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Does it work?
Does it really work?
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Steer right!
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Go straight!
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Did | test it enough?
Did | test it in the right
way?
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General Approach

Use a test coverage metric for
* Building test suites that

* Cover all significant behaviours of a
deep neural network

Not a proof of correctness but
evidence towards correctness!

DeepXplore: Automated Whitebox Testing
of Deep Learning Systems
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ABSTRACT

Deep learning (DL) systems are increasingly
safety- and security-critical domains includin
cars and malware detection, where the correc
dictability of a system’s behavior for o
of great importance. Existi
on manually labeled data and therefore often {
erroneous behaviors for rare inpus.

We design. implement, and evaluate DeepX
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ABSTRACT

Recent advances i Deep Nearal Networks (DNNs) have Iod to the
J.\A.‘»m‘m.a DNN-driven autanomous cars that, using sensors
ke camera, LIDAR.

ing California, Texas. and New York have passed new legisl
4o fast Ak the peoces o et snd deploymentof sntoncemous
vehicles an their roads

However. despite their spectacular peogress, DNNs, just like
traditional software. often demonstrate incorrect or unexpected
corner-case behaviors that can lead to potentially fatal collisions.
Several such real-world accidents mvolving autonomous cars have
already happened including one which resulted in a fatalty. Mast
existing testing techniques for DNN-dri
cpendcot o the manal callection of st dat uier diffrent
driving conditions which become prohibitively expensive as the

are heavily

‘number of test conditions increases.

n this paper, we design, implement. and evaluate DecpTest. a
systemati testing tool for automatically deteeting erroneous be
haviors of DNN-driven vehicles that can potentially lead to fatal
crashes. First, our tool is designed to sutomatically generated test
driving conditions like ruin,
fog, lighting conditions ete. DecpTest systematically explore differ
ent parts of the DNN logic by generating test inputs that maximize
the numbers of activated neurons. DecpTest found thousands of

erroncous behaviars under different realistic driving conditions
(e.5. bluring, rain, fog, etc) many of which lead to poteatially fatal

three tap performing DNNs in the Udacity self-driving
car challenge.

crashes
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1 INTRODUCTION
ificant progress in Machine Learning (ML) techniques like
Deep Neural Netwarks (DNNs) over the last decade has enabled
o sty I ML i M i
Tesla, GM, Fe

BAIW. and Waymo/Google are buiding and actively testin
cars. Recent results shaw that sutonomous cars have become very
lions of miles without any

testing and deployment of autonomous vehicle:

Horweves, despte th temendouspeogrea ot bk tadiiona
software, DNN-based software, inclading the ones used for aur
tonamus devving. aften demsonsirate incorrect unexpected corecr
case behaviaes that can lead to dangerous consequences like a fatal
collision. Several such real-world cases have already been reported
(see Table 1). As Table 1 clearly shows, such crashes aften happen
under rare previously unseen corner cases. For example, the fatal
Tesla crash resulted from a failure to detect 3 white truck against
the bright sky. The existing mechanismas for detecting such erro-
neaus behaviars depend heavily on manual collection of labeled
test data or ad hoc. anguided simulation [11, 20] and therefore miss
Bumerous comer cases. Since these cars adapt behaviar
4 cnvironment as measured by diffcrent sensars (e
Infrared obstacke detector. etc), the space of possible ing
tresmely lasge Thus, unguided simulations aee bighly nblely

ad many erroncous behaviors

At 2 conceptual level these errancous comer-case behavioes

s to logic bugs in traditional
¢ detection and patching cycl in tra-
nal software developmens, the crroneous behavioes of DNN,
cace detected, can be fixed by adding the error-inducing imputs to
the training data set and also by possibly changing the model strac
ture parameters. However, this is a challenging proble. as noted
by large software compunics kike Google and Tesla that have alzeady
deployed machine learming techaigucs in several peoduction-seale

i DNN-based software are anal




Current DNN Test Coverage Metrics
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Abstraci—There is a dramatically inereasing interest in the
quality assurance for DNN-based systems in the software
cnsinering commmurity. An cerging bot lopi i his dirction
s structural coverage crilera for Lstng neural networks,
which are inspired by coverage metri in conventional
i In this short paper.
could be misleading because of the fundamental differences
berween neural networks sad huskas wriien Our
preliminary exploration shows that (1) adversarial e

testing are more Tkl doe 1 e adversas-orieted sareh
but ot the real “high”
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L. INTRODUCTION

Deep Neural Networks (DNNs) have demonsirated amaz-
ing performance in various tasks such as image classifica-
tion and speech recognition [1]. They are also increasingly
adopted in safety-critical application scenarios such zs med-
ical diagnostics [2] and self-driven cars [3). Therefore how
0 assess and improve the reliability of DNN-based sysiems
becomes a highly relevant problem and has attracted a lot
of research [4].

A particular issue is the testing of trained neural network
models. In this paper we focus on DNN-based classifiers.
Different from the testing phase included in the training
process that gauges the generalization of a model, here
a neural network is treaied as a piece of software and
intentionally exercised to find potential defects when used
in the real world. Depending on the application scenario, the
defects hunted for can be

« Narural inpurs that will be misclassified by the neural

network. Natural inputs are those appearing in the real
warld. and assumably disiribute similarly as the fraining
data of the network

« Adversarial inputs that can fool the network. An adver-

sarial inps rsarial example (3], is fabricated by,
... adding a well-designed perturbation to a genuine
example [6]

For applications used in a friendly environment, one only
needs 10 consider misclassified natural inputs. However in
a hostile environment the threats of adversarial inputs must
be taken inio account. As discussed laier, the distinction
between natural and adversarial inputs is important

It is challenging 1o test a neural nerwork sufficiently.
Different from human written programs with unambiguous
intended behavior on any legitimate input, neural networks
are usually trained to provide only statistical guarantees such
as aceuracy and loss under the intangible LLD. assump-
tion (7). In addition, the logical interpretation of DNNs™
behavior on individual examples is still an open problem (5]

Recenily, inspired by the white-box tesiing of conven-
tional software, a variety of structural coverage eritcria has
been proposed 1o gauge the defect-finding capability (o
fault-detection capability) of DNN testing [8]. In addition to
‘measuring the sufficiency of fesiing. they arc also intended (o
guide the automated generation of test inputs and to improve
DNN performance [9]. These researches are very inspiring,
and some of them have been recognized with best paper
awards on major academic conferences [9]. [10]

However, our preliminary exploration shows that these
proposed structural coverage criteria c ading if
used without understanding their underlying principles and
application contexts. This is because

1) The distribution of defects in human-uritien programs

is fundamentally different from that in DNNs. As
shown later, adversarial examples are pervasively dis-
tribuied over the finely divided space defined by given
coverage criteria. On the other hand, the distribution of
available natural inputs are very sparse, not to mention
the rare misclassified naiural inputs. That is o say.
these structural coverage criteria could be to0 coarse
for adversarial inputs and at the same time 0o fine for
misclassified natural inputs.

2) Previously reported fauli-detection “capabilities™ of

high coverage testing are more likely due to the
adversary-oriented search but not the structural cov-
erage. Our exploration also shows that the number of
adversarial examples found by coverage-oriented input
generation can be casily manipulated.
Our initial experiments with natural inputs denied
the correlation between the number of misclassified
inputs in a test set and its structural coverage on the
associated neural networks.

In the rest of this paper, we first briefly inroduce
structural coverage criteria for DNNs recently proposed by
different authors. Afier thai we present our analyses and
experiments supparting the above arguments.
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equacy of a DL system is usally measured by the accuracy of
test data. Considering the limitation of aceessible high quality test
data, goud accuracy performance on test data cen hardly provide
confidence to the testing adequacy and generality of DL systems.
Unlike traditional sofiware systems that have clear and contral-
Lable logic and functionality, the lack of interpretability in a DL
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ABSITaCL. Deep neural networks (DNNs) have a wide range of applications,
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Abstract
Coneslic testing combines progme exeoution nad symbolic aalysia o
explare the execution paths of & software program. This paj
first coneolic testing approach for Teep Nearnl Networks {DNNs). Mare
we formalise covernge criterin for DNNa that have been studied
in the licernture, and then develop a coberest method for performing
conealic testing to imcrense test eoverage. Our otal resulta show
the effectivenesa of the concolic testing approach in both achieving high
coverage nad finding adversarial example:

1 Introduction

Deep neursl networks (DNNs) have been instrumental in solving a range of hard
peoblems i AL e, the ancient game of Go, image classifieation, and patural
language processing. As a result, many potential applications are envisaged
However, major concerns have been raised about the suitability of this technique
for safety- and security-critical systems, where faulty behaviour carries the risk
of endangering human lives or financial damage. To address these coneerns, 1
(safety or seeurity) m'ucal system comprising DNN-kased eomponents needs to
be validkited 1

The software mdnmr) relias on testing 25 3 primary means to provide stake-
holders with information about the quality of the software product or serviee
under test. [T]. So far, there have been only fow atmmph m test DINNs systemat-
ically ‘These are cither based on conerete exeeut £, Momte Carlo tree
search [ or gradient-based! search [, mpubobc et i onebination

and Raan are sapportod by EPSRC Mabile Asionceny Pregrmm Cram
{85 Mot e 1y W s scpporad by ths CHC PAC Orford Sebolas



Current DNN Test Coverage Metrics

* High research interest
* White-box testing
* Focused on single neurons



Current DNN Test Coverage Metrics

2 — () t
nej

low,: lowest output value during training
high,,: highest output value during training



Current DNN Test Coverage Metrics

low, high,
0.2
k-multisection Neuron Coverage _
k=6
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Yet another metric?

Conv 1

Conv 2
Conv 3
Conv 4
Conv 5

FC1

FC2
Output

Less then 1 %o of total coverage metric!

0 q=—=m

50000 —
100000 —
150000 =
200000 —

Number of neurons per layer in AlexNet

250000 -



Not all Neurons are created equal

Current metrics put equal emphasis on each neuron, but:

Is a first layer neuron as important as an output layer
neuron?

Make use of domain specific knowledge concerning layer architectures!



Neural Coverage

k-multisection Neuron Coverage

Neuron Boundary Coverage

Strong Neuron Activation Cov.

Bin Coverage

lowy, high,

# bins dependend on layer



a-Bin Coverage

Equally distribute so-called bins throughout layers.
Each layer contributes approximate same share to coverage metric.

lowy, high,,

k=6

# bins dependend on layer



a-Bin Coverage

Let L; denote the number of neurons in Layer i.
Let L, 4, be the maximum of all ;. Let a € (0, e=].

The minimum number of bins per layer for a-Bin Coverage is defined

das. .
Bins = L4, - O

The number of bins per neuron in Layer i is defined as:
Bins|

k; =
l Ll
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Practical Evaluation

The main questions:

1. Can a-Bin Coverage be implemented in a practically feasible way?
2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?



Practical Evaluation

The main questions:

2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?



Practically feasible?

Test setup (1/2):

* 10 layer DNN inspired by Nvidea End to
End approach using RelLu

* Trained on 45,500 publicly available
labeled images

* Implemented in Python using Tensorflow




Practically feasible?

Test setup (2/2):

* Created greedy optimizer that uses image transforms to optimize
coverage metric

 Compare behaviour of
a-Bin Coverage & Neuron Coverage



Performance

Greed ht f -
reedy search transforms Add image to test

: suite
Determine low,, Select random Add transforms to

and high,, image image Evaluate coverage

Iterate on

transforms

Determining low,, and high,, only needs to be done once and can be
approximated through random sampling.

Calculating a-Bin Coverage incrementally:
constant time (dependend on network size).



Greedy search: Transforms

Transformations: Translation, Brightness, Contrast, Blur




Practical Evaluation

The main questions:

1. Can a-Bin Coverage be implemented in a practically feasible way?
2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?



Coverage
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Greedy Optimization: Bin Coverage

lowy, high,,

Bin Coverage

Neuron Coverage
k—multisection Coverage
Neuron Boundary Coverage

Strong Neuron Activation Coverage

0 50

[
100

test images

150

200



Coverage

Greedy Optimization: Bin Coverage

RelLu Activations:

Neuron Boundary Coverage is —
practically limited at 50%

Bin Coverage

Neuron Coverage

k—multisection Coverage

Neuron Boundary Coverage
Strong Neuron Activation Coverage

0.2
I
A
BERN

0.0

0 50 100 150 200

test images



Coverage
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Greedy Optimization: Bin Coverage

77 Obtain 74% 0.05-Bin Coverage
with ~220 images

D U JU

test images

— _#1n Coverage
Neuron Coverage
k—multisection Coverage

— Neuron Boundary Coverage

—= Strong Neuron Activation Coverage

150

200




coverage

1.0

0.8

0.6

0.4

0.2

0.0

Greedy Optimization: Neuron Coverage

Bin Coverage

Neuron Coverage

k—-multisection Coverage

Neuron Boundary Coverage
Strong Neuron Activation Coverage

lowy, high,,
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# test images
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Neuron Coverage Optimization: Layer View
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Neuron Coverage Optimization: Layer View
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- FC4 Coverage
Output Coverage|
o
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Bin Coverage Optimization: Layer View
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Bin Coverage Optimization Layer View

o |
—
@ Output layer is , fully tested”
after testing 3656 images which
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Practical Evaluation

The main questions:

1. Can a-Bin Coverage be implemented in a practically feasible way?
2. Can a-Bin Coverage be optimized with a greedy search approach?
3. How does a-Bin Coverage relate to other DNN coverage metrics?
4. Can a-Bin Coverage be used to find wrong behaviours?



Deviation from target labels in test suite

Coverage metric > 20 deg total images ratio

Neuron Coverage 2 100 2.0%
Bin Coverage 24 247 9.7%
Transformed Output: Target:

Image 234° 160°



Conclusions

* Current DNN test coverage metrics deal all neurons equally

 This introduces an intrinsic focus on the neurons of low layers in
modern architectures

* a-Bin Coverage is a practically feasible approach to equally distribute
a test coverage metric over all layers

* First evidence shows that a-Bin Coverage can be used for finding
erroneous behaviours and creating test suites automatically



Let’s discuss!

Some points to consider:

* Only one model in evaluation

* Limited number of test runs

* Only one domain

* Why greedy search?

* What is this strange a value? Why do we need it?
* How about classification tasks?



Greedy search

Stack transformations on randomly selected images to optimize
coverage metric.

Add an image to test suite if it significantly increases coverage metric

Transformations: Translation, Brightness, Contrast, Blur




