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Control Theory

Figure by Wikimedia user Orzetto | CC BY-SA 4.0
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Stability in Control Theory

If the system is near an equilibrium, will it stay there?
Lyapunov stable For any radius ε, if we start close enough (< δ) to the

equilibrium, then the system will stay close (< ε) forever.
Asymptotically stable If we start close enough (< δ) to the equilibrium then

the system will converge to the equilibrium.
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PIDNN

Tiny Neural Network Proportional-Integral-Derivative (PID) Controller
Learn weights online

Huailin Shu and Youguo Pi. “PID neural networks for time-delay systems”. In:
Computers & Chemical Engineering 24.2-7 (2000), pp. 859–862.
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Cited Work on Intelligent Control

Neural Network Controllers
Multilayer Perceptron
Diagonal Recurrent
Radial Basis Function

Model Predictive Control

Online learning methods

Often guarantee Lyapunov stability (under assumptions)

Semi-globally uniformly ultimately bounded

Stability while learning the optimal policy
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Model Predictive Control

Controller performs optimization over predicted future state

Figure by Martin Behrendt | CC BY-SA 3.0
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Introductory Papers on Neural Network Control

Foundational paper: Kumpati S. Narendra and Kannan Parthasarathy.
“Identification and control of dynamical systems using neural networks”.
In: IEEE Trans. Neural Networks 1.1 (1990), pp. 4–27

Survey of NN control systems: Toshio Fukuda and Takanori Shibata.
“Theory and applications of neural networks for industrial control
systems”. In: IEEE Trans. Industrial Electronics 39.6 (1992),
pp. 472–489

Behnam Bavarian. “Introduction to neural networks for intelligent
control”. In: IEEE Control Systems Magazine 8.2 (1988), pp. 3–7
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Specification Learning

Referenced results:
Learn Signal Temporal Logic (STL) formulas from positive examples
traces only

Scalable framework to mine STL specifications from a closed-loop
model of a system’s behaviour

Boolean formula learning

Modelling system uncertainty with Gaussian Processes (GP)
Apply reachability analysis: verify unsafe states avoided
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Gaussian Process

Represents an uncertainty distribution over functions.
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Hamilton-Jacobi Reachability

Can worse-case dynamics force the system into undesirable states?

Somil Bansal et al. “Hamilton-Jacobi reachability: A brief overview and recent
advances”. In: CDC. IEEE, 2017, pp. 2242–2253.
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Value Alignment

Ensure objectives of AI systems match human values.

Dylan Hadfield-Menell et al. “Cooperative Inverse Reinforcement Learning”. In: NIPS.
2016, pp. 3909–3917.
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Subsection 1

Automata Learning
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Automata

discrete A discrete set of states.
continuous Continuous states.

hybrid Finite discrete states with continuous variables
timed Finite automaton with a set of real-valued clocks.

Sub-class of hybrid automata.
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Automata Learning

Learn the structure of an automaton by observing state traces (passive) or
posing queries (active).
Referenced results:

Learn formal languages via queries: Dana Angluin. “Queries and
Concept Learning”. In: Machine Learning 2.4 (1987), pp. 319–342
Limited learning of hybrid automata
Efficient learning of 1-clock timed automata
Theory of learning timed automata
Deterministic real-time automaton learning

Application:
Driving pattern discovery: Yihuan Zhang et al. “Car-following Behavior
Model Learning Using Timed Automata”. In: IFAC-PapersOnLine 50.1
(2017), pp. 2353–2358
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Automata Learning Software

learnlib.de
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Section 4

Safe Reinforcement Learning
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Markov Decision Process

A tuple (S ,A,T ,R, p0, γ) where
S is a set of states
A is a set of actions
T : S × A→ S is a probabilistic transition function
S × A× S → R is a reward function
p0 specifies the initial state distribution
γ ∈ [0, 1] is a discount factor

Objective: Find a policy π : S × A→ R that maximizes the cumulative
discounted reward

∞∑
t=0

γtR(st , rt , st+1)
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A Comprehensive Survey of Safe Reinforcement Learning

“Safe Reinforcement Learning can be defined as the process of learning
policies that maximize the expectation of the return in problems in which it
is important to ensure reasonable system performance and/or respect safety
constraints during the learning and/or deployment processes.”

Fundamental approaches:
1 Alter the optimization criteria
2 Modify the exploration process

Javier Garcia and Fernando Fernandez. “A comprehensive survey on safe
reinforcement learning”. In: Journal of Machine Learning Research 16 (2015),
pp. 1437–1480.
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Safe RL Research

Safe RL developed based on Lyapunov stability verification
Felix Berkenkamp et al. “Safe Model-based Reinforcement Learning
with Stability Guarantees”. In: NIPS. 2017, pp. 908–919

Reachability-base approach
Vulnerable to model inaccuracies

Model environment with Gaussian Processes
Jeremy H. Gillula and Claire J. Tomlin. “Guaranteed Safe Online
Learning via Reachability: tracking a ground target using a quadrotor”.
In: ICRA. IEEE, 2012, pp. 2723–2730
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Safe RL Research (continued)

Validate actions with temporal logic.
Mohammed Alshiekh et al. “Safe Reinforcement Learning via Shielding”.
In: AAAI. AAAI Press, 2018, pp. 2669–2678

Probabilistic model checking to verify and repair learned policies.
Shashank Pathak, Luca Pulina, and Armando Tacchella. “Verification
and repair of control policies for safe reinforcement learning”. In: Appl.
Intell. 48.4 (2018), pp. 886–908

Combination of formal verification and runtime monitoring
Nathan Fulton and André Platzer. “Safe Reinforcement Learning via
Formal Methods: Toward Safe Control Through Proof and Learning”.
In: AAAI. AAAI Press, 2018, pp. 6485–6492

Training an intervention model from human oversight
William Saunders et al. “Trial without Error: Towards Safe
Reinforcement Learning via Human Intervention”. In: AAMAS. 2018,
pp. 2067–2069
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Neural Network Verification Approaches

Validating even simple properties about their behaviour is NP-complete

Reachability Estimate the possible set of network outputs over some input
distribution.

Software: AI2 safeai.ethz.ch
Practical for large networks

Sensitivity Measure maximal output deviation for bounded input
deviation.

Falsification Find adversarial examples.
Adversarial Robustness Be resilient against adversarial examples

An attack-independent robustness metric.
Conditions under which no adversarial examples exist
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NN Verification and Testing Software

Verification Tools
Reluplex, Sherlock, AnalyzeNN, AI2, PLNN, Planet, NeVer, VeriDeep,
DeepGo, L0-TRE, SafeCV, Certified ReLU Robustness, NNAF, Convex
Adversarial

Testing Tools
DeepCover, DeepXplore, DeepConcolic
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Questions?
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