Extract assumption A

● Extract good monitorable assumptions A during:
○ Design process: mining assumptions for synthesis (feasible for simply cases)

○ Verification process (abstraction refinement cycle)

○ Runtime (online environment monitoring)

Often, we want to actively gather data about the real or simulated
environment to learn and update the environment model.

Problem 2: Formal Specification Φ

Φ, a precise, mathematical statement about the system S

pedestrian classifier (0 , 1)

System

output

2048 x 1536 x 3

input

How do we come up with Φ over input, output and internal

state of the system to ensure a raincoat pedestrian is always

classified as pedestrian.

Training data + objective function + test result VS Φ

Strategy 2: End to End , Quantitative specification.

● Specifying AI/ML component behavior might be unnecessary.

End to End specification: System level specification over entire system including AL\ML

components.

● Specification in boolean logic VS objective function.

Quantitative specification: logic with quantitative semantics or weighted automata.

Is a layer of NN (CNN or DNN) a mini weighted automata?

Is a NN a composition of weighted automatas?

Problem 3: Model system that learns

Traditional System

(precisely known?)

Abstraction,
Reduction

System

Model S

ML System

Training

ML System

Abstraction,
Reduction

System

Model S
System

Model S’

How to model ML
system ?

How to
evolve
model S ?

Strategy 3: Formal abstraction for ML

New abstract method

Formalism

with

probabilistic

guarantees

and

uncertainty

ML System

70%

certain

Pedestrian

with

probability

p > 80 %

guarantees

Strategy 3: Formal explannination for ML

New abstract method

Formalism

with

probabilistic

guarantees

and

uncertainty

ML System

guarantees

Pedestrian, 80%.

Explanation: 80 % due to

recognition of human face

+ raincoat.

Pedestrian

with

probability

p > 80 % For all Input
with
recognizable
raincoat and
face

Explanation based
generalization

Possible strategy 3: Explaining failure or counterexamples

If a system S with ML components has failure w.r.t to end-to-end specification Φ

with counter example cex. We want to explain the failure find all sources of failure.

Cex |= ~Φ ^ S

Analogy: Compute minimal independent support I for ~Φ ^ S to identity the source

of failure (extracting minimal unsatisfiable subsets which is well studied).

Problem 4: Computational engine for
training, testing and verification.

Effectiveness of formal verification is driven by the advancement of the underlying
“computation engine” SAT, SMT…..

For example, symbolic execution(SE) generates test cases to explore all feasible
program paths within bounded steps. Even for a non-terminating program, SE
provides high level of assurance if the bound is sufficiently high.

1. Can we use formal methods approaches to systematically generate training
and testing data for ML component?

Problem 4: Computational engine for
training, testing and verification.

1. AI based system is typically complex → challenge on verification scalability.

1. System model and environment model can be probabilistic with uncertainty, specification

involves quantitative requirement on Robustness and performance → Traditional

formal verification “computation engine” is not powerful enough.

New “computation engine” for effective and scalable quantitative verification.

Strategery 4: randomized formal method for training,
testing

Perturbation test generation : we want to perturbate test input x by r so that the output

f(x) ~= f(x+r).

We want to find perturbation value with constraints:

1. The input after perturbation is realistic. (realistic fog??)

2. The distribution of the generated test case by perturbation must be constrained to

ensure convergence to the true concept.

Generated training and test data should be valid and unbiased.

Strategery 4: randomized formal method for training,
testing

Control improvisation: improviser generate examples with three constraints:

1. Hard constraint that define space of legal x.

2. Soft constraint that defines acceptance range of similarity to real-world example.

3. A random requirement for constraint on test case distribution.

Control improvisation resembles approximate Model counting and weighted model

sampling.

- Universal sampling legal r under hard constraint while maximizing objective from soft

constraints.

Strategery 4: Quantitative verification.

Formal verification of AI-based system is in general undecidable. So we need to compromise:

1. Find traceable but realistic problem

2. Settle for incomplete or unsound.

Falsification address verification as an optimization problem:

p quantifies how much a trace satisfy a property.

By minimizing p, and if we find a trace with p < 0 , then we have found a bug.

Problem 5: Correct-by-design system

We want to design a ML component that satisfy property Φ.

1. Synthesize a learning model.

2. Synthesize a suitable training set.

Formal inductive synthesis. Oracle (CEX) guided learning!

“Counterexample‐GuidedDataAugmentation”,T.Dreossi,S.Ghosh,X.Yue,K.Keutzer,A.Sangiovanni

‐Vincentelli,S.A.Seshia,IJCAI2018.

Strategy 5: Counterexample-guided data
augmentation.

“Counterexample‐GuidedDataAugmentation”,T.Dreossi,S.Ghosh,X.Yue,K.Keutzer,A.Sangiovanni

‐Vincentelli,S.A.Seshia,IJCAI2018.

Discussion questions

Is a formal method a good starting point for verification on AI based system?
How can one argue the effectiveness of formal methods when there are
quantitative specifications, probability models and uncertain.

Do we come up specification for AI based system? Or does the system learn
specifications from data?

Should we verify system based on the “designed specification” and models?
Or should we try to explain the learning process and understand the “learnt”
specifications.

