DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing

Prepared by: Zi Yi Chen

Prepared for: Professor Marsha Chechik
CSC2125
University of Toronto
Authors

- Mengshi Zhang – University of Texas at Austin
- Yuqun Zhang – Southern University of Science and Technology
- Lingming Zhang – University of Texas at Dallas
- Cong Liu – University of Texas at Dallas
- Sarfraz Khurshid – University of Texas at Austin
Agenda

- Motivation and Background
- Approach
- Experiments
- Conclusion
Motivation and Background

- DNNs enable autonomous driving systems to adapt their driving behaviours
- These systems may exhibit erroneous behaviours and cause accidents
- Add error-inducing inputs to training dataset to improve reliability
Motivation (cont.)

- DeepTest – generate test cases by applying various effect filters

- Problem: test cases don’t reflect real-world driving scenes
Motivation (cont.)

- Goal: synthesize authentic driving scenes for testing
- DeepRoad: GAN-based metamorphic testing approach
Approach

- Focus: DNN-based ADS with camera inputs and steering angle outputs
Approach (cont.)

- Metamorphic DNN testing: cross-checking inputs and outputs with MR

- Metamorphic Relations: set of properties that relate multiple pairs of inputs/outputs

\[\forall i. p[f_1(i)] = f_0(p[i]) \]
Approach (cont.)

- DeepTest
 - Also applies MT to test DNN-based ADS
 - But only performs simple synthetic image transformation

- UNIT
 - DNN-based method to perform unsupervised image-to-image transformation
 - Composed by GAN and VAE
Approach (cont.)

- The overall framework
Experiments

- Data:
 - Real-world dataset from Udacity
 - Youtube videos with snow and hard rain conditions

- Models:
 - Autumn
 - Chauffeur
 - Rwrightman

- Metric:

\[IB(DNN, \mathcal{I}) = \sum_{i \in \mathcal{I}} f(|DNN[i] - DNN[\tau(i)]| > \epsilon) \]
Experiments (cont.)

- Results
Experiments (cont.)

- Results
Results

<table>
<thead>
<tr>
<th>Scene</th>
<th>Model</th>
<th>Num. of Incon. Behaviors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10°</td>
</tr>
<tr>
<td>Snowy</td>
<td>Autumn Chauffeur</td>
<td>11635</td>
</tr>
<tr>
<td></td>
<td>Rwrightman</td>
<td>4839</td>
</tr>
<tr>
<td></td>
<td></td>
<td>334</td>
</tr>
<tr>
<td>Rainy</td>
<td>Autumn Chauffeur</td>
<td>5279</td>
</tr>
<tr>
<td></td>
<td>Rwrightman</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td></td>
<td>656</td>
</tr>
</tbody>
</table>
Conclusion

- DeepRoad applies metamorphic testing methodology to test ADS
- Experimental results show it can successfully detect thousands of inconsistent driving behaviours
- Plans to support more weather conditions
Discussion

- How do you determine the error bound in the metric equation

- Is metamorphic testing a good testing method for ADS