DeepXplore: Automated Whitebox Testing of Deep Learning Systems by Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana

Eric Langlois

University of Toronto

March 11, 2019

DeepXplore

Fast automatic generation of test inputs for a set of neural networks, where

- the networks disagree, and
- the examples have high diversity.

Introduced neuron coverage as a testing metric for DL systems.

Formulated the task of finding behaviour differences in a set of networks as a gradient descent optimization problem.

Created the **DeepXplore** open-source deep learning testing framework.

Showed that training on DeepXplore-generated tests can increase classification accuracy.

Network Prediction Differences

 $F_k(\mathbf{x})[c] =$ The probability according to network k that input \mathbf{x} is class c. j is chosen randomly.

Input Set Coverage

For a test set T, neuron set N, and threshold t

$$\mathsf{NCov}(T,t) = \frac{|\{n \in N \mid \forall \mathbf{x} \in T, \mathsf{out}(n, \mathbf{x}) > t\}|}{|N|}$$

Coverage Loss

$$\operatorname{obj}_2(\boldsymbol{x}) = \sum_k \operatorname{value} \operatorname{of} \operatorname{neuron} n_k \operatorname{in} \operatorname{network} k \operatorname{on} \operatorname{input} \boldsymbol{x}$$

 n_k is chosen randomly among neurons that are not yet covered.

Test Inputs via Optimization

Generated inputs should be realistic. Enforce this with domain-specific constraints.

Images

- Pixel value bounds: [0, 255]
- Only modify brightness
- Only modify a small region
- Only add small black boxes

Constraints applied by modifying the gradient

$$x \leftarrow x + \text{step_size} \cdot \text{constrain_grad}(\frac{\partial \text{obj}(x)}{x})$$

Examples — Constraint: Brightness

all:right

all:right

all:right

DRV_C1:left

DRV_C2:left

DRV_C3:left

March 11, 2019 10 / 16

Examples — Constraint: Occlusion

all:right

all:left

DRV_C1:left

DRV_C2:left

DRV_C3:right

March 11, 2019

11 / 16

Examples — Constraint: Black Boxes

all:left

all:left

DRV_C1:right

DRV_C2:right

DRV_C3:right

Eric Langlois (University of Toronto)

March 11, 2019

12 / 16

Domains

MNIST : Classify handwritten digits

ImageNet : Classify images

Driving : Predict steering angle from images

Contagio : Classify PDF malware

Drebin : Classify android app malware

Networks

- 3 networks each
- Pre-trained networks or based on popular architecture

Coverage

• Threshold t = 0, 0.25, or 0.75

Efficiency

Model differences are found for 40% - 100% of seed inputs.

Speed

First difference-inducing input is found in seconds, 100% coverage is achieved in 6s – 200s

Design Validation

Using coverage moderately increases example diversity (by L1 distance) Increasing model dissimilarity increases the number of differences found

Application: Training Data Augmentation

Add generated inputs to the training data and retrain.

• How meaningful are the generated examples?

• Is it reasonable to use model disagreement as an objective?

• Are the constraints plausible?

• What are some alternative coverage measures?