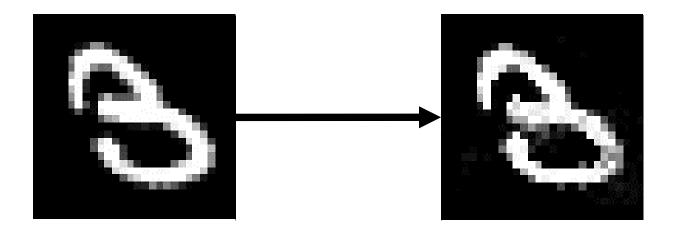
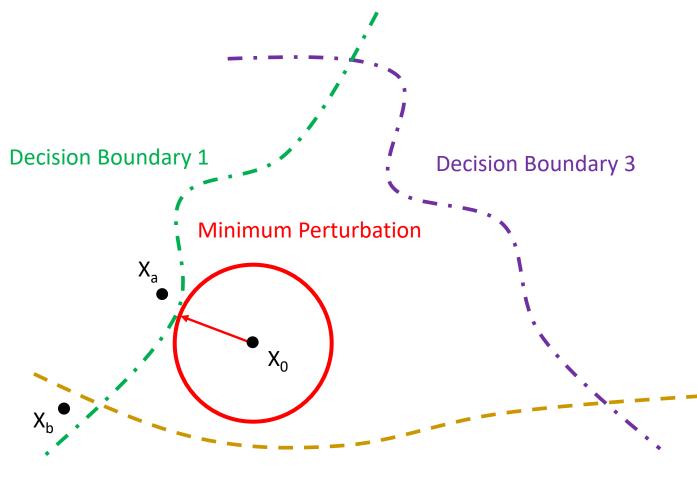
ON THE ADVERSARIAL ROBUSTNESS OF UNCERTAINTY AWARE DEEP NEURAL NETWORKS

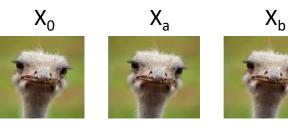
APRIL 29TH, 2019 PREPARED BY: ALI HARAKEH

Can a neural network mitigate the effects of adversarial attacks by estimating the uncertainty in its predictions ?



ADVERSARIAL ROBUSTNESS


HOW GOOD IS YOUR NEURAL NETWORK ?


- Neural networks are not robust to input perturbations.
- Example: Carlini and Wagner Attack on MNIST

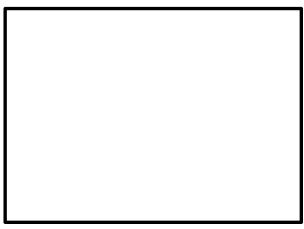
ADVERSARIAL PERTURBATIONS

Shoe

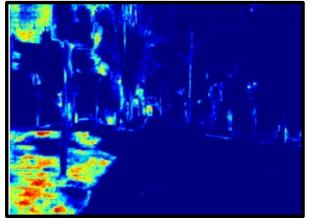
Ostrich

Vacuum

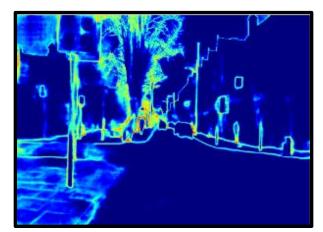
Decision Boundary 2


4/29/2019

UNCERTAINTY IN DNNS

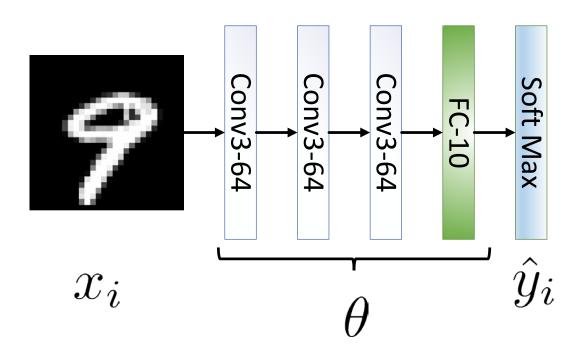


SOURCES OF UNCERTAINTY IN DNNS

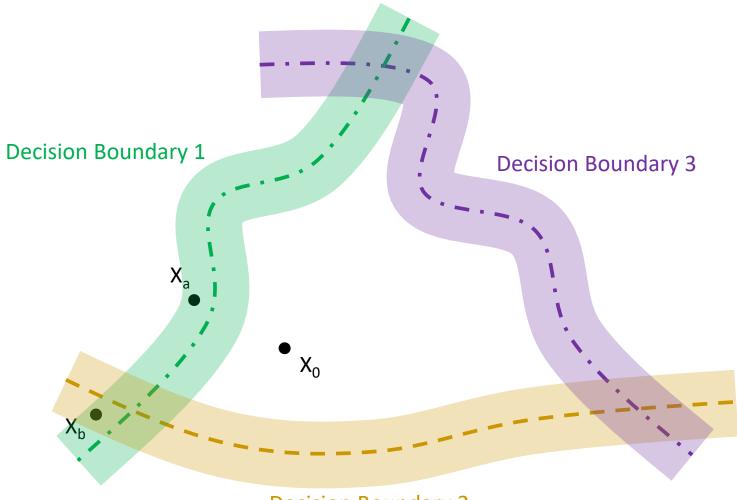

- Two sources of uncertainty exist in DNNs.
- **Epistemic (Model) Uncertainty:** Captures the ignorance about which model generated our data.
- Aleatoric (Observation) Uncertainty: Captures the inherent noise in the observations.

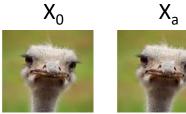
Original Image

Epsitemic Uncertainty


Aleatoric Uncertainty

4/29/2019

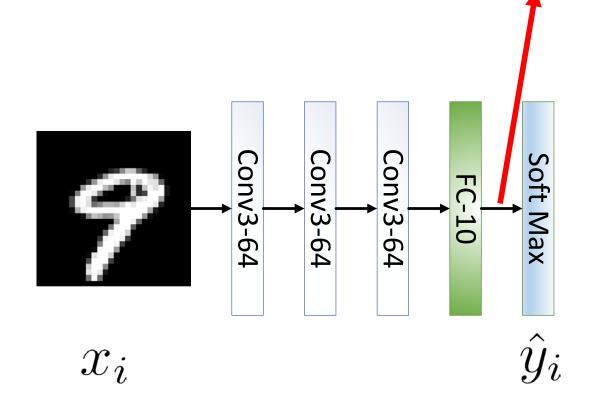

CAPTURING EPISTEMIC UNCERTAINTY


• Marginalizing over neural network parameters: $p(\hat{y}_i|x_i, \mathcal{D}) = \int_{\Omega} p(\hat{y}_i|\mathbf{x}_i, \mathcal{D}, \theta) \frac{p(\theta|\mathcal{D})}{p(\theta|\mathcal{D})} d\theta$

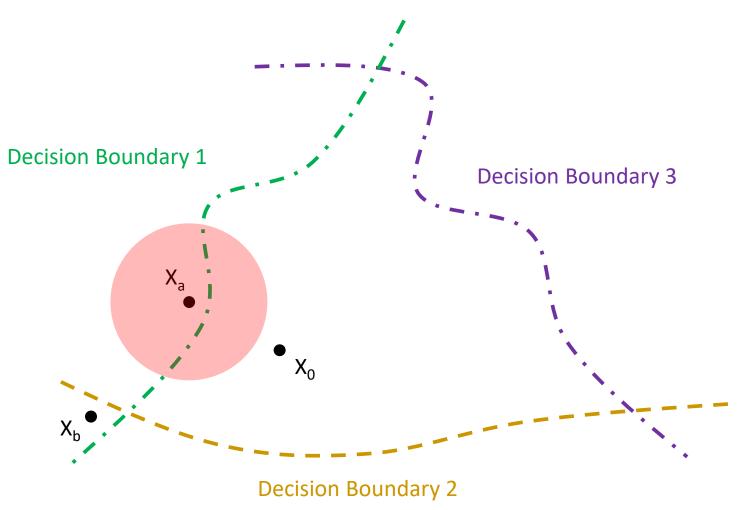
CHANGE IN DECISION BOUNDARIES

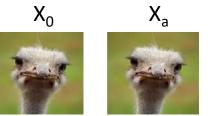
Ostrich

Vacuum


Decision Boundary 2

4/29/2019


CAPTURING ALEATORIC UNCERTAINTY


• Heteroscedastic variance estimation: $p(\hat{y}_i | x_i, \mathcal{D}, \theta) = \mathcal{N}(\mu(x_i, \theta), \sigma(x_i, \theta))$

CHANGE IN DATA POINT

Ostrich Vacuum

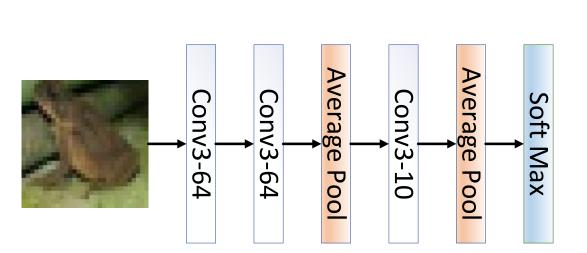
Shoe

11

1

UNIVERSITY OF

ORONTO


Ali Harakeh

METHODOLOGY

NEURAL NETWORKS AND DATASETS

ConvNet On MNIST

Conv

Ŵ

-64

 \cap

onv

ŵ

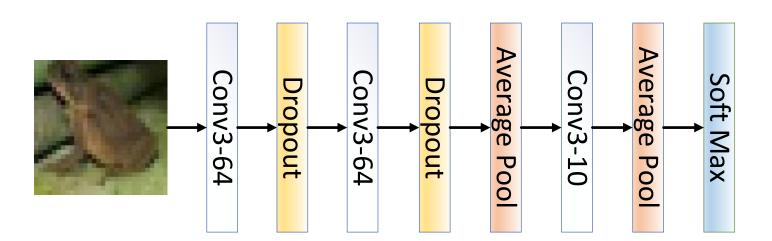
-64

Soft

Max

FC

10


ConvNet On CIFAR10

Conv3-64

EPISTEMIC UNCERTAINTY: AN APPROXIMATION

ConvNet On MNIST

Conv3

I.

64

Conv

3-64

Dro

σ

out

Dro

σ

out

Soft

Max

FC

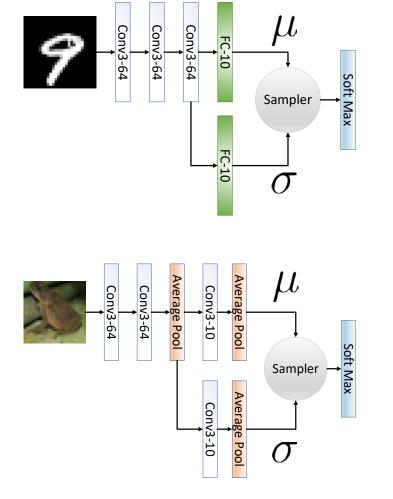
O

ConvNet On CIFAR10

Conv3-64

Dro

Ō


Ō

ut

ALEATORIC UNCERTAINTY ESTIMATION

ConvNet On MNIST

4/29/2019

GENERATING ADVERSARIAL PERTURBATIONS

• Use Cleverhans: https://github.com/tensorflow/cleverhans

- Adversarial Attacks:
 - 1. **Fast Gradient Sign Method** (FGSM): Goodfellow et. Al.
 - 2. Jacobian- Based Saliency Map Attacks (JSMA): Paparnot et. Al.
 - 3. Carlini and Wagner Attacks: Carlini et. Al.
 - 4. Black Box Attack: Papernot et. Al.

RESULTS

RESULTS

Dataset	Network	Attack Type	Defense Type	Accuracy (%)	Adversarial Accuracy (%)	Fooling Rate (%)
	Basic CNN		None	99.37	9.96	-
		FGSM [6]	Epistemic	98.50	22.92	-
			Aleatoric	99.35	8.75	-
			None	99.30	_	99-100
		CW [1]	Epistemic	98.37	-	30-37
MNIST			Aleatoric	99.32	-	67-80
		JSMA [12]	None	99.35	_	89-92
			Epistemic	98.62	-	22-27
			Aleatoric	99.34	-	73-81
		BB [11]	None	99.32	67.78	-
			Epistemic	98.51	63.29	-
			Aleatoric	99.20	62.08	-
			None	77.84	9.98	-
CIFAR10	Fully Convolutional Network	FGSM [6]	Epistemic	76.28	12.44	-
			Aleatoric	78.00	10.38	-

EPISTEMIC UNCERTAINTY ESTIMATION

Dataset	Network	Attack Type	Defense Type	Accuracy (%)	Adversarial Accuracy (%)	Fooling Rate (%)
	Basic CNN	FGSM [6]	None	99.37	9.96	-
			Epistemic	98.50	22.92	-
			Aleatoric	99.35	8.75	-
			None	99.30	_	99-100
		CW [1]	Epistemic	98.37	-	30-37
MNIST			Aleatoric	99.32	-	67-80
		JSMA [12]	None	99.35	_	89-92
			Epistemic	98.62	-	22-27
			Aleatoric	99.34	-	73-81
		BB [11]	None	99.32	67.78	-
			Epistemic	98.51	63.29	-
			Aleatoric	99.20	62.08	-
CIFAR10	Fully Convolutional Network	FGSM [6]	None	77.84	9.98	-
			Epistemic	76.28	12.44	-
			Aleatoric	78.00	10.38	-

ALEATORIC UNCERTAINTY ESTIMATION

Dataset	Network	Attack Type	Defense Type	Accuracy (%)	Adversarial Accuracy (%)	Fooling Rate (%)
	ST Basic CNN	FGSM [6]	None	99.37	9.96	-
			Epistemic	98.50	22.92	-
			Aleatoric	99.35	8.75	-
		CW [1]	None	99.30	-	99-100
			Epistemic	98.37	-	30-37
MNIST			Aleatoric	99.32	-	67-80
		JSMA [12]	None	99.35	_	89-92
			Epistemic	98.62	-	22-27
			Aleatoric	99.34	-	73-81
		BB [11]	None	99.32	67.78	_
			Epistemic	98.51	63.29	-
			Aleatoric	99.20	62.08	-
CIFAR10	Fully Convolutional Network	FGSM [6]	None	77.84	9.98	_
			Epistemic	76.28	12.44	-
			Aleatoric	78.00	10.38	-

BLACK BOX ATTACK

Dataset	Network	Attack Type	Defense Type	Accuracy (%)	Adversarial Accuracy (%)	Fooling Rate (%)
	Basic CNN		None	99.37	9.96	-
		FGSM [6]	Epistemic	98.50	22.92	-
			Aleatoric	99.35	8.75	-
			None	99.30	_	99-100
		CW [1]	Epistemic	98.37	-	30-37
MNIST			Aleatoric	99.32	-	67-80
		JSMA [12]	None	99.35	_	89-92
			Epistemic	98.62	-	22-27
			Aleatoric	99.34	-	73-81
		BB [11]	None	99.32	67.78	-
			Epistemic	98.51	63.29	-
			Aleatoric	99.20	62.08	-
			None	77.84	9.98	-
CIFAR10	Fully Convolutional Network	FGSM [6]	Epistemic	76.28	12.44	-
			Aleatoric	78.00	10.38	-

MC-DROPOUT APPROXIMATION

Dataset	Network	Attack Type	Defense Type	Accuracy (%)	Adversarial Accuracy (%)	Fooling Rate (%)
	Basic CNN	FGSM [6]	None	99.37	9.96	-
			Epistemic	98.50	22.92	-
			Aleatoric	99.35	8.75	-
			None	99.30	_	99-100
		CW [1]	Epistemic	98.37	-	30-37
MNIST			Aleatoric	99.32	-	67-80
		JSMA [12]	None	99.35	-	89-92
			Epistemic	98.62	_	22-27
			Aleatoric	99.34	-	73-81
		BB [11]	None	99.32	67.78	_
			Epistemic	98.51	63.29	-
			Aleatoric	99.20	62.08	-
CIFAR10	Fully Convolutional Network	FGSM [6]	None	77.84	9.98	-
			Epistemic	76.28	12.44	-
			Aleatoric	78.00	10.38	-

CONCLUSION

Can a neural network mitigate the effects of adversarial attacks by estimating the uncertainty in its predictions ?

ANSWER(S)

- Adversarial perturbations cannot be distinguished as input noise through aleatoric uncertainty estimation.
- Epistemic uncertainty estimation, manifested as Bayesian Neural Networks might be robust to adversarial attacks.
- Results inconclusive, due to the lack of mathematical bounds on the approximation through ensembles and MC-Dropout.
- Sufficient Conditions for Robustness to Adversarial Examples: a Theoretical and Empirical Study with Bayesian Neural Network.
- https://openreview.net/forum?id=B1eZRiC9YX

CONCLUSION

• There is no easy way out of using robustness certification to guarantee safety of deep neural networks.

• Even then, the mode of action of a specific type of adversarial attack needs to be taken into consideration.

• **Research Question**: How to certify against black box attacks?

