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Adversarial Attacks on ML
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Definition

“Adversarial examples are inputs to machine learning models that an attacker
has intentionally designed to cause the model to make a mistake” (Goodfellow
et al 2017)

“Adversarial examples are inputs to machine learning models that an attacker
has intentionally designed to cause the entire system to make a mistake”




Automatic Emergency Braking System(AEBS)

Goal: Brake whenever an obstacle is detected
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Semantic Adversarial Analysis and Training

Goal: DNN analysis must be more semantic

Semantic modification
System-level specification
Semantic (re-)training
Confidence-based analysis



Semantic Modification

e Allow “Noise”; Add a vector &
e Allow richer transformations:
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Non-semantic perturbation (i.e., noise)

e DSL that relates to applications

Semantic perturbation (i.e., translation) ¢



System-level Specification

Perception-level-spec: NO NO
“Detect cars”

Perception-level-spec: YES NO
“Do not crash”




Semantic Training

Semantic augmentation
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Confidence-based Analysis

They argue that confidence levels must be used within the design of ML-based
system.
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Problem

Can we generate adversarial examples that cause
system-level failure?

Can we use formal method to verify CPS?



Compositional Falsification

Statement:

given a formal specification ¢ (say in a formalism such as signal temporal
logic) and a CPS+ML model M, find an input for which M does not satisfy .

Example: Go,7(||Xego — Xobsll2 > 2).
Problem:

How to deal with ML component?



Compositional Falsification

e Standard solution: use compositional verification (Modular)
e However, no formal specification for neural network component.
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Approach: Use a System-Level Specification and
Combine CPS Falsifier with ML Analyzer

Do not verify the DNN Object Detector.

Verify the system containing the DNN model
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System-Level Analysis

CPS Falsifier uses abstraction of ML component:

e Optimistic analysis: assume ML classifier is always correct
e Pessimistic analysis: assume it is always wrong

e Difference is the region of uncertainty where output of the ML
component “matters”
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|dentify Region of Uncertainty
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Machine Learning Analyzer
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Sample Results

Misclassifications

Misclassification

not of concern

Potential hazard

Corner case



System Training

e Train the model with both original and counterexample test sets.
e Thatis they trained a model with hinge loss with a bias factor k, which

means no penalty for a misclassification if confidence level + k < truth
label

I[(9) = max(0,k + I?gf(yz — 1))

Result:

e Accuracy increases on counterexamples testing set.
e Accuracy decreases on original testing set.



System Training

e Train the model with both original and counterexample test sets. Where
the counterexamples are generated from composition falsification

framework. static_cow_detection satisfied by 485/512
e Red dots are Semantic counterexamples O P
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Conclusion

e Formal Methods can apply to cyber-physical system with high assurance.
e Compositional falsification framework can also be used for verification



