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Background



Adversarial Attacks on ML



Definition
“Adversarial examples are inputs to machine learning models that an attacker 
has intentionally designed to cause the model to make a mistake” (Goodfellow 
et al 2017)

“Adversarial examples are inputs to machine learning models that an attacker 
has intentionally designed to cause the entire system to make a mistake” 



Automatic Emergency Braking System(AEBS)
Goal: Brake whenever an obstacle is detected



Semantic Adversarial Analysis and Training
Goal: DNN analysis must be more semantic

● Semantic modification
● System-level specification
● Semantic (re-)training
● Confidence-based analysis



Semantic Modification
● Allow “Noise”: Add a vector δ
● Allow richer transformations:

Translation, Cloudy 
background…..

● DSL that relates to applications



System-level Specification

Perception-level-spec:
“Detect cars”

NO NO

Perception-level-spec:
“Do not crash”

YES NO



Semantic Training
Semantic augmentation



Confidence-based Analysis
They argue that confidence levels must be used within the design of ML-based 
system. 



Problem
Can we generate adversarial examples that cause 
system-level failure?

Can we use formal method to verify CPS?



Compositional Falsification
Statement:

given a formal specification φ (say in a formalism such as signal temporal 
logic) and a CPS+ML model M, find an input for which M does not satisfy φ.

Example:

Problem: 

How to deal with ML component?



Compositional Falsification
● Standard solution: use compositional verification (Modular)
● However, no formal specification for neural network component.



Approach: Use a System-Level Specification and 
Combine CPS Falsifier with ML Analyzer
Do not verify the DNN Object Detector.

Verify the system containing the DNN model



System-Level Analysis
CPS Falsifier uses abstraction of ML component:

● Optimistic analysis: assume ML classifier is always correct
● Pessimistic analysis: assume it is always wrong
● Difference is the region of uncertainty where output of the ML 

component “matters”



Identify Region of Uncertainty



Machine Learning Analyzer



Sample Results



System Training
● Train the model with both original and counterexample test sets.
● That is they trained a model with hinge loss with a bias factor k, which 

means no penalty for a misclassification if confidence level + k < truth 
label

Result: 

● Accuracy increases on counterexamples testing set. 
● Accuracy decreases on original testing set. 



System Training
● Train the model with both original and counterexample test sets. Where 

the counterexamples are generated from  composition falsification 
framework. 

● Red dots are Semantic counterexamples

Result: 

Still specification violation

However, obstacles get detected earlier. 



Conclusion
● Formal Methods can apply to cyber-physical system with high assurance. 
● Compositional falsification framework can also be used for verification


