Semantic Adversarial Deep Learning

A paper of Tommaso Dreossi, Somesh Jha, and Sanjit A. Seshia

Thanks to Somesh Jha and Sanjit A. Seshia for some of the slides

Presented by Yilin Han

Background

Adversarial Attacks on ML

"Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to cause the **model** to make a mistake" (Goodfellow et al 2017)

"Adversarial examples are inputs to machine learning models that an attacker has intentionally designed to cause the **entire system** to make a mistake"

Automatic Emergency Braking System(AEBS)

Goal: Brake whenever an obstacle is detected

Semantic Adversarial Analysis and Training

Goal: DNN analysis must be more semantic

- Semantic modification
- System-level specification
- Semantic (re-)training
- Confidence-based analysis

Semantic Modification

- Allow "Noise": Add a vector δ
- Allow richer transformations:

"gibbon" 99.3 % confidence

Non-semantic perturbation (i.e., noise)

"nematode"

8.2% confidence

background.....

Translation, Cloudy

DSL that relates to applications

Semantic perturbation (i.e., translation) 61

System-level Specification

Perception-level-spec: "Detect cars"	NO	NO
Perception-level-spec: "Do not crash"	YES	NO

Semantic augmentation

Confidence-based Analysis

They argue that confidence levels must be used within the design of ML-based system.

Problem

Can we generate adversarial examples that cause system-level failure?

Can we use formal method to verify CPS?

Compositional Falsification

Statement:

given a formal specification ϕ (say in a formalism such as signal temporal logic) and a CPS+ML model M, find an input for which M does not satisfy ϕ .

Example:
$$G_{0,T}(||\mathbf{x}_{ego} - \mathbf{x}_{obs}||_2 \ge 2)$$
.

Problem:

How to deal with ML component?

Compositional Falsification

- Standard solution: use compositional verification (Modular)
- However, no formal specification for neural network component.

Approach: Use a System-Level Specification and Combine CPS Falsifier with ML Analyzer

Do not verify the DNN Object Detector.

Verify the system containing the DNN model

System-Level Analysis

CPS Falsifier uses **abstraction** of ML component:

- Optimistic analysis: assume ML classifier is always correct
- Pessimistic analysis: assume it is always wrong
- Difference is the region of uncertainty where output of the ML component "matters"

Identify Region of Uncertainty

Machine Learning Analyzer

Sample Results

System Training

- Train the model with both original and counterexample test sets.
- That is they trained a model with hinge loss with a bias factor k, which means no penalty for a misclassification if confidence level + k < truth label

$$l(\hat{y}) = \max(0, k + \max_{i \neq l} (\hat{y}_i - \hat{y}_l))$$

Result:

- Accuracy increases on counterexamples testing set.
- Accuracy decreases on original testing set.

System Training

- Train the model with both original and counterexample test sets. Where the counterexamples are generated from composition falsification framework. static_cow_detection satisfied by 485/512
- Red dots are Semantic counterexamples

Result:

Still specification violation

However, obstacles get detected earlier.

Conclusion

- Formal Methods can apply to cyber-physical system with high assurance.
- Compositional falsification framework can also be used for verification