DeepTlest

Automated Testing of Deep-Neural-Network-driven
Autonomous Cars

a paper of Anh Nguyen, Jason Yosinki and Jeff Clune

presented by Nils Wenzler

Problem

DNNSs show incorrect and unexpected corner-case behaviours

These corner-case behaviours can be potential lethal

How can we test the behaviour of a DNN in such corner-cases to verify their
correctness?

Setting

Udacity self-driving car challenge:

Build and train a neural network that given an input image predicts a
corresponding steering angle and direction

Empirical example

Test three of the top scoring models of the Udacity self-driving car challenge for
corner-case behaviours.

Classical Solution

Test software with

1. automatically generated test cases
2. that optimize
3. a specific coverage criterion (e.g. branch coverage)

to show that all major behaviour patterns of the software perform as expected.

New Solution

Test deep neural networks with

1. automatically generated test cases
2. that optimize
3. a specific coverage criterion

to show that all major behaviour patterns of the software perform as expected.

New Solution

Test deep neural networks with

1. automatically generated test cases
a. how to automatically generate new and realisic inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases although dealing with non-linearity and non-convexity

3. a specific coverage criterion
a. how to measure “behaviour coverage” for a DNN

to show that all major behaviour patterns of the software perform as expected.

New Solution

Test deep neural networks with

2. that optimize
a. how to choose a good set of test cases

3. a specific coverage criterion
a. how to measure “behaviour coverage” for a DNN

to show that all major behaviour patterns of the software perform as expected.

Input generation

Use existing training data and augment:

Used Transformations

e Brightness Affine Transform | Example PO R |1 ROMRIS (e Ars
e Contrast b v :
. Translation
e Translation
e Rotation
e Scale Scale
e Blur
e Shear Shear
e Rain
7N
° FOg Rotation < >
N/
N

Label generation

Use existing training data labels and use metamorphic relations:

New Solution

Test software with

1. automatically generated test cases

a. how to automatically generate new inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases

to show that all major behaviour patterns of the software perform as expected.

Classical mitigation: Control flow based testing

ASIL A

ASIL B

ASIL C

ASILD

Statement
Coverage

highly
recommended

highly
recommended

recommended

recommended

Branch Coverage

highly
recommended

highly
recommended

highly
recommended

Modified
Condition/
Decision Coverage

highly
recommended

Classical Programming vs Machine Learning

<) Logic lies in control flow

Coverage measured by
looking at different cont

6 FALSE flows

(Wikipedia)

sI9Ae] UONNIOAUO)

Logic lies within
training data/learned
weights

Need a coverage
criterion for this kind of
logic encoding

Proposed solution: Neuron Coverage (Pei et al.)

Measure how many neurons have been activated in a neuronal network

0.5

0.0

0.9

hidden layer output layer

1. What is an activation?
2. Does Neuron Coverage relate to different behaviours of the network?

What is an activation?

weights
inputs
X
activation
functon
J
% %
7 activation

X3o—>

transfer
function

0.
X” J
threshold

(Wikipedia)

Neuron Coverage:
different behaviours of the network?

Empirical evidence:
e Strong correlation between steering angle and neuron coverage
o Spearman rank correlation

e Neuronal coverage varies between left steering and right steering significantly

o nonparametric Wilcoxon test

New Solution

Test software with

1. automatically generated test cases

a. how to automatically generate new inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases

3. a specific coverage criterion
a. how to measure behaviour coverage for a DNN

to show that all major behaviour patterns of the software perform as expected.

Neuron coverage of a whole data set

60% coverage 60% coverage 80% coverage

Optimization of Neuronal Coverage

Perform a greedy search for combinations of transformations

Input image

Transformations Parameters
Translation (20, 10)
P~
+ + =
Scale (10, 20)
(10, 10)

- g 100% coverage

Get next
image

Translation
Scale
Rotation
Fog

Rain

Translation
Choose Choose
transform. | parameters

Store used transformations
Update best coverage; Add image to test set
Evaluate

Restart with
same/different

image

Translation
(10, 10)

Fog
(dense)

coverage

New Solution

Test software with

1. automatically generated test cases

a. how to automatically generate new inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases

3. a specific coverage criterion
a. how to measure behaviour coverage for a DNN

to show that all major behaviour patterns of the software perform as expected.

Results

Empirical evaluation with neuronal networks out of Udacity self-driving car
challenge

Results

Empirical evaluation with neuronal networks out of Udacity self-driving car
challenge

Results

Empirical evaluation with neuronal networks out of Udacity self-driving car
challenge

Results

Empirical evaluation with neuronal networks out of Udacity self-driving car
challenge

Detected 6339 erroneous behaviours in the 3 different models

Neuron coverage can be increased by ~100% w.r.t. original test images
Guided search of transformations provide ~20% increase compared to
random combinations

The sensitivity concerning single transformations varies between models

Problems/Criticism

Realistic images resulting out of transformations?

Neuronal coverage general justification?

Does not perform well for Recurrent Neuronal Networks (RNNs)
Transformations do not lead to exhaustive validation

Conclusions

Nguyen et al. propose a new automatic testing approach for DNNSs.

Although being simplistic and not fully scientifically justified it is able to find major
erroneous behaviours in otherwise well-performing DNNSs.

The algorithm

Input :Transformations T, Seed images I

Output :Synthetically generated test images

Variable :S: stack for storing newly generated images
Tqueue: transformation queue

1
2 Push all seed imgs € I to Stack S
3 genTests = ¢
4 while S is not empty do
5 img = S.pop()
6 Tqueue = ¢
7 numPFailedTries = 0
8 while numFailedTries < maxFailedTries do
9 if Tqueue is not empty then
10 | T1=Tqueue.dequeue()
11 else
12 | Randomly pick transformation T1 from T
13 end
14 Randomly pick parameter P1 for T1
15 Randomly pick transformation T2 from T
16 Randomly pick parameter P2 for T2
17 newlmage = ApplyTransforms(image, T1, P1, T2, P2)
18 if covInc(newimage) then
19 Tqueue.enqueue(T1)
20 Tqueue.enqueue(T2)
21 UpdateCoverage()
22 genTest = genTests U newimage S.push(newImage)
23 else
24 numPFailedTries = numFailedTries + 1
25 end
26 end
27 end
28 return genTests

Retraining for the rescue?

Test set Original MSE Retrained MSE
original images 0.10 0.09
with fog 0.18 0.10

with rain 0.13 0.07

Metamorphic relations

(0 — 01i)* < A MSEorig

error w.r.t. human labels
o — — N
(6)] (o=] ()] o
1 1

o
o

I I
transformed original
images images

Tested models

No.of Reported Our

Model Sub-Model Neurons MSE MSE
CNN 1427

Cllallﬁellr LSTM 513 0.06 0.06 Tun]ing nght I,

-25<=Steering angle <0 |
\

S1(CNN) 1625

Rambo S2(CNN) 3801 0.06 0.05 Torniag ot '
urning le '
S3(CNN) i 25>=Steering angle > 0 '«

Epoch CNN 2500 0.08 0.10

g dataset HMB_3.bag [16]

Neuron coverage valid?

Steering Steering
Model Sub-Model Angle Direction
Spearman | Wilcoxon Effect size
Correlation Test (Cohen’s d)
Chauffeur Overall -0.10 (***) | left (+ve) > right (-ve) (***) negligible
CNN 0.28 (***) | left (+ve) < right (-ve) (***) negligible
LSTM -0.10 (***) | left (+ve) > right (-ve) (***) negligible
Rambo Overall -0.11 (***) | left (+ve) < right (-ve) (***) negligible
S1 -0.19 (***) | left (+ve) < right (-ve) (***) large
82 0.10 (***) | not significant negligible
59 -0.11 (***) | not significant negligible
Epoch N/A 0.78 (***) | left (+ve) < right (-ve) (***) small

“* indicates statistical significance with p-value < 2.2 * 1

0—16

Transformations affecting neural coverage (1)

Chauffeur—-CNN

Epoch

Rambo-S1

0.40

0.30

0.20

triggered neurons (%)

0.10

0.40

035
il
.—l—.
{1}

0.30

Image Transformation

Transformations affecting neural coverage (2)

g {
8 o -
55 g -
= o < -
4] © 0.4 -
3 = 5 -
° 3 . © 7 Model
Q° : Q / == Chauffeur
8 | 8 / - Epoch
88 = / ~ Rambo

= S 0.2- =

I =] = ool I
4 ()
8 :) :) ; \ z 5 - | N (N 7%y S S S|
e g o N v > Y
& e % & .
R R A A e P—
@ N Q_’bé\ Q_'o‘Q Q?@ o
& & ool . . . :
(&) Blur Brightness Contrast Scale Shear Rotation Translation
Models

Image Transformation

4.1 Difference in neuron coverage caused by different image transformations 4.2 Average cumulative neuron coverage per input image

Figure 4: Different image transformations activate significantly different neurons. In the top figure the median Jaccard distances for
Chauffeur-CNN, Chauffeur-LSTM, Epoch, Rambo-S1, Rambo-S2, and Rambo-S3 models are 0.53, 0.002, 0.67, 0.12, 0.17, 0.30, and 0.65.

Used parameters for transformations

Transformations | Parameters

Parameter ranges

Translation (Lxs ty) e :t(i)ptagol%)loo)
Scale BosiSy) S e
Shear (sx» sy) o 'Sge?))(t(()). (1_8) 1,0)
Rotation | q (degree) 3 to 30 with step 3
Contrast | o (gain) 1.2 to 3.0 with step 0.2
Brightness | S (bias) 10 to 100 with step 10
Averaging | kernel size 3X3,4X4,5X5,6X6
Gaussian | kernel size 32X 3 M T XT3 3
Blur Median | aperture linear size 3,5
Bilateral Filter | diameter, sigmaColor, sigmaSpace 9,75, 75

Simple Tranformation Composite Transformation

A € (see Eqn. 3) Fog Rain Guided
(see Eqn. 2) 0.01 0.02 0.03 0.04 0.05 Search

1 15666 18520 23391 24952 29649 9018 6133 1148

2 4066 5033 6778 7362 9259 6503 2650 1026

3 1396 1741 2414 2627 3376 5452 1483 930

- 501 642 965 1064 4834 4834 997 872

5 25 171 330 382 641 | 4448 741 820

6 49 85 185 210 359 4063 516 764

7 13 24 89 105 189 3732 287 721

8 3 5 34 45 103 3391 174 668

9 0 1 12 19 56 3070 111 637

10 0 0 3 5 23 2801 63 597

Transformation Chauffeur Epoch Rambo
Simple Transformation

Blur 3 27 13
Brightness 97 32 15
Contrast 31 12 -
Rotation - 13 -
Scale - 10 -
Shear - - 23
Translation 21 35 -
Composite Transformation

Rain 650 64 27
Fog 201 135 4112
Guided 89 65 666

