
Not all Neurons are created equal:
Towards a feature level Deep Neural Network Test Coverage

Metric
Nils Wenzler

nils.wenzler@mail.utoronto.ca

Figure 1: A set of images optimizing Bin Coverage of a deep neural network

ABSTRACT
Within the last decade, deep neural networks (DNNs) have enabled
computer scientists to solve tasks at an accuracy that earlier was
only dreamt of. Huge advances in computer vision through DNNs
power the first autonomous driving systems that nowadays are be-
ing tested on public roads. As DNNs enter such highly safety critical
fields, the need for certifying the correctness of the behaviour of
DNNs has risen. Since DNNs encode their decision making process
in a fundamentally different way than regular human written code,
the classical approaches used for testing and certifying correctness
of classical code are not directly applicable to DNNs. Test coverage
is one of these classical approaches to test the correctness of code.
Inspired by this classical approach, researchers have thought of
ways to use novel test coverage metrics that can be used for testing
DNNs and to power automatic test input generation. All of the
so-far proposed metrics try to port an existing classical coverage
metric such as statement coverage, branch coverage and MC/DC
coverage to the domain of DNNs. In this paper a new metric is
proposed and empirically evaluated that is inspired by properties of
modern DNNs. It is compared to existing approaches through this
work and an argumentation is given, as to why such an approach
might be more feasible then the so far used ones.

CCS CONCEPTS
• Software and its engineering → Functionality; • Comput-
ing methodologies → Computer vision problems.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
, ,
© 2018 Copyright held by the owner/author(s).
https://doi.org/

KEYWORDS
neural networks, coverage metrics, automated test generation, bin
coverage

ACM Reference Format:
Nils Wenzler. 2019. Not all Neurons are created equal: Towards a feature
level Deep Neural Network Test Coverage Metric . In Proceedings of . ACM,
New York, NY, USA, 8 pages. https://doi.org/

1 INTRODUCTION
Deep neural networks have entered many segments of every day
life. Insurances, Human Resources, Healthcare and autonomous
driving vehicles, all those industries are affected by huge techno-
logical breakthroughs that are powered by applying deep neural
networks to their corresponding fields of expertise. As those fields
have high potential impacts on the lives of people, it is important
to verify their functionality. We would like to verify and guaran-
tee that e.g. an autonomous driving vehicle is able to detect the
roads, street signs and pedestrians in a reliable matter. In classical
computer science, software engineers have developed a huge range
of processes and approaches to build confidence in the resilience
and reliability of code. Since neural networks do not encode their
logic within classical code but in trained weights and biases of a
network, those classical approaches can not directly be applied to
neural networks. One of the most basic ways of performing classical
software tests is to run tests and compute their coverage. Test cases
consist of an expected behaviour given a certain program execution.
A possible test coverage metric might be how many of the existing
statements of the code were executed at least once when running
a set of test cases. For neural networks one can think of a similar
metric: Given a set of test cases, how many of the available neurons
were activated (had an output value larger than a threshold value)
when executing a set of test inputs. Researchers so far have tried to
port coverage metrics of the classical software engineering space
to neural networks. Although this approach leverages the power
of known concepts of metrics, it prevents the creation of metrics

https://doi.org/
https://doi.org/

, Nils Wenzler

which are based on intrinsic properties of modern neural networks.
In this paper, a new metric is proposed that tries to be not inspired
by the classical approaches and makes use of the very common
availability of layered neural network architectures.

Another issue with the existing approaches is that the coverage
metric is directly depending on the number of neurons. Since neu-
rons are generally not equally distributed over the different layers,
this puts emphasize on the larger layers which often corresponds to
the lower layers. The approach proposed by this paper focusing on
equally distributing the coverage criterion throughout the layers
of the neural network.

2 BACKGROUND
The following subsections will introduce the theoretical founda-
tions needed to follow through the remainder of this work.

2.1 Deep Neural Networks
Deep neural networks (DNNs) are an approach to enable artifi-
cial intelligence through machine learning. In DNNs a hierarchical
structure of interconnected nodes that are organized in layers or
different structures, are trained through training samples to opti-
mize the process of solving a given problem. In a neural network,
the single neurons perform simple calculations.

The capacity to perform complex decisions is a macroscopic
result out of the single simple calculations that the neurons perform.

The simple calculation that a neuron performs consists out of
two steps: First calculating the weighted sum of given input values
and an additional bias term and secondly outputting the result of
applying a non-linear function to this weighted sum term. Except
for the last layer of neurons, the output value of a neuron becomes
the input of one or more following neurons. The output of the last
layer of neurons corresponds to the value(s) that the neural network
calculated. During learning phase, only the weights of the inputs
and their biases are fitted to the goal function. The basic decision
making logic therefore can be considered to lye in these weights
and therefore mostly in the connections between neurons.

Because the relationship between the macroscopic behaviour of a
whole neural network and the function its single neurons compute,
analyzing the correctness of the behaviour of a neural network is
non-trivial.

Besides the trained weights and biases, there is another majorly
important aspect of neural networks that influences how well the
neural network will be able to solve a problem. This property is the
architecture of the network. The architecture of a neural network
describes how many neurons are used and how they are connected.
Although several architectures exist, it has become common to use
layered architectures. In a layered architecture, a single neuron
uses some or all output values of the neurons of the lower layer to
calculate its output value that will serve as another input to the next
higher layer of the neural networks. While the last layer outputs
the final values that the neural network was intended to calculate,
the first value uses the input values of the data set as inputs.

A simplified understanding of layered neural networks is that as
an input is processed through the layers of a neural network, the
features that the neural network extracts to perform its calculation
become more complex [8, 12]. While a first layer might detect

features such as corners, a higher level might detect features such
as the sky, trees or text. The most complex feature that the neural
network “perceives” is the output of the last layer which represents
the neural networks’ answer to the problem task it was given.

2.2 Coverage Testing
The problem space of showing that complex macroscopic software
artifacts comply to the specified requirements is not new Classical
programming uses fundamental and mostly trivial statements to
build bigger software structures that solve complex problems. It
was proven that showing that a general software artifact is correct
is a non-computable problem Therefore, software engineering has
thought of several ways of dealing with said problem. There are
approaches which restrict the degrees of freedom of software which
enable proofing the correctness of the code. Other approaches are
satisfied with giving not proof but evidence that a software artifact
behaves as specified. One such approach is the approach of testing
software with test cases. A test case consists of an input data set to
a program and an expected value that the software should return
according to its specification. If the program returns the expected
value, the test passes and otherwise it fails. This approach allows
a software engineer to sample the problem input space and check
the correctness for those samples.

It is important to have a measure of how well these test cases
cover the problem space. Software engineers have therefore intro-
duced so-called test coverage metrics. The most simple metric is
statement coverage. It evaluates the fraction of all statements in
the code of a software artifact that have been executed at least once
when running the test cases compared to all existing statements
of the code. More complex coverage metrics such as branch cover-
age require the test cases to evaluate every control flow relevant
decision to true and false.

Such test coverage metrics are used in the industry to give evi-
dence that a software was well tested and is therefore considered
to be safe with a high probability [4].

3 RELATEDWORK
Since Pei et al. [9] introduced the basic notion of coverage testing of
deep neural networks with their first metric called neuron coverage,
several follow-up works by different researchers have performed
research on what other metrics could be feasible. This work can be
considered to be one of these follow-up works. The new proposal
of this paper is to consider metrics that do not put equal emphasis
on the single neurons. Since the importance and the feature com-
plexity varies throughout the different layers a neuron of the first
layer should not be considered as important as the very last output
neurons. The so-far introduced neuron coverage metrics are (see
Figure 2 for graphical visualization):

Neuron Coverage [9] describes the percentage of neurons
that did output a value greater than a chosen threshold. The
general idea is that if the output is greater than this value, the
neuron is considered to be activated. It passes a significant
output to the next layer of the neural network and therefore
is part of the generated output calculation. This was the
first proposed deep neural net coverage metric. In a classical
context, it would resemble statement coverage which checks

Not all Neurons are created equal:
Towards a feature level Deep Neural Network Test Coverage Metric

𝑙𝑜𝑤𝑛 ℎ𝑖𝑔ℎ𝑛

Neural Coverage

0.2

k-multisection Neuron Coverage

k=6

Neuron Boundary Coverage

Strong Neuron Activation Cov.

Bin Coverage

bins dependend on layer

Figure 2: Visualization of areas of a neurons’ output space
that different coverage metrics react to

whether a statement has been executed at least once when
executing the test cases.

k-multisection Neuron Coverage [7] improves on the fact
that Neuron Coverage solely checks whether a neuron has
been active when performing the test cases. For any neuron
n, we denote the highest (lowest) observed output when in-
putting the training data set as hiдhn (lown). K-multisection
Neuron Coverage splits this interval for each neuron n into
k sections. The resulting coverage is calculated as the per-
centage of all sections for that at least one corresponding
value was observed when inputting the test data set. In a
classical context, one could compare k-multisection Neuron
Coverage to branch coverage since for k > 1 k-multisection
Neuron Coverage enforces a neuron to be in a high and a
low state.

Neuron Boundary Coverage [7] While k-multisection Neu-
ron Coverage focus on an equally distributed sampling of
the output values throughout k equally sized sections of the
single neurons, Neuron Boundary Coverage only focuses on
the extreme values of high and low output. Neuron Boundary
Coverage counts how many neurons have been in their up-
per and lower corner region when inputting the test data set.
The upper corner region is defined as the region of output
values in the interval of [hiдhn ,∞]. The lower corner region
is defined as the region of output values in the interval of
[−∞, lown]. A neuron is considered to be fully covered by
test cases if output values in the upper corner region and
the lower corner region have been observed.

Strong Neuron Activation Coverage [7] is very similar to
Neuron Boundary Coverage. It corresponds to the percentage
of neurons for their output values in their upper case region
have been observed.

Top-k Neuron Coverage [7] This is a coverage metric which
is observed on a layer level. For a single layer and a given
input, the k most active neurons are considered to be the k
neurons with the highest output values. A single neuron is
considered to be covered by Top-k Neuron Coverage if it has

been for at least one test case within the k most active neu-
rons. The overall coverage corresponds to the percentage of
neurons that have been covered by Top-k Neuron Coverage.

Top-k Neuron Patterns [7] If one looks at the combinations
of the k most active neurons through the different l layers,
one obtains an activation pattern consisting of l · k neu-
rons. The resulting coverage is the percentage of observed
activation patterns to the total possible activation patterns.

Sign-Sign Coverage, Value-Sign Coverage,
Sign-Value Coverage, Value-Value Coverage [10] Sun et al.

[10] propose a differently inspired set of coverage criteria.
They base their coverage on the earlier mentioned notion
of features, that a neural network responds to in different
layers. Since it is generally unknown which features are rele-
vant and which neurons correspond to their perception, Sun
et al. define the set of features of a layer to be the set of all
possible neuron sub sets of a layer.
They define the notion of a sign-change for a given feature:
If for two inputs x1 and x2, the signs of the output values of
all neurons of a feature are different in x2, compared to the
signs of the outputs in x1, one observes a sign-change.
A value-change is similarly defined, but does not consider a
sign change but a “significant” value change of the neurons.
This notion of a “significant” value change has to be encoded
by use of domain knowledge of the developer of the neural
network.
The different coverage criteria result of different require-
ments to value and sign changes of features in neighbouring
layers. The interested reader is referred to [10].

4 METHODOLOGY
All these approaches have in common that their coverage criterion
is directly depending on the number of neurons. Let’s consider one
of the first successful deep neural network architectures, AlexNet, as
an example [6]. Figure 3 shows the distribution of neurons through-
out the different layers. If we consider Neuron Coverage, more than
half of all neurons lie in the first two convolutional layers. The final
layer which outputs the final results contributes with 1000 neurons
less than 2‰of all neurons. Theoretically, a set of test inputs could
reach a neuron coverage of more than 99.8% without even activat-
ing one of the final output layers. This general issue affects all of
the so far presented coverage metrics.

This paper therefore proposes “Bin Coverage” as a new approach
of how DNN coverage metrics can be realized while distributing
the coverage criterion equally over the layers of the network.

4.1 Bin Coverage
Bin Coverage is an instantiation of k-multisection Neuron Coverage
where k is chosen in a way such that the total number of sections
(here “bins“) per layer is consistent through all layers of the tested
network.

The Coverage Metric has a parameter α ∈ (0, 1] that is used to
scale the number of bins per layer. A high α value gives stronger
test coverage guarantees than a lower α value. The total number of
bins that need to be tested is proportional to the α value.

, Nils Wenzler

Output

FC2

FC1

Conv 5

Conv 4

Conv 3

Conv 2

Conv 1

0

50
00

0

10
00

00

15
00

00

20
00

00

25
00

00

Figure 3: Distribution of neurons in AlexNet

LetLi denote the number of neurons in the i-th layer of the neural
network. Let furthermore, Lmax denote the number of neurons of
the largest layer:

Lmax = max({Li })
The minimum number of bins per layer is given through:

Bins = Lmax · α

For each layer the number of bins (sections) per neuron ki is:

ki =
⌈Bins
Li

⌉
Neurons with a ki = 1 are ignored because they would automat-

ically be covered within the first test run.
The overall coverage value is the ratio of bins that were hit at

least once though the test inputs.

4.2 Empirical Methodology
To evaluate the behaviour and performance of the proposed Bin
Coverage, a lab setup was build in which a greedy search algorithm
was used to optimize Bin Coverage.

One of the main goals of this empirical evaluation are to under-
stand the relationship of Bin Coverage to other deep neural network
test coverage metrics. This enables us to understand whether Bin
Coverage performs differently then existing metrics. Secondly, it is
of interest how Bin Coverage performs on single layers in compari-
son to other deep neural network metrics. The main questions are
whether it is practically feasible to cover Bin Coverage on higher
levels and how the layer coverage compares to a different metric
(e.g. Neuron Coverage). Lastly, this empirical evaluation wants to
give at least very basic evidence of whether Bin Coverage is a good
metric to search for erroneous behaviour in deep neural networks.

The evaluation focuses on layered deep neural networks that
perform computer vision tasks. During this optimization, other
metrics such as Neuron Coverage, k-multiselection Neuron Cov-
erage, Neuron Boundary Coverage and Strong Neuron Activation

Table 1: Image transformations used for greedy search

Transform Parameter range

Translation x ∈ [−10, 10],y ∈ [−8, 8]
Brightness b ∈ [−40, 40]
Contrast c ∈ [100, 154]

Gaussian Blur д ∈ [1, 2]

Coverage were recorded to show their relationship to the proposed
Bin Coverage metric.

A special focus is put on how the single metrics behave when
looking at isolated layers.

The greedy search algorithm used basic transformations to the
original training images. These transformations were inspired by
the transformations used in DeepTest [11].

The used transformations are depicted in Table 1.
The greedy search algorithm used for generating new input

images to maximize bin coverage is given through the pseudo code
in Listing 1.

Algorithm .1: Greedy search for Bin Coverage
1 input : s e t o f t r a i n i n g da t a images , max_ t r i e s
2 output : s e t o f t r an s f o rmed images op t im i z i n g b in cove rage
3 begin
4 t e s t _ s u i t e ← []
5 tqueue ← []
6 while cove rage not s u f f i c i e n t
7 f a i l s = 0
8 img ← se l e c t_ random_image (t r a i n i n g _ imag e s)
9 while t r i e s <max_ t r i e s
10 t 1 ← ge t_random_trans form ()
11 t 2 ← ge t_random_trans form ()
12 i f (tqueue . l e ng t h > 0)
13 t 1 ← tqueue . pop ()
14
15 tqueue . append (t1 , t 2)
16 new_img ← app l y _ t r an s f o rms (img , tqueue)
17
18 i f (c a l c u l a t e _new_cove r a g e () > o ld_max_coverage)
19 t e s t _ s u i t e . append (new_img)
20 update_new_max_coverage ()

Not all Neurons are created equal:
Towards a feature level Deep Neural Network Test Coverage Metric

21 e l s e
22 tqueue . pop ()
23 tqueue . pop ()
24 f a i l s ← f a i l s + 1
25 end
26 return t e s t _ s u i t e
27 end

5 IMPLEMENTATION
The empirical evaluation was performed using a tensorflow [1]
implementation of a deep neural network that was trained to per-
form steering angle prediction on single frames of video footage
of a driving car [5]. Its implementation was inspired by a research
project of Nvidia [2]. The data used for training the neural network
is publicly available in [3].

The deep neural network used in the test setup consists out of
10 layers. The first 5 layers are convolutional layers with 72912
/ 23688 / 5280 / 3840 / 1152 neurons. The following 5 layers are
fully connected neurons with 1164 / 100 / 50 / 10 / 1 neurons. As
with the example of AlexNet, in this setting the layers closest to
the output neuron are nearly insignificant in relative size to the
first layers. The output layer only corresponds to less than 0,01 fj
of all neurons in the network. In this network a Neuron Coverage
of 99.999% could be reached, although the final output neuron was
not activated even once (following the notion of neuron activation
given in Neuron Coverage) during execution of the test suite.

All neurons of the network used ReLu as an activation function.
The evaluation of the different coverage criteria was imple-

mented in Python as well. After the initial deep neural network
analysis to obtain all lown and hiдhn , the Bin Coverage can be
computed in number of neurons×number of layers time when fol-
lowing the implementation of the greedy algorithm. It therefore
can be considered to be in general technologically feasible to apply.
This is a very important aspect as the number of neurons and layers
might become huge and higher order polynomial times would lead
to practical issues.

Because of time constraints it was sadly impossible to apply Bin
Coverage to other neural networks.

6 RESULTS
Since one of the most interesting questions of finding a good cov-
erage metric for deep neural networks is how a proposed metric
relates to the other coverage metrics that we know, two main tests
were performed. The first one did execute the greedy search on the
possible transforms and the training images optimizing the total
Bin Coverage of the network. During this test, the development of
Neuron Coverage, k-multisection Coverage, Neuron Boundary Cov-
erage and Strong Neuron Coverage were recorded as Bin Coverage
was maximized. Figure 4 shows the results. One can see that al-
though Bin Coverage was maximized (visible in red), k-multisection
Coverage, Neuron Coverage and Strong Neuron Activation reached
higher values than Bin Coverage. It seems that Bin Coverage is
harder to reach and to some extend includes covering other metrics
as well. This is not too surprising, especially for k-multisection
Coverage (here k = 4) since Bin Coverage is the same approach
of dividing the range of neuron outputs into different sections
and checking whether these sections were hit at least once. The
main difference is that Bin Coverage distributes the total number

of section equally throughout the layers. One of the main claims of
Neuron Coverage is that neurons are considered to be activated for
an output value greater than given threshold (here 0.2 as in [11]).
If Bin Coverage creates a bin which requires a value larger than
the threshold (0.2), Bin Coverage implies Neuron Coverage for that
neuron as well. As long as a neuron has activated at least once dur-
ing training, the threshold will be part of the range [lown ,hiдhn]
and therefore this scenario can be considered at least plausible.

Neuron Boundary Coverage (here green) seems to be least cov-
ered by optimizing Bin Coverage (here red). This is a misconception
which is based on a major downside of Neuron Boundary Coverage.
Recall that Neuron Boundary Coverage requires two output values
to fully cover a neuron. One being greater than all previously ob-
served output values (= hiдhn) and the other being smaller than all
previous observed output values (= lown). Since our test network
uses ReLu activation functions, the lowest possible output value is
0. This is obtained if the weighted sum of all neurons is equal or
less than 0. If a neuron has at least once returned 0 as an output,
it is impossible to create an input that will be lower. Since it is a
likely scenario that a neuron will be inactive in at least one of the
training inputs, Neuron Boundary Coverage becomes limited to a
maximum coverage of 50% and becomes otherwise equivalent to
Strong Neuron Activation Coverage. In Figure 4 it is visible that
Neuron Boundary Coverage (here green) and Strong Neuron Acti-
vation Coverage (here violet) are strongly correlated, which gives
further evidence to the mentioned explanation.

An other interesting aspect is how the total value of a coverage
metric is reflected in the single coverage values of the different
layers. Figure 5 shows the development of the Bin Coverage of the
single layers. The plot shows only layers which have more than one
bin per neuron. Since Bin Coverage distributes an equal amount of
bins in the layers, for α values lower than 1 (here α = 0.05) some
layers will obtain 1 or less bins per neuron. Since those would be
trivially satisfied, those layers and neurons are excluded from the
given definition of Bin Coverage. Figure 5 shows that the lower
layers are the one which obtain a high Bin Coverage first. A possible
explanation would be that lower level neurons are in general easier
to cover. The higher level layers need more input images to reach
higher coverage. This is a direct requirement resulting out of Bin
Coverage. Since every neuron only outputs one value for each input
given to the network. Full coverage theoretically needs at least as
many inputs as there are bins in each neuron. Since all bins are
distributed equally through all layers, all bins are distributed on
the one final output neuron. In the here presented test scenario, at
least 3646 bins are distributed in each layer. Therefore reaching full
coverage for the last output neuron would need a test suite which
is at least of the size of 3646 inputs. Considering this fact, the Bin
Coverage of 78% with 247 images shows that the greedy search
policy was quite efficient in finding good input images.

In the first experiment, it was observed that optimizing Bin
Coverage resulted in even higher values for other coverage metrics
than the targeted Bin Coverage. This raises the question whether
optimizing a different coverage metric than Bin Coverage could lead
to a significant increase in Bin Coverage as well. Figure 6 shows the
corresponding development of coverage metrics when optimizing
Neuron Coverage through greedy search. Be aware that in this
case only 59 images were generated since the resulting Neuron

, Nils Wenzler

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

test images

C
ov

er
ag

e

Bin Coverage
Neuron Coverage
k−multisection Coverage
Neuron Boundary Coverage
Strong Neuron Activation Coverage

Bin Coverage
Neuron Coverage
k−multisection Coverage
Neuron Boundary Coverage
Strong Neuron Activation Coverage

Figure 4: Development of different coverage criteria when performing greedy search to optimize Bin Coverage

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

test images

C
ov

er
ag

e

Conv 5 Coverage
FC1 Coverage
FC2 Coverage
FC3 Coverage
FC4 Coverage
Output Coverage

Figure 5: Development of Bin Coverage of the different layers when performing greedy search to optimize neuron coverage

Coverage was already close to 100%. When comparing to Figure 4
the corresponding Bin Coverage is the one at 59 images as well. At
that point, the value of Bin Coverage is not significantly different,
then the value obtained when optimizing for Bin Coverage directly.
The main issue is that when using e.g. Neuron Coverage a tester
would stop at around 59 generated images. The final resulting Bin
Coverage would be 43% opposed to the 78% that we obtained after
generating 247 test images through Bin Coverage driven search.

Figure 7 gives an impression considering how the total Neuron
Coverage was distributed through the different layers. The output
layer is “fully-tested” after the third test image was generated. To

obtain this coverage, the greedy search algorithm only had to fulfill
one requirement: it needed to generate a picture where the car
is steering more then 0.2 · 180π = 11.5 deg to the right. In direct
comparison: For the same “fully-tested” output layer, Bin Coverage
needs a set of at least 3656 images that span the full range of the
steering wheel. Furthermore, one can see that after around 28 test
images, all layers except for the first fully connected layer have a
Neuron Coverage significantly above 80%. One must mention that
the layers containing the most neurons, the dashed lines represent-
ing the convolutional layers do not seem to oppose a challenging

Not all Neurons are created equal:
Towards a feature level Deep Neural Network Test Coverage Metric

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

test images

co
ve

ra
ge

Bin Coverage
Neuron Coverage
k−multisection Coverage
Neuron Boundary Coverage
Strong Neuron Activation Coverage

Figure 6: Development of different coverage criteria when performing greedy search to optimize neuron coverage

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

test images

co
ve

ra
ge

Conv 1 Coverage
Conv 2 Coverage
Conv 3 Coverage
Conv 4 Coverage
Conv 5 Coverage
FC1 Coverage
FC2 Coverage
FC3 Coverage
FC4 Coverage
Output Coverage

Figure 7: Development ofNeuronCoverage of the different layerswhen performing greedy search to optimize neuron coverage

Table 2: With greedy search generated images that differed
more then 20deg from target value

Coverage metric > 20 deg total images ratio

Neuron Coverage 2 100 2.0%
Bin Coverage 24 247 9.7%

problem to the optimizer since they all reach very high coverage
values within few images.

As a last point of evidence, this research has evaluated howmany
of the generated pictures were significantly diverging from their
target values. For that a threshold value of 20degwas chosen. While
only 2.0% of the images generated by optimizing Neural Coverage
showed such divergences, 9.7% of the images generated through
the optimization of Bin Coverage had such high divergences (see
Table 2.

, Nils Wenzler

7 THREATS TO VALIDITY
This research is because of its short time frame very limited. The
main weaknesses lie within the following aspects:

Only one model in evaluation The empirical evaluation only
used one model to evaluate the performance of Bin Cover-
age. Since the implementation was performed using the very
common framework tensorflow [1], the adoption process to
evaluate further models should be easily possible.

Limited sample size The presented test runs represent a small
sample size. Some further research should show how sta-
ble the performance of values obtained through the greedy
search algorithm are.

Only one domain Deep neural networks are not only applied
in the field of computer vision tasks. The performance of Bin
Coverage might be limited to only this research field. This
should be solved by introducing additional tests on other
empirical models.

Greedy search Since the evaluation was heavily based on the
performance of the optimization through the greedy search
algorithm, it might be that some of the results reflect prop-
erties of the search algorithm opposed to properties of the
coverage metrics.

α value In the empirical evaluation, only one α = 0.05 was
observed. Bin Coverage might behave differently for other
values, especially for higher values.

8 CONCLUSIONS
In this paper, it was shown through the introduction of Bin Cover-
age that a deep neural network coverage metric which puts equal
emphasize on the layers of the network is technologically possi-
ble. An argumentation was offered why the current notion of “All
neurons are created equal” might be to the general testing disad-
vantage.

Through an empirical evaluation, first evidence was shown that
Bin Coverage might improve on the general requirements that a
test coverage metric for deep neural network imposes to reach high
coverage values.

Bin Coverage leverages an intrinsic property of layered deep neu-
ral networks and pivots away from the common notion of porting
existing metrics to the domain of deep neural networks.

Although this small research project sadly can not offer more
then a small glimpse at the potential that Bin Coverage might have,
it might be able to inspire researchers in the field to consider this
variation to deep neural network test coverage metrics.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[3] Sully Chen. 2018. driving-datasets. https://github.com/SullyChen/
driving-datasets.

[4] ESA ECSS-E-ST. 2009. 40C Space Engineering-Software. Noordwijk: ESA-ESTEC
Requirements & Standards Division (2009).

[5] Aditya Gupta. 2018. Self-Driving-Car-. https://github.com/cyanamous/
Self-Driving-Car-.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[7] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM, 120–131.

[8] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert,
Katherine Ye, and Alexander Mordvintsev. 2018. The building blocks of inter-
pretability. Distill 3, 3 (2018), e10.

[9] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[10] Youcheng Sun, Xiaowei Huang, and Daniel Kroening. 2018. Testing Deep Neural
Networks. CoRR abs/1803.04792 (2018). arXiv:1803.04792 http://arxiv.org/abs/
1803.04792

[11] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. ACM, 303–314.

[12] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

http://tensorflow.org/
https://github.com/SullyChen/driving-datasets
https://github.com/SullyChen/driving-datasets
https://github.com/cyanamous/Self-Driving-Car-
https://github.com/cyanamous/Self-Driving-Car-
http://arxiv.org/abs/1803.04792
http://arxiv.org/abs/1803.04792
http://arxiv.org/abs/1803.04792

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Coverage Testing

	3 Related Work
	4 Methodology
	4.1 Bin Coverage
	4.2 Empirical Methodology

	5 Implementation
	6 Results
	7 Threats to Validity
	8 Conclusions
	References

