Not all Neurons are created equal: Towards a feature level Deep Neural Network Test Coverage Metric

Nils Wenzler - CSC2125: Topics in Software Engineering Winter 2019

DNN

Structure

- 1. Problem
- 2. Current DNN Test Coverage Metrics
- 3. α -Bin Coverage
- 4. Practical Evaluation

General Approach

Use a test coverage metric for

- Building test suites that
- Cover all significant behaviours of a deep neural network

Not a proof of correctness but evidence towards correctness!

of Deep	Learning Systems		
Kexin Pei*, Yinz	ni Cao [†] , Junfeng Yang [*] , Suman Jana [*]		
*Colur	bia University, 'Lehigh University		
ABSTRACT Deep learning (DL) systems are increasingly safety- and security-critical domains includin cars and malware detection, where the correc dicability of a system's behavior for corner- of great importance. Existing DL testing do en manually labeled data and therefore relat- ernoncous behaviors for rare inputs. We design, mighemera. and evaluate DeepX	DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars		
whitebox trainework for systematically testing systems. First, we introduce neuron coverage cally measuring the parts of a DL system exe inpute. Next, we howeve ambiliale DL system	Yuchi Tian University of Virginia yuchi@virginia.edu	Kexin Pei Columbia University kpei@cs.columbia.edu	
functionality as cross-referencing oracles to checking. Finally, we demonstrate how find DL systems that both trieger many differential	Suman Jana Columbia University ruman@cc.columbia.edu	Baishakhi Ray University of Virginia	
<text><text><text></text></text></text>	<page-header><text><text><text><text><text><text></text></text></text></text></text></text></page-header>	KUEVIDISI Berg barattis, tettis, elif-divising cars, deep neural settis tettis under the settis of the settis of the settis of the setting of the settis of the setting of	

DeepXplore: Automated Whitebox Testing of Deep Learning Systems Kexin Pei*, Yinzhi Cao [†] , Junfeng Yang [*] , Suman Jana [*] *Columbia University, [†] Lehigh University MSTRACT CCS CONCEPTS	DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars Vuchi Tian University of Virginia University of Virginia University of Virginia Calumbia University University of Virginia Calumbia University University of Virginia republy/riginia.edu	Testing Deep Neural Networks Youcheng Sun ¹ , Xiaowei Huang ² , and Daniel Kreening ¹ ¹ Department of Computer Science, University of Cherry, UK ² Department of Computer Science, University of Liverysol, UK
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	<page-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></page-header>	<page-header><page-header><page-header><page-header><section-header><page-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></page-header></section-header></page-header></page-header></page-header></page-header>

- High research interest
- White-box testing
- Focused on single neurons

 low_n : lowest output value during training $high_n$: highest output value during training

Structure

- 1. Problem
- 2. Current DNN Test Coverage Metrics
- 3. α -Bin Coverage
- 4. Practical Evaluation

Yet another metric?

Number of neurons per layer in AlexNet

Not all Neurons are created equal

Current metrics put equal emphasis on each neuron, but:

Is a first layer neuron as important as an output layer neuron?

Make use of domain specific knowledge concerning layer architectures!

α -Bin Coverage

Equally distribute so-called bins throughout layers.

Each layer contributes approximate same share to coverage metric.

α -Bin Coverage

Let L_i denote the number of neurons in Layer i. Let L_{max} be the maximum of all L_i . Let $\alpha \in (0, \infty]$.

The minimum number of bins per layer for α -Bin Coverage is defined as: $Rins - I \rightarrow \alpha$

$$Bins = L_{max} \cdot \alpha$$

The number of bins per neuron in Layer i is defined as:

$$k_i = \left[\frac{Bins}{L_i}\right]$$

Structure

- 1. Problem
- 2. Current DNN Test Coverage Metrics
- 3. α -Bin Coverage
- 4. Practical Evaluation

Practical Evaluation

The main questions:

- 1. Can α -Bin Coverage be implemented in a practically feasible way?
- 2. Can α -Bin Coverage be optimized with a greedy search approach?
- 3. How does α -Bin Coverage relate to other DNN coverage metrics?
- 4. Can α -Bin Coverage be used to find wrong behaviours?

Practical Evaluation

The main questions:

- 1. Can α -Bin Coverage be implemented in a practically feasible way?
- 2. Can α -Bin Coverage be optimized with a greedy search approach?
- 3. How does α -Bin Coverage relate to other DNN coverage metrics?
- 4. Can α -Bin Coverage be used to find wrong behaviours?

Practically feasible?

Test setup (1/2):

- 10 layer DNN inspired by Nvidea End to End approach using ReLu
- Trained on 45,500 publicly available labeled images
- Implemented in Python using Tensorflow

Practically feasible?

Test setup (2/2):

- Created greedy optimizer that uses image transforms to optimize coverage metric
- Compare behaviour of α -Bin Coverage & Neuron Coverage

Determining low_n and $high_n$ only needs to be done once and can be approximated through random sampling.

Calculating α -Bin Coverage incrementally: constant time (dependend on network size).

Greedy search: Transforms

<u>Transformations</u>: Translation, Brightness, Contrast, Blur

Practical Evaluation

The main questions:

- 1. Can α -Bin Coverage be implemented in a practically feasible way?
- 2. Can α -Bin Coverage be optimized with a greedy search approach?
- 3. How does α -Bin Coverage relate to other DNN coverage metrics?
- 4. Can α -Bin Coverage be used to find wrong behaviours?

Greedy Optimization: Bin Coverage

Greedy Optimization: Bin Coverage

Greedy Optimization: Bin Coverage

test images

Greedy Optimization: Neuron Coverage

test images

Neuron Coverage Optimization: Layer View

test images

Neuron Coverage Optimization: Layer View

test images

Bin Coverage Optimization: Layer View

test images

Bin Coverage Optimization Layer View

test images

Practical Evaluation

The main questions:

- 1. Can α -Bin Coverage be implemented in a practically feasible way?
- 2. Can α -Bin Coverage be optimized with a greedy search approach?
- 3. How does α -Bin Coverage relate to other DNN coverage metrics?
- 4. Can α -Bin Coverage be used to find wrong behaviours?

Deviation from target labels in test suite

Coverage metric	> 20 deg	total images	ratio
Neuron Coverage	2	100	2.0%
Bin Coverage	24	247	9.7%

Example:

Transformed Image Output: 234° Target: 160°

Conclusions

- Current DNN test coverage metrics deal all neurons equally
- This introduces an intrinsic focus on the neurons of low layers in modern architectures
- α-Bin Coverage is a practically feasible approach to equally distribute a test coverage metric over all layers
- First evidence shows that α -Bin Coverage can be used for finding erroneous behaviours and creating test suites automatically

Let's discuss!

Some points to consider:

- Only one model in evaluation
- Limited number of test runs
- Only one domain
- Why greedy search?
- What is this strange α value? Why do we need it?
- How about classification tasks?

Greedy search

Stack transformations on randomly selected images to optimize coverage metric.

Add an image to test suite if it significantly increases coverage metric

Transformations: Translation, Brightness, Contrast, Blur

