
DeepTest
Automated Testing of Deep-Neural-Network-driven 

Autonomous Cars
a paper of Anh Nguyen, Jason Yosinki and Jeff Clune

presented by Nils Wenzler



Problem
DNNs show incorrect and unexpected corner-case behaviours

These corner-case behaviours can be potential lethal

How can we test the behaviour of a DNN in such corner-cases to verify their 
correctness?





Setting
Udacity self-driving car challenge:

Build and train a neural network that given an input image predicts a 
corresponding steering angle and direction



Empirical example
Test three of the top scoring models of the Udacity self-driving car challenge for 
corner-case behaviours.



Classical Solution
Test software with 

1. automatically generated test cases 
2. that optimize
3. a specific coverage criterion (e.g. branch coverage)

to show that all major behaviour patterns of the software perform as expected.



New Solution
Test deep neural networks with 

1. automatically generated test cases 
2. that optimize
3. a specific coverage criterion

to show that all major behaviour patterns of the software perform as expected.



New Solution
Test deep neural networks with

1. automatically generated test cases 
a. how to automatically generate new and realisic inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases although dealing with non-linearity and non-convexity

3. a specific coverage criterion
a. how to measure “behaviour coverage” for a DNN

to show that all major behaviour patterns of the software perform as expected.



New Solution
Test deep neural networks with

1. automatically generated test cases 
a. how to automatically generate new inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases

3. a specific coverage criterion
a. how to measure “behaviour coverage” for a DNN

to show that all major behaviour patterns of the software perform as expected.



Input generation
Use existing training data and augment:



Used Transformations
● Brightness
● Contrast
● Translation
● Rotation
● Scale
● Blur
● Shear
● Rain
● Fog



Label generation
Use existing training data labels and use metamorphic relations:



New Solution
Test software with 

1. automatically generated test cases 
a. how to automatically generate new inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases

3. a specific coverage criterion
a. how to measure behaviour coverage for a DNN

to show that all major behaviour patterns of the software perform as expected.



Classical mitigation: Control flow based testing

Statement 
Coverage

Branch Coverage Modified 
Condition/ 
Decision Coverage

ASIL A highly 
recommended

ASIL B highly 
recommended

highly 
recommended

ASIL C recommended highly 
recommended

ASIL D recommended highly 
recommended

highly 
recommended



Classical Programming vs Machine Learning
Logic lies in control flow

Coverage measured by 
looking at different control 
flows

Logic lies within 
training data/learned 
weights

Need a coverage 
criterion for this kind of 
logic encoding

(Wikipedia) (Paper)



Proposed solution: Neuron Coverage (Pei et al.)
Measure how many neurons have been activated in a neuronal network

0.5

0.0

0.9

0.8

0.1

1. What is an activation?
2. Does Neuron Coverage relate to different behaviours of the network?



What is an activation?

(Wikipedia)

> 0.2?



Neuron Coverage: 
different behaviours of the network?
Empirical evidence:

● Strong correlation between steering angle and neuron coverage
○ Spearman rank correlation

● Neuronal coverage varies between left steering and right steering significantly
○ nonparametric Wilcoxon test



New Solution
Test software with 

1. automatically generated test cases 
a. how to automatically generate new inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases

3. a specific coverage criterion
a. how to measure behaviour coverage for a DNN

to show that all major behaviour patterns of the software perform as expected.



Neuron coverage of a whole data set

+ =
60% coverage 60% coverage 80% coverage



Optimization of Neuronal Coverage
Perform a greedy search for combinations of transformations

+
Translation

Scale 
≈

100% coverage

+

Input image Transformations Parameters

(10, 20)

(20, 10)

(10, 10)



Translation
Scale
Rotation
Fog
Rain
...

Get next 
image

Choose 
transform.

Choose 
parameters

Translation

Fog

apply

Evaluate 
coverage

higher

lowerRestart with 
same/different 
image

Store used transformations
Update best coverage; Add image to test set

Translation 
(10, 10)

Fog
(dense)



New Solution
Test software with 

1. automatically generated test cases 
a. how to automatically generate new inputs
b. how to automatically find fitting labels for these inputs

2. that optimize
a. how to choose a good set of test cases

3. a specific coverage criterion
a. how to measure behaviour coverage for a DNN

to show that all major behaviour patterns of the software perform as expected.



Results
Empirical evaluation with neuronal networks out of Udacity self-driving car 
challenge



Results
Empirical evaluation with neuronal networks out of Udacity self-driving car 
challenge



Results
Empirical evaluation with neuronal networks out of Udacity self-driving car 
challenge



Results
Empirical evaluation with neuronal networks out of Udacity self-driving car 
challenge

● Detected 6339 erroneous behaviours in the 3 different models
● Neuron coverage can be increased by ~100% w.r.t. original test images
● Guided search of transformations provide ~20% increase compared to 

random combinations
● The sensitivity concerning single transformations varies between models



Problems/Criticism
● Realistic images resulting out of transformations?
● Neuronal coverage general justification?
● Does not perform well for Recurrent Neuronal Networks (RNNs)
● Transformations do not lead to exhaustive validation



Conclusions
Nguyen et al. propose a new automatic testing approach for DNNs.

Although being simplistic and not fully scientifically justified it is able to find major 
erroneous behaviours in otherwise well-performing DNNs.



The algorithm



Retraining for the rescue?



Metamorphic relations



Tested models



Neuron coverage valid?



Transformations affecting neural coverage (1)



Transformations affecting neural coverage (2)



Used parameters for transformations






