EFFICIENT NEURAL NETWORK ROBUSTNESS CERTIFICATION WITH GENERAL ACTIVATION FUNCTIONS

MARCH 11, 2019 PREPARED BY: ALI HARAKEH

HOW GOOD IS YOUR NEURAL NETWORK ?

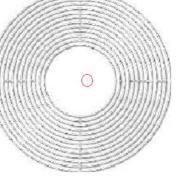
Pei, Kexin, et al. "Deepxplore: Automated whitebox testing of deep learning systems." *Proceedings of the 26th Symposium on Operating Systems Principles*. ACM, 2017.

HOW GOOD IS YOUR NEURAL NETWORK ?

• Neural networks are not robust to input perturbations.

- Pushing the limit: One Pixel Attack !
 - Su et. al. "One pixel attack for fooling deep neural networks." IEEE Transactions on Evolutionary Computation (2019).
- Conclusion: There is a need for an automated and scalable analysis to certify realistic neural networks against such input perturbations.

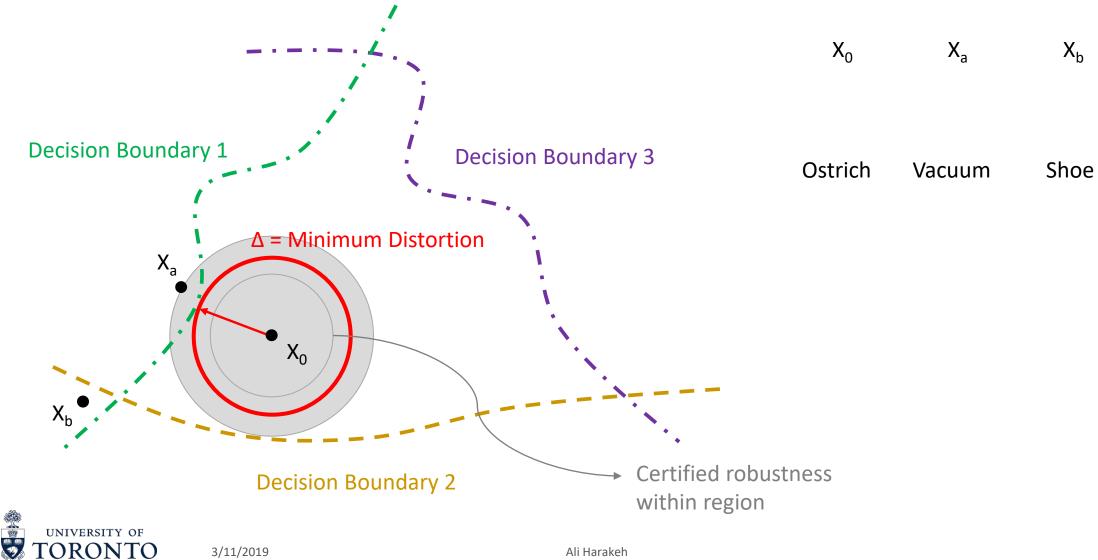
Planetarium Mosque(7.81%)



Whorl Blower (37.00%)

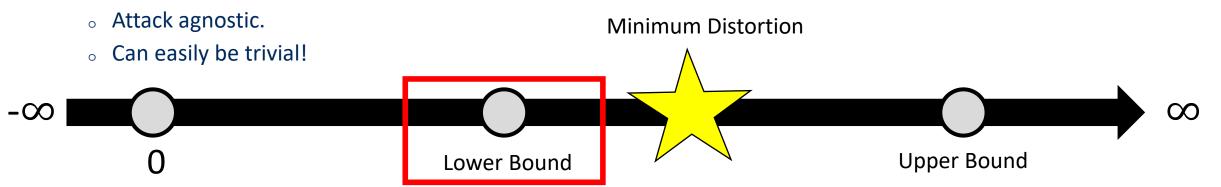
2/11/2019

HOW TO CERTIFY NEURAL NETWORKS ?



HOW TO CERTIFY NEURAL NETWORKS ?

- Upper bounds on minimum distortion:
 - Attack dependent.
 - Is pretty non-informative in case of weak attacks that fail often.
- Formal Verification, exact minimum distortion:
 - NP-hard.
- Lower bounds on minimum distortion:

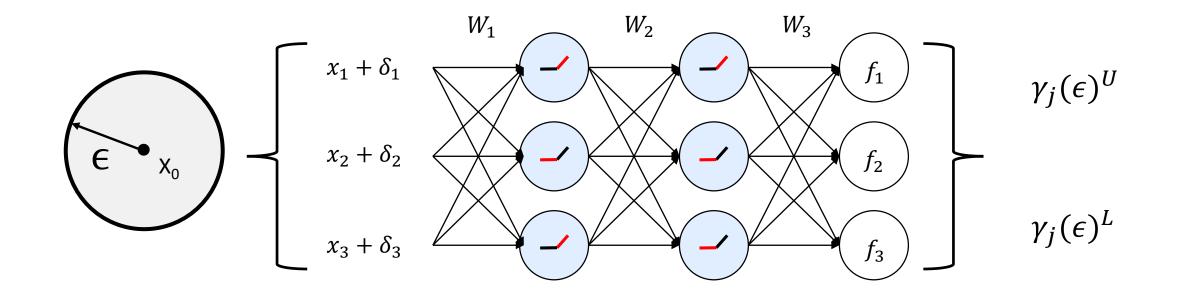


FAVORABLE PROPERTIES OF CERTIFICATION METHODS

Table 1: Comparison of methods for providing adversarial robustness certification in NNs.

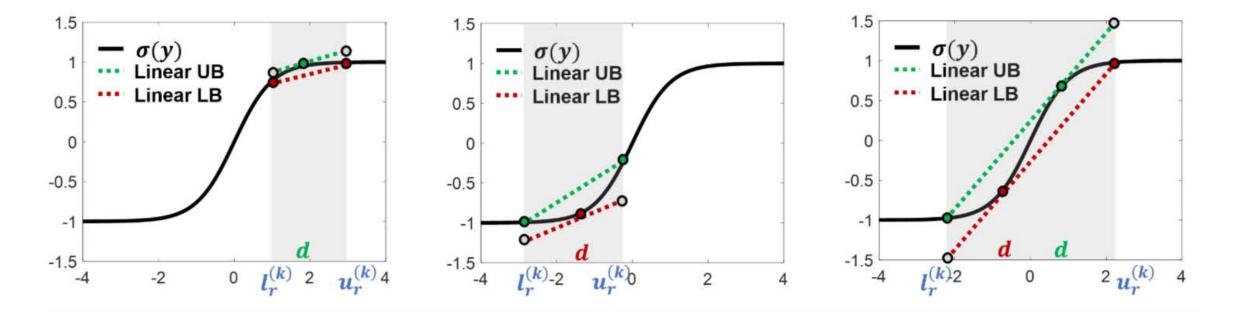
Method	Non-trivial bound	Multi-layer	Scalability	Beyond ReLU
Szegedy et. al. [3]	X	\checkmark	\checkmark	\checkmark
Reluplex [15], Planet [25]	\checkmark	\checkmark	×	×
Hein & Andriushchenko [26]	\checkmark	×	\checkmark	differentiable*
Raghunathan et al. [19]	\checkmark	×	×	×
Kolter and Wong [18]	\checkmark	\checkmark	\checkmark	×
Fast-lin / Fast-lip [20]	\checkmark	\checkmark	\checkmark	×
CROWN (ours)	\checkmark	\checkmark	\checkmark	√ (general)

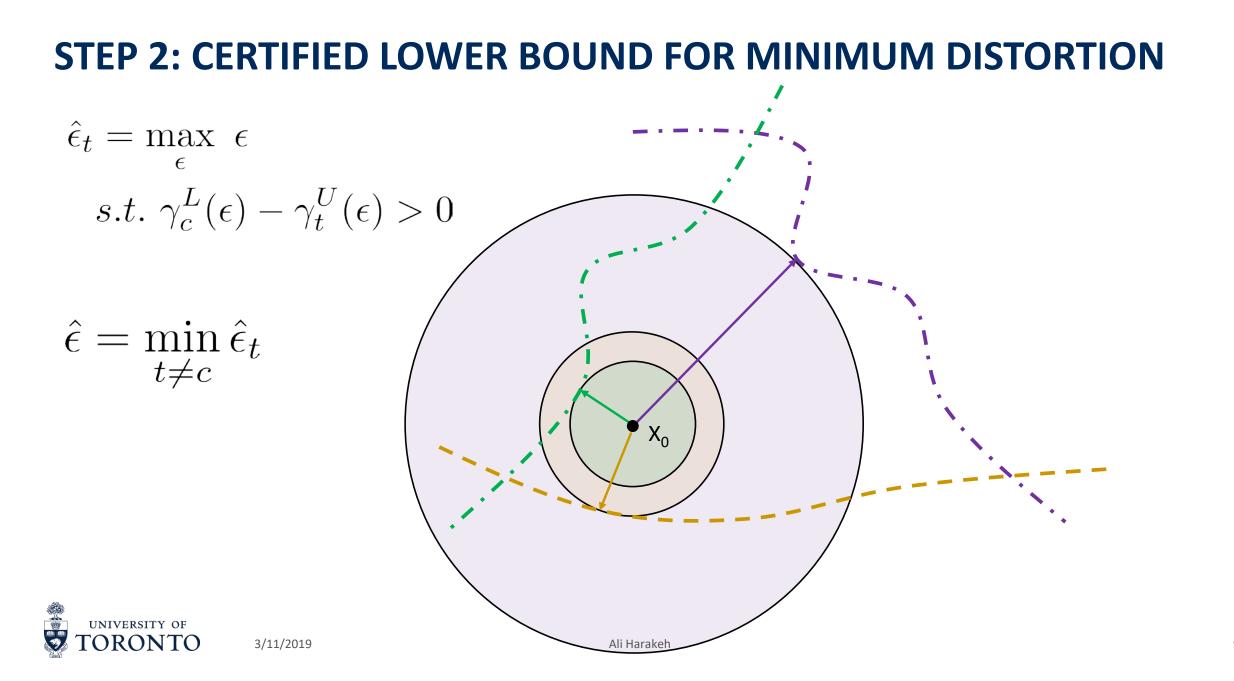
STEP 1: EXPLICIT OUTPUT BOUNDS



LINEAR L/U BOUNDS FOR GENERAL ACTIVATION FUNCTIONS

• Keyword: Adaptive!





RESULTS: TIGHTER LOWER BOUNDS

Table 4: Comparison of certified lower bounds on large ReLU networks. Bounds are the average over 100 images (skipped misclassified images) with random attack targets. Percentage improvements are calculated against Fast-Lin as Fast-Lip is worse than Fast-Lin.

Network	Certified Bounds				Improvement (%)	Average Computation Time (sec)		
	ℓ_p norm	Fast-Lin	Fast-Lip	CROWN-Ada	CROWN-Ada vs Fast-Lin	Fast-Lin	Fast-Lip	CROWN-Ada
$\frac{\text{MNIST}}{4 \times [1024]}$	ℓ_1	1.57649	0.72800	1.88217	+19%	1.80	2.04	3.54
	ℓ_2	0.18891	0.06487	0.22811	+21%	1.78	1.96	3.79
	ℓ_{∞}	0.00823	0.00264	0.00997	+21%	1.53	2.17	3.57
$\begin{array}{c} \text{CIFAR-10} \\ 7 \times [1024] \end{array}$	ℓ_1	0.86468	0.09239	1.09067	+26%	13.21	19.76	22.43
	ℓ_2	0.05937	0.00407	0.07496	+26%	12.57	18.71	21.82
	ℓ_∞	0.00134	0.00008	0.00169	+26%	8.98	20.34	16.66

Table 5: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activations achieve much worse accuracy than other networks and are thus excluded.

Network	Certified Bounds by CROWN-Ada and CROWN-general					Average Computation Time (sec)			
	ℓ_p norm	ReLU	tanh	sigmoid	arctan	ReLU	tanh	sigmoid	arctan
$\frac{\text{MNIST}}{3 \times [1024]}$	ℓ_1	3.00231	2.48407	2.94239	2.33246	1.25	1.61	1.68	1.70
	ℓ_2	0.50841	0.27287	0.44471	0.30345	1.26	1.76	1.61	1.75
	ℓ_{∞}	0.02576	0.01182	0.02122	0.01363	1.37	1.78	1.76	1.77
$\begin{array}{c} \text{CIFAR-10} \\ 6 \times [2048] \end{array}$	ℓ_1	0.91201	0.44059	-	0.46198	71.62	89.77	-	83.80
	ℓ_2	0.05245	0.02538	-	0.02515	71.51	84.22	-	83.12
	ℓ_{∞}	0.00114	0.00055	-	0.00055	49.28	59.72	-	58.04

CROWN: WEAK POINTS

- 1. Feed-Forward Neural Networks with fully connected layers only.
 - CNN-Cert: <u>https://arxiv.org/abs/1811.12395</u>
- 2. Input should be in the form of an epsilon bound norm ball.
 - Usually not an issue. Common assumption.
- 3. Single input certification. Results averaged over 100 points of input.
 - o A2I and derivatives? Covering arguments?

DISCUSSION QUESTIONS

What do you think of the provided comparison method?

Do you think the authors overpromise scalability?

Can we argue safety of a DNN using CROWN?

2/11/2019