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DeepXplore

Fast automatic generation of test inputs for a set of neural networks, where
the networks disagree, and
the examples have high diversity.
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Contributions

Introduced neuron coverage as a testing metric for DL systems.

Formulated the task of finding behaviour differences in a set of networks as a
gradient descent optimization problem.

Created the DeepXplore open-source deep learning testing framework.

Showed that training on DeepXplore-generated tests can increase
classification accuracy.
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Algorithm
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Network Prediction Differences

obj1(x) =
∑
k 6=j

Fk(x)[c]− λ1Fj(x)[c]

Fk(x)[c] = The probability according to network k that input x is class c .

j is chosen randomly.

Eric Langlois (University of Toronto) DeepXplore March 11, 2019 5 / 16



Coverage

Eric Langlois (University of Toronto) DeepXplore March 11, 2019 6 / 16



Coverage Metric

Input Set Coverage
For a test set T , neuron set N, and threshold t

NCov(T , t) =
|{n ∈ N | ���

∃
∀x ∈ T , out(n, x) > t}|

|N|

Coverage Loss

obj2(x) =
∑
k

value of neuron nk in network k on input x

nk is chosen randomly among neurons that are not yet covered.
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Test Inputs via Optimization

max
x

obj1(x) + obj2(x)
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Constraints

Generated inputs should be realistic.
Enforce this with domain-specific constraints.

Images
Pixel value bounds: [0, 255]
Only modify brightness
Only modify a small region
Only add small black boxes

Constraints applied by modifying the gradient

x ← x + step_size · constrain_grad(
∂obj(x)

x
)
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Examples — Constraint: Brightness
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Examples — Constraint: Occlusion
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Examples — Constraint: Black Boxes
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Experiments

Domains
MNIST : Classify handwritten digits

ImageNet : Classify images
Driving : Predict steering angle from images

Contagio : Classify PDF malware
Drebin : Classify android app malware

Networks
3 networks each
Pre-trained networks or based on popular architecture

Coverage
Threshold t = 0, 0.25, or 0.75
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Results

Efficiency
Model differences are found for 40% – 100% of seed inputs.

Speed
First difference-inducing input is found in seconds,
100% coverage is achieved in 6s – 200s

Design Validation
Using coverage moderately increases example diversity (by L1 distance)

Increasing model dissimilarity increases the number of differences found
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Application: Training Data Augmentation

Add generated inputs to the training data and retrain.
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Discussion

How meaningful are the generated examples?

Is it reasonable to use model disagreement as an objective?

Are the constraints plausible?

What are some alternative coverage measures?
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