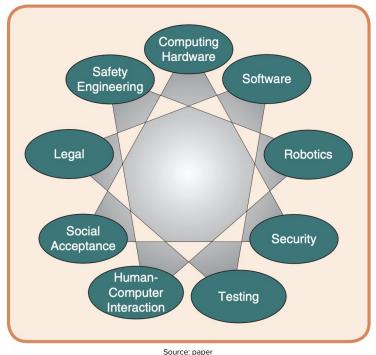


Autonomous Vehicle Safety: An Interdisciplinary Challenge

Presenter: Yasaman Rohanifar

MSc Student, Department of Computer Science University of Toronto


February 25, 2019

About this paper

- IEEE Intelligent Transportation Systems Magazine
- Spring 2017

About the Authors:

- Philip Koopman Carnegie Mellon University
- Michael Wagner Edge Case Research LLC

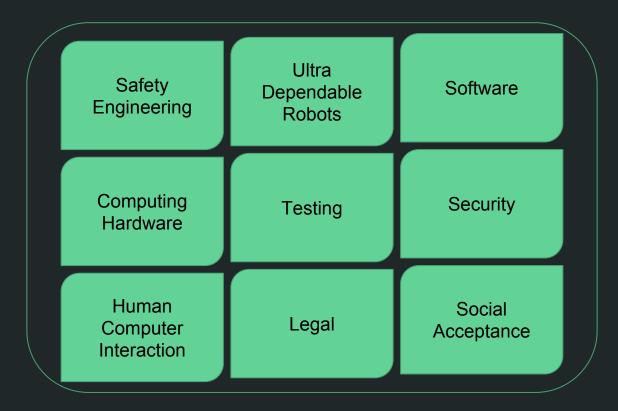
Fish Eye View of the paper

- Call for a **multidisciplinary approach** across all levels of functions and hierarchy to ensure safety for fully autonomous vehicles.
- Validation of inductive learning against new environment inputs as an open technical problem.
- An approach to an end-to-end design and development process that addresses the safety concerns of different specialties.

Source: http://www.uwphotographyguide.com/images/car-photo.JPG

Introduction

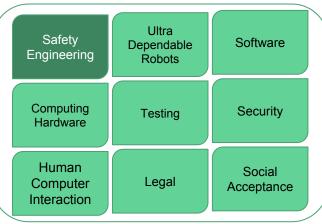
- Dream of fully Autonomous cars
 - Relieving people from the stress of driving
 - Reduction in driving fatalities
- Autonomous Vehicles won't be perfect!
 - When will be able to safely deploy a fleet of fully autonomous vehicles?
- Nothing is simple with autonomous vehicles, even the definition of safety!
 - Implementation of vehicle-level behaviors? Dealing with hazards?
 - Failover mission planning?
 - A method to validate inductive-based learnings?


Source: https://s4745.pcdn.co/wp-content/uploads/2018/10/womaninautomatedcar.jpd

Source: https://www.extremetech.com/wp-content/uploads

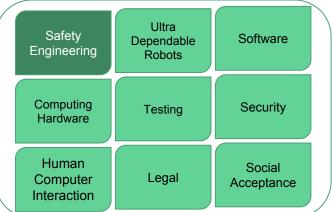
Disciplines

Disciplines: Safety Engineering


• Challenges of deploying L4 at scale:

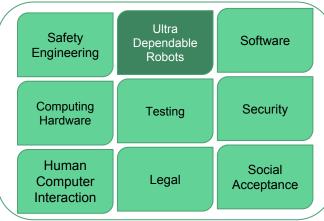
UNIVERSITY OF

ORONTO


- Managing failures that are infrequent for single vehicles But happen too often when exposure increases!
- Making computer-based automotive systems safe
 - ISO 26262 says a human driver is ultimately responsible for safety...
 - Solution: Setting the "controllability" aspect of autonomous systems to zero?
- Unconstrained adaptation such as real time learning of new behaviors result in different behaviors during operation than displayed in testing...
 - Current certification approaches can't handle these situations
 - The need to consider all system possibilities up front!
 - Putting limits on adaptation and fully explored system design
 - Formal method approaches + assumptions that might not be provable or testable

Disciplines: Safety Engineering

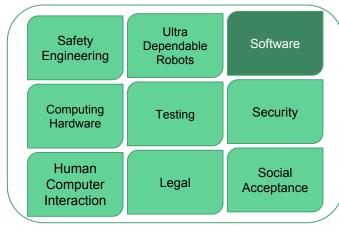
- Creating safety-critical computer-based systems
 - Re-engaging the driver in case of equipment failure
 - Creating **a human safety net** for automation
 - Vehicle must have a fail-operational autonomy capability
 - Achieving safe state: cars vs. aircrafts
 - Strategy: changing operational modes to short duration "safety mission" in critical situations
 - Designing a smart-enough car that pulls over instead of one that is full autonomous
 - If a safe mission is always available, the primary Autonomy need not be fully operational
 - Relaxing safety requirements on primary autonomy Results in reduction in costs and complexity



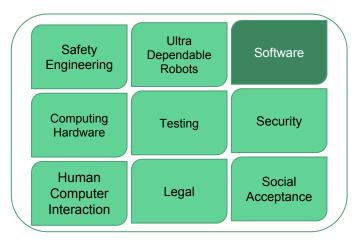
Source: https://cdn.technologyreview.com/i/images/apollocar.jpg

Disciplines: Ultra-dependable Robots

- Goal of making fully autonomous cars as safe per Operating hour as aircraft
 - Safety level ~ 1 billion operating hours/catastrophic event
 - Ultra-dependability!
- Challenges of ultra-dependability:
 - Improving the robustness of the system for messy environments (e.g. debris, clutter, ...)
 - A system that self-monitors its confidence in operation
 - High false-negatives → unintentional unsafe behaviors
 - High false-positives → leaving too many cars stranded
 - Validation of inductive reasoning used in ML techniques
 - Difficult to reason about the correctness of the ML systems Behavior in the face of novel data.



Source: https://cdn.cnn.com/cnnnext/dam.

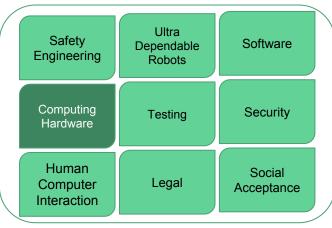


Disciplines: Software

- Current software safety approaches: V Process
 - Assumes HQ requirement are refined into implementation
- Challenges with adaptive and ML systems
 - Can they confront the messiness of the real world?
 - Are ML validation sets comprehensive enough?
 - Knowing that the training and validation sets are good enough is not easy! Edge cases?
- Even if the validation sets are extremely comprehensive...
 - What about the "Unknown unknowns"?
 - Some operating scenarios may seem ordinary to a person and not included in the test data set

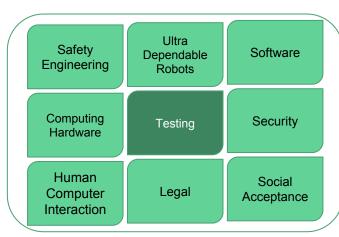
• Basing a safety argument on the sufficiency of training and validation data potentially makes the system that collects this data safety critical!

• **Potential solution:** defining "safe" operation in an independent and safe way.



Disciplines: Software

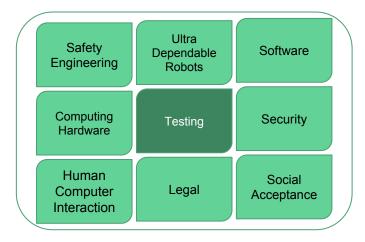
Disciplines: Computing Hardware


- Ultra low cost hardware with safe failure behavior
- Combined hw/sw architecture that employs redundancy policy
- Latent fault detection
 - Even 1-2% of gaps in self-diagnosis has dramatic implications for achieving reliability
 - Undiagnosed failures can <u>accumulate</u> for the entire working life of the vehicle
 - Probability of experiencing multiple independent undiagnosable failures during vehicles lifetime will be higher than one single driving mission
- Need for chips that can be self-tested before each driving cycle with high testing coverage

Disciplines: Testing

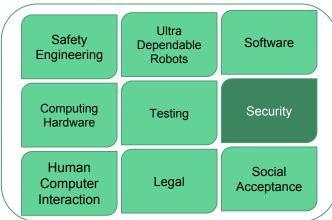
- Traditional pre-computer car testing
- Recent AV on-road testing
- Testing only approach is insufficient
 - What about full-fleet deployment?
- V-Model
 - Comparing a defined design document against a system
- Probabilistic Systems
 - Behavior of the system is expected to be different in each run
 - Small changes in initial conditions result in large changes
 - The testing oracle should support abstract results not specific ones!

Source: <u>https://s.hswstatic.com/gif/car-testing1.jpg</u>


Autonomous Vehicle Safety: An Interdisciplinary Challenge

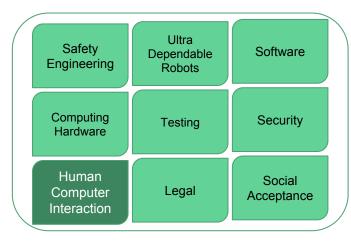
12

Disciplines: Testing


- Challenges of inductive-learning systems
 - No design and starting point for testing oracle
 - Sets of training data and validation data
- Even comprehensive data is not enough!
 - Characteristics of the training data or coincidental correlations?
 - Measurements on the test data may be different than actual data in the future!
- Ultra-dependability for machine learning algorithms is still uncertain!
- Fault injection and failure management
 - Is the vehicle controllability fully responsible for the autonomous system?
 - How would the vehicle deal with a tire blow out or autonomy algorithm failure?

Disciplines: Security

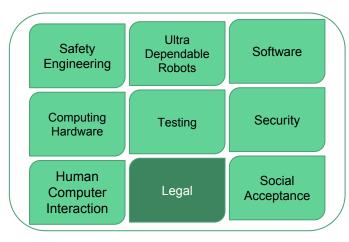
- Measures for:
 - Specific vehicles
 - System-level attacks and failures
- Can't trust the security of other vehicles or even roadside infrastructure!
 - What if in v2v encrypted communication a vehicle provides maliciously incorrect information?
 - What if someone physically breaks into roadside infrastructure and reprograms it?
 - What if the power is killed by a malicious person?
- It's naive to think that standalone vehicles will be able to:
 - Realize they are being fed incorrect or malicious information
 - Detect an attack
 - Perform safing mission under attack



Disciplines: HCI

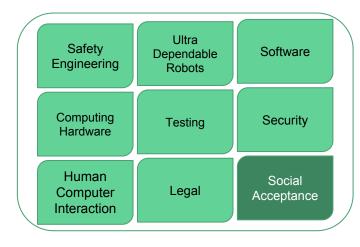
- Even full-autonomous vehicles must make sure
 - Occupants feel safe
 - Build customer trust (vital for technology adoption)
 - Anticipate behaviors of other vehicles
- How AVs interact with human drivers of other vehicles?
 - Even with full AVs, there are <u>bicycles</u>, <u>scooters</u>, <u>motors</u>, etc.
 - <u>Pedestrians</u> (especially ill-behaved/children/pranksters)
 - Public pressure to spread autonomy!
- AVs actions should be easily perceivable by human
 - Human-Vehicle interaction safety
 - Testing coverage
 - Design comprehension

Autonomous Vehicle Safety: An Interdisciplinary Challenge


Source: https://www.researchgate.net/profile/Amir_Rasouli4

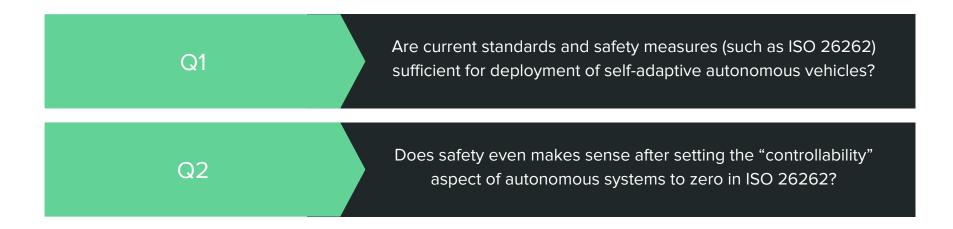
15

Disciplines: Legal


- Open legal issues of liability
- Vehicle logs as sources of information
 - Can we trust the data from a malfunctioned vehicle?
 - Independent data recording system for mishap forensics
- Who is responsible for proper vehicle operation?
 - Vehicle manufacturer that trusted a faulty third-party data set?
 - The mechanic who installed an incompatible sensor?
 - Operating system vendor who didn't deploy a security patch fast enough?
- Do we have the adequate technological foundation to build upon?

Disciplines: Social Acceptance

- AVs will be safer drivers than people
 - Unrealistic!
 - Avoiding collisions that are physically impossible
- What is the standard for autonomous safety?
 - Better than excellent? Typical driver?
 - How is a "typical driver" characterized?
 - Tricky situations
 - Ordinary human drivers have a good chance of avoiding mishap but the autonomous vehicle crashes
- Establishing statistical basis for insurance purposes
 - Suitable application of monetary reserves Vehicle vendors acting as reinsurers!



Summary

P1	Call for safety certification strategy of some sort for fully autonomous vehicles (cross-disciplinary approach),
P2	Edge cases, subtle trade offs, cross-coupling trade offs between areas, updating practices and validation processes to address safety concerns and lead to an end-to-end design.
P3	Challenges with validating ML based systems to ultra-dependable levels required for autonomous vehicles fleet

Discussion Points/Questions

Thank you for your attention!

Questions?