Deep Neural Networks are easily fooled

High Confidence Predictions for Unrecognizable Images

a paper of Anh Nguyen, Jason Yosinki, Jeff Clune

presented by Nils Wenzler

General idea: Fooling neural networks

school bus

imperceivable change ostrich

from "Intriguing properties of neural networks" by Szegedy et al.

General idea: Generate pictures that AI can "see" but humans not

But why?

Original goal:

- Visualize DNN perception
- Explain to what kind of features DNNs react to

Extended goal:

- Explain why DNNs are so easily fooled
- Research how to possibly improve resilience and robustness

Structure

Chapter 1: How to create fooling pictures?

Chapter 2: How do nowadays networks "see"?

Chapter 3: How to defend against adversarial pictures?

Chapter 4: Lessons learned

Chapter 1: How to create fooling pictures?

Data sets:

MNIST

ImageNet

Chapter 1: How to create fooling pictures?

3 approaches:

Direct model

Learn all pixels with evolutionary algorithm

Results:

• 99,9% confidence that images are numbers (MNIST)

• Performance in ImageNet classification not very convincing

Direct model - ImageNet classification

Indirect model

Evolve on compositional pattern-producing networks (CPPN)

Indirect model

Results:

• 99,9% confidence that images are numbers (MNIST)

Indirect model - ImageNet classification

Gradient ascend

Whitebox approach which mathematically optimizes input image

Works but not further considered because:

- Visualization is hard to understand
- Danger of being very network specific

Chapter 2: How do neural networks "see"?

They "see" differently than human beings

Feature size

5 times a 99,9% confidence remote control:

Tend to react to medium sized features but not whole structures

Adversarial images generalize to other networks

Some adversarial images trained for a DNN can fool another DNN as well. Some images will only fool one of them.

 \Rightarrow DNNs tend to observe similar features

Repeated instances

Several instances seem to improve confidence

Dogs are hard to differentiate

Chapter 3: How do defend against adversarial pictures?

Just add adversarial pictures to training set with adversarial class?

- still easily fooled for MNIST digit recognition task
- learned to classify CPPN pictures for ImageNet (no exhaustive defense)

What's the problem?

Image classification has a very high input space but significantly lower intrinsic dimensionality

If you create a random picture, how would it look like?

Discriminative versus Generative approaches

p(y|X) versus p(y, X)

Chapter 4: Lessons learned

Neural networks currently

- learn medium sized features
- can easily be fooled
- become more confident through feature repetition

Chapter 4: Lessons learned

Adversarial images

- can be hidden in perfectly normal pictures
- can be abstract images
- can generalize to other networks
- can not be dealt with by adding them to the training set

Chapter 4: Lessons learned

Furthermore,

- natural images have lower intrinsic dimensionality
- generative models may be more robust than discriminative models
- bigger and more diverse training sets make fooling harder

Neural networks as artists?

Thanks for your attention

Let's discuss the paper:

- natural images have lower intrinsic dimensionality
- generative models may be more robust than discriminative models
- bigger and more diverse training sets make fooling harder