Not all Neurons are created equal:
Towards a feature level Deep Neural Network Test
Coverage Metric

Nils Wenzler - CSC2125: Topics in Software Engineering Winter 2019

Problem

Problem

Does it work?
Does it really work?

Problem

Problem

Steer right!

Problem

Go straight!

Problem

Did | test it enough?
Did | test it in the right
way?

Structure

Problem
Current DNN Test Coverage Metrics
a-Bin Coverage

B N

Practical Evaluation

General Approach

Use a test coverage metric for
* Building test suites that

* Cover all significant behaviours of a
deep neural network

Not a proof of correctness but
evidence towards correctness!

DeepXplore: Automated Whitebox Testing
of Deep Learning Systems

Kexin Pe

ABSTRACT

Deep learning (DL) systems are increasingly
safety- and security-critical domains includin
cars and malware detection, where the correc
dictability of a system’s behavior for o
of great importance. Existi
on manually labeled data and therefore often {
erroneous behaviors for rare inpus.

We design. implement, and evaluate DeepX
whitebox framework foe systematically testing
systems. First, we introduce neuron coverage
cally measuring the parts of a DL system exe
inputs. Next, we leverage multiple DL system
functionality a5 cross-=
checking. Finally, we demonstrate how findi
DL systems that both trigger many differential
achieve high neuron coverage can be represel
optimization problem and solved efficiently u

wsed search techaiques.

DeepXplore efficiently finds thousands of
ner case behaviors (e.g.. self-driving cars crash
rails and malware masquerading as benign soft
of-the-art DL models with thousands of neur¢
five popular datasets including ImageNet and
challenge data. For all tested DL mode

ferencing oracles to

DeepXplore generated one test input demonstr
behavior within one second while running only

ity laptop. We further show that the test inputs
DeepXplore can also be used o retrain the cort
model to improve the models sccuracy by up

personl or clssroom use
made or distrbted for prots
ull ctation on the firs page. Copyright
ACM must be hosored,

this osice amd
of this work owned by others
ot e epublish, 1o por
redist ccifc permission .
Perimsons foom permisions Sacmry

SOSP 17, Ocober 2% 2017, Shanghai, China

To copy otherwise. o

requires price

© 2017 Astaon o Compuing Macine
ACM ISBN 478-1.450 ¥110... 81500
ot ceg/10. 1 14S/31 32747 3132748

. Yinzhi Cao’,

2

59v2 [¢s.SE] 20 Mar

708.08559y

arXiv

Junfeng Yang*. Suman Jas

‘olumbia University, Lehigh University

DeepTest: Automated Testing of
Deep-Neural-Network-driven Autonomous Cars

Yuchi Tian
University of Virginia
yuchi@virginia edu

Suman Jana
Columbia University
suman@cs columbia.edu

ABSTRACT

Recent advances i Deep Nearal Networks (DNNs) have Iod to the
J.\A.‘»m‘m.a DNN-driven autanomous cars that, using sensors
ke camera, LIDAR.

ing California, Texas. and New York have passed new legisl
4o fast Ak the peoces o et snd deploymentof sntoncemous
vehicles an their roads

However. despite their spectacular peogress, DNNs, just like
traditional software. often demonstrate incorrect or unexpected
corner-case behaviors that can lead to potentially fatal collisions.
Several such real-world accidents mvolving autonomous cars have
already happened including one which resulted in a fatalty. Mast
existing testing techniques for DNN-dri
cpendcot o the manal callection of st dat uier diffrent
driving conditions which become prohibitively expensive as the

are heavily

‘number of test conditions increases.

n this paper, we design, implement. and evaluate DecpTest. a
systemati testing tool for automatically deteeting erroneous be
haviors of DNN-driven vehicles that can potentially lead to fatal
crashes. First, our tool is designed to sutomatically generated test
driving conditions like ruin,
fog, lighting conditions ete. DecpTest systematically explore differ
ent parts of the DNN logic by generating test inputs that maximize
the numbers of activated neurons. DecpTest found thousands of

erroncous behaviars under different realistic driving conditions
(e.5. bluring, rain, fog, etc) many of which lead to poteatially fatal

three tap performing DNNs in the Udacity self-driving
car challenge.

crashes

CCS CONCEPTS

- Software and its engineering — Software testing and de
£ - Security and privacy — Software and application s

curity, » Computing methodologies — Newal nefworks

Kexin Pei
Columbia University
kpes@cs columbia.edu

Baishakhi Ray
University of Virginia
rayb@virginia.cdu
KEYWORDS
decp kearning, testing, self-driving cars, decp neural networks, au
tonomons vehicle, neuron coverage
ACM Reference For

o Pu, Samnan ., sl B By, 2018 Do
ing,of Deep-Neural Network.driven Astonoeseus Caes. In

anh Jntermational Confer s
othenburg, Swwder. ACM, N
idckang/ 1011453

1 INTRODUCTION
ificant progress in Machine Learning (ML) techniques like
Deep Neural Netwarks (DNNs) over the last decade has enabled
o sty I ML i M i
Tesla, GM, Fe

BAIW. and Waymo/Google are buiding and actively testin
cars. Recent results shaw that sutonomous cars have become very
lions of miles without any

testing and deployment of autonomous vehicle:

Horweves, despte th temendouspeogrea ot bk tadiiona
software, DNN-based software, inclading the ones used for aur
tonamus devving. aften demsonsirate incorrect unexpected corecr
case behaviaes that can lead to dangerous consequences like a fatal
collision. Several such real-world cases have already been reported
(see Table 1). As Table 1 clearly shows, such crashes aften happen
under rare previously unseen corner cases. For example, the fatal
Tesla crash resulted from a failure to detect 3 white truck against
the bright sky. The existing mechanismas for detecting such erro-
neaus behaviars depend heavily on manual collection of labeled
test data or ad hoc. anguided simulation [11, 20] and therefore miss
Bumerous comer cases. Since these cars adapt behaviar
4 cnvironment as measured by diffcrent sensars (e
Infrared obstacke detector. etc), the space of possible ing
tresmely lasge Thus, unguided simulations aee bighly nblely

ad many erroncous behaviors

At 2 conceptual level these errancous comer-case behavioes

s to logic bugs in traditional
¢ detection and patching cycl in tra-
nal software developmens, the crroneous behavioes of DNN,
cace detected, can be fixed by adding the error-inducing imputs to
the training data set and also by possibly changing the model strac
ture parameters. However, this is a challenging proble. as noted
by large software compunics kike Google and Tesla that have alzeady
deployed machine learming techaigucs in several peoduction-seale

i DNN-based software are anal

Current DNN Test Coverage Metrics

DeepXplore: Automated Whitebox Testing
of Deep Learning Systems

ABSTRACT

Deep learning (DL) systems are increasingly deployed in

dictability of a sy
of great importa

systems. First, wi
cally measuring {
inpats. Next, we|
functionality as ¢
checking. Finally
DL systems that £
achieve high new
optimization prol
based search tech

rails and malware
of-the-art DL mo
five popalar data
driving challenge
DeepXplore gene
behavior within o1
ity laptop. We fut
DeepXplore can 1
model to improve

© 2017 Assexiation &
ACM ISBN 9781451
hisps i ceg/10.114

—

*Columbia University, ' Lehigh University

CCS CONCEPTS

Kexin Pei*, Yinzhi Cao’, Junfeng Yang*, Suman Jana*

+ Computing methodologies — Neural networks: « Com-

Structural Coverage Criteria for Neural Networks Could Be Misleading

Zenan L, Xiaoxing Ma, Chang Xu and Chun Cao
State Key Laboraiory of Novel Sofiware Technology, Nanjing University, Nanjing University, Nanjing, China
lizenani995@ foxmail.com. {xun, changxe, cacchun}@nju.cdu.cn

Abstraci—There is a dramatically inereasing interest in the
quality assurance for DNN-based systems in the software
cnsinering commmurity. An cerging bot lopi i his dirction
s structural coverage crilera for Lstng neural networks,
which are inspired by coverage metri in conventional
i In this short paper.
could be misleading because of the fundamental differences
berween neural networks sad huskas wriien Our
preliminary exploration shows that (1) adversarial e

testing are more Tkl doe 1 e adversas-orieted sareh
but ot the real “high”

Keywords-Software Testing, Neural Networks, Caverage

L. INTRODUCTION

Deep Neural Networks (DNNs) have demonsirated amaz-
ing performance in various tasks such as image classifica-
tion and speech recognition [1]. They are also increasingly
adopted in safety-critical application scenarios such zs med-
ical diagnostics [2] and self-driven cars [3). Therefore how
0 assess and improve the reliability of DNN-based sysiems
becomes a highly relevant problem and has attracted a lot
of research [4].

A particular issue is the testing of trained neural network
models. In this paper we focus on DNN-based classifiers.
Different from the testing phase included in the training
process that gauges the generalization of a model, here
a neural network is treaied as a piece of software and
intentionally exercised to find potential defects when used
in the real world. Depending on the application scenario, the
defects hunted for can be

« Narural inpurs that will be misclassified by the neural

network. Natural inputs are those appearing in the real
warld. and assumably disiribute similarly as the fraining
data of the network

« Adversarial inputs that can fool the network. An adver-

sarial inps rsarial example (3], is fabricated by,
... adding a well-designed perturbation to a genuine
example [6]

For applications used in a friendly environment, one only
needs 10 consider misclassified natural inputs. However in
a hostile environment the threats of adversarial inputs must
be taken inio account. As discussed laier, the distinction
between natural and adversarial inputs is important

It is challenging 1o test a neural nerwork sufficiently.
Different from human written programs with unambiguous
intended behavior on any legitimate input, neural networks
are usually trained to provide only statistical guarantees such
as aceuracy and loss under the intangible LLD. assump-
tion (7). In addition, the logical interpretation of DNNs™
behavior on individual examples is still an open problem (5]

Recenily, inspired by the white-box tesiing of conven-
tional software, a variety of structural coverage eritcria has
been proposed 1o gauge the defect-finding capability (o
fault-detection capability) of DNN testing [8]. In addition to
‘measuring the sufficiency of fesiing. they arc also intended (o
guide the automated generation of test inputs and to improve
DNN performance [9]. These researches are very inspiring,
and some of them have been recognized with best paper
awards on major academic conferences [9]. [10]

However, our preliminary exploration shows that these
proposed structural coverage criteria c ading if
used without understanding their underlying principles and
application contexts. This is because

1) The distribution of defects in human-uritien programs

is fundamentally different from that in DNNs. As
shown later, adversarial examples are pervasively dis-
tribuied over the finely divided space defined by given
coverage criteria. On the other hand, the distribution of
available natural inputs are very sparse, not to mention
the rare misclassified naiural inputs. That is o say.
these structural coverage criteria could be to0 coarse
for adversarial inputs and at the same time 0o fine for
misclassified natural inputs.

2) Previously reported fauli-detection “capabilities™ of

high coverage testing are more likely due to the
adversary-oriented search but not the structural cov-
erage. Our exploration also shows that the number of
adversarial examples found by coverage-oriented input
generation can be casily manipulated.
Our initial experiments with natural inputs denied
the correlation between the number of misclassified
inputs in a test set and its structural coverage on the
associated neural networks.

In the rest of this paper, we first briefly inroduce
structural coverage criteria for DNNs recently proposed by
different authors. Afier thai we present our analyses and
experiments supparting the above arguments.

ar 2018

SE] 20 M

DeepTest: Automated Testing of

Deep-Neural-Network-driven Autonomous Cars

Yuchi Tian Kexin Pei
University of Virginia Cohumbia Universit
yuchi@virginia.edu kpeig@cs columbia.edu
Suman Jana Baishakhi Ray
Columbia University University of Virginia
suman@cs cohumbia.edu rayb@virginia.cdu
ABSTRACT KEYWORDS
Recent advances in Degy

development of DNN-&
ke camera, LIDAR. etc.,

ing California, Texas. a
to fast-track the process

708.08559v2 [

rXiv

haviors of DNN-driven

DeepGauge: Multi-Granularity Testing Criteria for Deep
Learning Systems

Lei Ma'*", Felix Juefei-Xu®, Fuyuan Zhang’, Jiyuan Sun®, Minhui Xue*, Bo Li*
Chunyang Chen®, Ting Su”, Li Li®, Yang Liv’, Jianjun Zhao®, and Yadong Wang'
Harbin Institute of Technology, China *Carnegie Mellon University, USA *Nanyang Technological University, Singapore
*Kyushu University, Japan *University of Hlinois at Urbana-Champaign, USA *Monash University, Aust

b 3d ACMAEEE A
mer 37, 2015, Moy

ABSTRACT
Desple oL rdiven g par
digm the internal

(e.5. blurring, rain, fog.1
crashes in three top pet
car challenge.

CCS CONCEPTS

« Software and its en
bugging - Security an
curity. - Computing m

arXiv:1803.07519v4 [cs.SE] 14 Aug 2018

set of traiming data. We have seen wide adop-
tion of DL i iy alty-ciial scemaricn However, a plebra
that oL

septes
Fanee AT, o Yok Y. 50 12 P B s g 1y
zany

1 INTROIJUCT[UN

1 soms. Currently,

B P — d

gad-
equacy of a DL system is usally measured by the accuracy of
test data. Considering the limitation of aceessible high quality test
data, goud accuracy performance on test data cen hardly provide
confidence to the testing adequacy and generality of DL systems.
Unlike traditional sofiware systems that have clear and contral-
Lable logic and functionality, the lack of interpretability in a DL

applications, ez spe g [2]mdma]dup\mn[]?]
g processing |11, and roboties [55], A deeg neural aetwork

(ONN), 25 a type of decp systerns, & the key driving force
behind recent success. Howsver, DNN-based software. systems,
such 13 autonomous driving, ofien exhibit erronsons or:

drivi behavioes
that lesd to ftal consequences. For example, several accilents [21]
buave been reported dus to astomormens vebicle's faikare to handle

system mal analysia azd which
okd deployrmest.

3
One of the trending research areas is to investigate the cause of

we p B 2
fwBLsyslzms,vhl:hlmsulendﬂmaamulu mmdpqmml
of the testbed. The in-depth evalustion of our proposcd testing
criteia i deaoostrted o e well ke daasets, e DL sys-

by [
examples for image- and video-based DL systems. Such carchully
e pivel level pertusbations, imperceptble to human oves,
can o wutpt compltely

teme, and with four

against DL The r light on dversarial attacks o the DL sysi research

the constraction of more generic and robust TIL systers. as b dedined bo bling p g atackers 6,25, 5,60, A

CCS CONCEPTS adversarial attacks are in dire need Various tech: llify
aad o b robust DL syst

« Saftware and its engineering —+ Software testing and de-
bugging - Theory of computation — Adversarial learming:

KEYWORDS

Deep learning, Software testing, Deep neural nebworks, Testing
criteria

ACM Reference Format

Lei Ma, Felix Juciei X, Fuytuan Zhang, Jayusn S, M intusi Xise, Bo L Chen-
yang Chen, Ting S, L i, Yang Lin, ianjon Zhae, and Yadomg Wasg, 2015
DeepCauge: Mol Granlarity Testing Critea fr Decp Leateing Sysless,

o i pecemt s (18, 25, 41, 45,45, 51,561, Together, sscmsch
0 both realms forms a virtuous circle and blazes a trai for better
i, of berw . build mare: generic and robust DL systerns.
Honveves seha is sill acking i spsemaicway of ganging the
testing s DL systerms. C
ot High acesrcy of D oyt o enting ereron, e
which we show several caveats ax follows. First, measuring the
softvare quality From DL cutput alone is superficial in the sense

md neerk behavios is not tonched upo, We agr that i ould
e ndicor of DI Jity, but it i far

Tase s

e = h.rd‘:\Dlw@ulmﬂ:éy}mvﬂym}uwmpmmmvmﬂ:t:n

e Ta i mnmﬂymt}u&.drsysmxutmwt.!n\ﬂm and achieving

fr o AT ADLmodel
T S = T R 1o Sy N, e hversaialattacks, but

i Rogura promlsis fom permssicus@acT o il rom unseen sttacks. This s becasse such s eriterion bused only

e D s s 13 e

e Lo T nsls[w(mm\}y(mwﬂdDLsyﬂ—umkdcﬂayedmﬂmmil—

o g A A RERG where newly evolved adversarial attacks are

[es.LG] 18 Mar2018

3.04792v3

180

arXiv

:1805.00089v2 [cs.LG] 4 Aug 2018

Testing Deep Neural Networks

“Youcheng Sun!,

iaowei Husng?, and Daniel Kroening!

¥ Degartme st of Compuer Science, University of Onford, UK.
? Depanment of Compuer Science. University of Liverpool, UK.

ABSITaCL. Deep neural networks (DNNs) have a wide range of applications,

Concolic Testing for Deep Neural Networks *

Youcheng Sun', Min Wi!, Wenjic Rusn!, Xisowei Huang?, Marta
Kwistkowska', and Dasiel Kroening’

"University of Oxford, UK
{youcheng. suns min.wu; wenjie.rwan)fca.ox.ac.uk
{marta.kwistkowska; daniel.krosning}fes.ox.ac.uk
ZUniversity of Liverpool, UK

xiacwei.huanglliverposl.ac. uk

Abstract
Coneslic testing combines progme exeoution nad symbolic aalysia o
explare the execution paths of & software program. This paj
first coneolic testing approach for Teep Nearnl Networks {DNNs). Mare
we formalise covernge criterin for DNNa that have been studied
in the licernture, and then develop a coberest method for performing
conealic testing to imcrense test eoverage. Our otal resulta show
the effectivenesa of the concolic testing approach in both achieving high
coverage nad finding adversarial example:

1 Introduction

Deep neursl networks (DNNs) have been instrumental in solving a range of hard
peoblems i AL e, the ancient game of Go, image classifieation, and patural
language processing. As a result, many potential applications are envisaged
However, major concerns have been raised about the suitability of this technique
for safety- and security-critical systems, where faulty behaviour carries the risk
of endangering human lives or financial damage. To address these coneerns, 1
(safety or seeurity) m'ucal system comprising DNN-kased eomponents needs to
be validkited 1

The software mdnmr) relias on testing 25 3 primary means to provide stake-
holders with information about the quality of the software product or serviee
under test. [T]. So far, there have been only fow atmmph m test DINNs systemat-
ically ‘These are cither based on conerete exeeut £, Momte Carlo tree
search [or gradient-based! search [, mpubobc et i onebination

and Raan are sapportod by EPSRC Mabile Asionceny Pregrmm Cram
{85 Mot e 1y W s scpporad by ths CHC PAC Orford Sebolas

Current DNN Test Coverage Metrics

* High research interest
* White-box testing
* Focused on single neurons

Current DNN Test Coverage Metrics

2 — () t
nej

low,: lowest output value during training
high,,: highest output value during training

Current DNN Test Coverage Metrics

low, high,
0.2
k-multisection Neuron Coverage _
k=6

Structure

Problem
Current DNN Test Coverage Metrics
a-Bin Coverage

B W N

Practical Evaluation

Yet another metric?

Conv 1

Conv 2
Conv 3
Conv 4
Conv 5

FC1

FC2
Output

Less then 1 %o of total coverage metric!

0 q=—=m

50000 —
100000 —
150000 =
200000 —

Number of neurons per layer in AlexNet

250000 -

Not all Neurons are created equal

Current metrics put equal emphasis on each neuron, but:

Is a first layer neuron as important as an output layer
neuron?

Make use of domain specific knowledge concerning layer architectures!

Neural Coverage

k-multisection Neuron Coverage

Neuron Boundary Coverage

Strong Neuron Activation Cov.

Bin Coverage

lowy, high,

bins dependend on layer

a-Bin Coverage

Equally distribute so-called bins throughout layers.
Each layer contributes approximate same share to coverage metric.

lowy, high,,

k=6

bins dependend on layer

a-Bin Coverage

Let L; denote the number of neurons in Layer i.
Let L, 4, be the maximum of all ;. Let a € (0, e=].

The minimum number of bins per layer for a-Bin Coverage is defined

das. .
Bins = L4, - O

The number of bins per neuron in Layer i is defined as:
Bins|

k; =
l Ll

Structure

Problem
Current DNN Test Coverage Metrics
a-Bin Coverage

BN e

Practical Evaluation

Practical Evaluation

The main questions:

1. Can a-Bin Coverage be implemented in a practically feasible way?
2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?

Practical Evaluation

The main questions:

2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?

Practically feasible?

Test setup (1/2):

* 10 layer DNN inspired by Nvidea End to
End approach using RelLu

* Trained on 45,500 publicly available
labeled images

* Implemented in Python using Tensorflow

Practically feasible?

Test setup (2/2):

* Created greedy optimizer that uses image transforms to optimize
coverage metric

 Compare behaviour of
a-Bin Coverage & Neuron Coverage

Performance

Greed ht f -
reedy search transforms Add image to test

: suite
Determine low,, Select random Add transforms to

and high,, image image Evaluate coverage

Iterate on

transforms

Determining low,, and high,, only needs to be done once and can be
approximated through random sampling.

Calculating a-Bin Coverage incrementally:
constant time (dependend on network size).

Greedy search: Transforms

Transformations: Translation, Brightness, Contrast, Blur

Practical Evaluation

The main questions:

1. Can a-Bin Coverage be implemented in a practically feasible way?
2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?

Coverage

1.0

0.8

0.6

0.4

0.2

0.0

Greedy Optimization: Bin Coverage

lowy, high,,

Bin Coverage

Neuron Coverage
k—multisection Coverage
Neuron Boundary Coverage

Strong Neuron Activation Coverage

0 50

[
100

test images

150

200

Coverage

Greedy Optimization: Bin Coverage

RelLu Activations:

Neuron Boundary Coverage is —
practically limited at 50%

Bin Coverage

Neuron Coverage

k—multisection Coverage

Neuron Boundary Coverage
Strong Neuron Activation Coverage

0.2
I
A
BERN

0.0

0 50 100 150 200

test images

Coverage

1.0

0.8

0.6

0.4

0.2

0.0

Greedy Optimization: Bin Coverage

77 Obtain 74% 0.05-Bin Coverage
with ~220 images

D U JU

test images

— _#1n Coverage
Neuron Coverage
k—multisection Coverage

— Neuron Boundary Coverage

—= Strong Neuron Activation Coverage

150

200

coverage

1.0

0.8

0.6

0.4

0.2

0.0

Greedy Optimization: Neuron Coverage

Bin Coverage

Neuron Coverage

k—-multisection Coverage

Neuron Boundary Coverage
Strong Neuron Activation Coverage

lowy, high,,

20

30

test images

40

50

60

Neuron Coverage Optimization: Layer View

e]
co
e
©
o o |
o
o
)
3 = = Conv 1 Coveragd
o = _| = = Conv 2 Coveragsg
© Conv 3 Coveragd
Conv 4 Coverage
Conv 5 Coverage
o~ FC1 Coverage
= —— FC2 Coverage
FC3 Coverage
FC4 Coverage
Output Coverage
o
S
[I | | | I [
0 10 20 30 40 50 60

test images

Neuron Coverage Optimization: Layer View

Q]
m —_
o
©
o o |
o))
o
]
B = = Conv 1 Coverags
o g | = = (Conv 2 Coverag¢g
c = = Conv3C
Output layer is ,fully tested” for Z 2 Conv 4 Coverage
c 2 0 Conv5C
. an image with a steering angle Fot Coverage |
s o —— FC2 Coverage
>11.5 —— FC3 Coverage
- FC4 Coverage
Output Coverage|
o
S -
I I | | | I I
0 10 20 30 40 50 60

test images

Bin Coverage Optimization: Layer View

e

o _

o

= Conv 5 Coverag¢g

© _] — FC1 Coverage
g © FC2 Coverage
o FC3 Coverage
Q FC4 Coverage
3 < | Output Coverage

(]

N

(a»]

S

(@]

I [I I |
0 50 100 150 200

test images

Bin Coverage Optimization Layer View

o |
—
@ Output layer is , fully tested”
after testing 3656 images which
correspond to 0.2° steps in -360° — Conv 5 Coveragg
o © o —— FC1 Coverage
> © to +360 —— FC2 Coverage
@ FC4 Coverage
3 < | Output Coverage
o
(o]
N
o |
o

I [I I |
0 50 100 150 200

test images

Practical Evaluation

The main questions:

1. Can a-Bin Coverage be implemented in a practically feasible way?
2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?

Deviation from target labels in test suite

Coverage metric > 20 deg total images ratio

Neuron Coverage 2 100 2.0%
Bin Coverage 24 247 9.7%
Transformed Output: Target:

Image 234° 160°

Conclusions

* Current DNN test coverage metrics deal all neurons equally

 This introduces an intrinsic focus on the neurons of low layers in
modern architectures

* a-Bin Coverage is a practically feasible approach to equally distribute
a test coverage metric over all layers

* First evidence shows that a-Bin Coverage can be used for finding
erroneous behaviours and creating test suites automatically

Let’s discuss!

Some points to consider:

* Only one model in evaluation

* Limited number of test runs

* Only one domain

* Why greedy search?

* What is this strange a value? Why do we need it?
* How about classification tasks?

Greedy search

Stack transformations on randomly selected images to optimize
coverage metric.

Add an image to test suite if it significantly increases coverage metric

Transformations: Translation, Brightness, Contrast, Blur

