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HOW GOOD IS YOUR NEURAL NETWORK ?

Pei, Kexin, et al. "Deepxplore: Automated whitebox testing of deep learning systems." Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017.
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HOW GOOD IS YOUR NEURAL NETWORK ?

 Neural networks are not robust to input perturbations.

e Pushing the limit: One Pixel Attack !
o Su et. al. "One pixel attack for fooling deep neural
networks." IEEE Transactions on Evolutionary

Computation (2019).

e Conclusion: There is a need for an automated and
scalable analysis to certify realistic neural networks

against such input perturbations.
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HOW TO CERTIFY NEURAL NETWORKS ?
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HOW TO CERTIFY NEURAL NETWORKS ?

e Upper bounds on minimum distortion:

o Attack dependent.
o Is pretty non-informative in case of weak attacks that fail often.

 Formal Verification, exact minimum distortion:
o NP-hard.

e Lower bounds on minimum distortion:

o Attack agnostic. Minimum Distortion

o Can easily be trivial!
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FAVORABLE PROPERTIES OF CERTIFICATION METHODS

Table 1: Comparison of methods for providing adversarial robustness certification in NNs.

Method [Non-trivial bound] [Multi-Tayer] [Scalability] [Beyond ReLU]
Szegedy et. al. [3] X v v v

Reluplex [15], Planet [25] v v X X

Hein & Andriushchenko [26] | v X v differentiable”
Raghunathan et al. [19] v X X X

Kolter and Wong [18] v v v X

Fast-lin / Fast-lip [20] v v v X

CROWN (ours) v v v v' (general)
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STEP 1: EXPLICIT OUTPUT BOUNDS
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LINEAR L/U BOUNDS FOR GENERAL ACTIVATION FUNCTIONS

 Keyword: Adaptive!
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STEP 2: CERTIFIED LOWER BOUND FOR MINIMUM DISTORTION
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RESULTS: TIGHTER LOWER BOUNDS

Table 4: Comparison of certified lower bounds on large ReLU networks. Bounds are the average over
100 images (skipped misclassified images)| with random attack targets. Percentage improvements are
calculated against Fast-Lin as Fast-Lip 1s worse than Fast-Lin.

Network Certified Bounds Improvement (%) Average Computation Time (sec)
£, norm Fast-Lin Fast-Lip CROWN-Ada | CROWN-Ada vs Fast-Lin | Fast-Lin Fast-Lip CROWN-Ada

MNIST 0 1.57649  0.72800 1.88217 +19% 1.80 2.04 3.54
4 x [1024] l 0.18891  0.06487 0.22811 +21% 1.78 1.96 3.79
s 0.00823  0.00264 0.00997 +21% 1.53 2.17 3.57
CIFAR-10 0y 0.86468 0.09239 1.09067 +26% 13.21 19.76 2243
7 x [1024] ly 0.05937  0.00407 0.07496 +26% 12.57 18.71 21.82
{ 0.00134  0.00008 0.00169 +26% 8.98 20.34 16.66

Table 5: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-
general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activa-
tions achieve much worse accuracy than other networks and are thus excluded.

Network Certified Bounds by CROWN-Ada and CROWN-general | Average Computation Time (sec)
¢,norm  ReLU tanh sigmoid arctan ReLU tanh  sigmoid arctan
MNIST 4 3.00231 2.48407 2.94239 2.33246 1.25 1.61 1.68 1.70
3 x [1024] ly 0.50841 0.27287 0.44471 0.30345 1.26 1.76 1.61 1.75
loo 0.02576 0.01182 0.02122 0.01363 1.37 1.78 1.76 1.77
CIFAR-10 51 0.91201 0.44059 - 0.46198 71.62  89.77 - 83.80
6 x [2048] ly 0.05245 0.02538 - 0.02515 71.51 84.22 - 83.12
loo 0.00114  0.00055 - 0.00055 49.28 59.72 - 58.04
o
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CROWN: WEAK POINTS
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Feed-Forward Neural Networks with fully connected layers only.
o CNN-Cert: https://arxiv.org/abs/1811.12395

Input should be in the form of an epsilon bound norm ball.
o Usually not an issue. Common assumption.

Single input certification. Results averaged over 100 points of input.
o A2l and derivatives? Covering arguments?
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https://arxiv.org/abs/1811.12395

DISCUSSION QUESTIONS

What do you think of the provided comparison method?

Do you think the authors overpromise scalability?

Can we argue safety of a DNN using CROWN?
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