ON THE ADVERSARIAL ROBUSTNESS OF UNCERTAINTY
AWARE DEEP NEURAL NETWORKS
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QUESTION

Can a neural network mitigate the effects of adversarial
attacks by estimating the uncertainty in its predictions ?

LI ]
b3 o

s

UNIVERSITY OF
ORONTO 4/29/2019 Ali Harakeh



ADVERSARIAL ROBUSTNESS
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HOW GOOD IS YOUR NEURAL NETWORK ?

 Neural networks are not robust to input perturbations.

e Example: Carlini and Wagner Attack on MNIST
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ADVERSARIAL PERTURBATIONS
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UNCERTAINTY IN DNNS
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SOURCES OF UNCERTAINTY IN DNNS

e Two sources of uncertainty exist in DNNs.

e Epistemic (Model) Uncertainty: Captures the ignorance about which model
generated our data.

e Aleatoric (Observation) Uncertainty: Captures the inherent noise in the
observations.

Original Image Epsitemic Uncertainty Aleatoric Uncertainty
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CAPTURING EPISTEMIC UNCERTAINTY

e Marginalizing over neural network parameters: p(¥i|7i, D) = /P(f&v: x;, D, 8)p(0|D)do
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CHANGE IN DECISION BOUNDARIES
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CAPTURING ALEATORIC UNCERTAINTY

* Heteroscedastic variance estimation: p(9;|z;, D,0) = N (u(x;,0),0(x;,0))
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CHANGE IN DATA POINT
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METHODOLOGY
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NEURAL NETWORKS AND DATASETS
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: AN APPROXIMATION

EPISTEMIC UNCERTAINTY
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ALEATORIC UNCERTAINTY ESTIMATION
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GENERATING ADVERSARIAL PERTURBATIONS

e Use Cleverhans: https://github.com/tensorflow/cleverhans

e Adversarial Attacks:
1. Fast Gradient Sign Method (FGSM): Goodfellow et. Al.
2. Jacobian- Based Saliency Map Attacks (JSMA): Paparnot et. Al.
3. Carlini and Wagner Attacks: Carlini et. Al.
a.  Black Box Attack: Papernot et. Al.
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Dataset Network Attack Type | Defense Type | Accuracy (%) | Adversarial Accuracy (%) | Fooling Rate (%)
None 99.37 9.96 -
FGSM[6] Epistemic 98.50 22.92 -
Aleatoric 99.35 8.75 -
None 99.30 - 99-100
CW/[1] Epistemic 08.37 - 30-37
MNIST Basic CNN Aleatoric 99.32 - 67-80
None 99.35 - 89-92
JSMA[12] Epistemic 08.62 - 22-27
Aleatoric 99.34 - 73-81
None 99.32 67.78 -
BB[11] Epistemic 98.51 63.29 -
Aleatoric 99.20 62.08 -
None 77.84 9.98 -
CIFAR10 | Fully Convolutional Network | FGSM[6] Epistemic 76.28 12.44 -
Aleatoric 78.00 10.38 -
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EPISTEMIC UNCERTAINTY ESTIMATION
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Dataset Network Attack Type | Defense Type | Accuracy (%) | Adversarial Accuracy (%) | Fooling Rate (%)
None 99.37 9.96 -
FGSM[6] Epistemic 98.50 22.92 -
Aleatoric 99.35 8.75 -
None 99.30 - 99-100
CW/[1] Epistemic 98.37 - 30-37
MNIST Basic CNN Aleatoric 99.32 - 67-80
None 99.35 - 89-92
JSMA[12] Epistemic 08.62 - 22-27
Aleatoric 99.34 - 73-81
None 99.32 67.78 -
BB[11] Epistemic 98.51 63.29 -
Aleatoric 99.20 62.08 -
None 77.84 9.98 -
CIFAR10 | Fully Convolutional Network | FGSM[6] Epistemic 76.28 12.44 -
Aleatoric 78.00 10.38 -
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ALEATORIC UNCERTAINTY ESTIMATION
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Dataset Network Attack Type | Defense Type | Accuracy (%) | Adversarial Accuracy (%) | Fooling Rate (%)
None 99.37 9.96 -
FGSM[6] Epistemic 98.50 22.92 -
Aleatoric 99.35 8.75 -
None 99.30 - 99-100
CW/[1] Epistemic 08.37 - 30-37
MNIST Basic CNN Aleatoric 99.32 - 67-80
None 99.35 - 89-92
JSMA[12] Epistemic 08.62 - 22-27
Aleatoric 99.34 - 73-81
None 99.32 67.78 -
BB[11] Epistemic 98.51 63.29 -
Aleatoric 99.20 62.08 -
None 77.84 9.98 -
CIFAR10 | Fully Convolutional Network | FGSM[6] Epistemic 76.28 12.44 -
Aleatoric 78.00 10.38 -
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BLACK BOX ATTACK
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Dataset Network Attack Type | Defense Type | Accuracy (%) | Adversarial Accuracy (%) | Fooling Rate (%)
None 99.37 9.96 -
FGSM[6] Epistemic 98.50 22.92 -
Aleatoric 99.35 8.75 -
None 99.30 - 99-100
CW/[1] Epistemic 08.37 - 30-37
MNIST Basic CNN Aleatoric 99.32 - 67-80
None 99.35 - 89-92
JSMA[12] Epistemic 08.62 - 22-27
Aleatoric 99.34 - 73-81
None 99.32 67.78 -
BB[11] Epistemic 98.51 63.29 -
Aleatoric 99.20 62.08 -
None 77.84 9.98 -
CIFAR10 | Fully Convolutional Network | FGSM[6] Epistemic 76.28 12.44 -
Aleatoric 78.00 10.38 -
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MC-DROPOUT APPROXIMATION
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Dataset Network Attack Type | Defense Type | Accuracy (%) | Adversarial Accuracy (%) | Fooling Rate (%)
None 99.37 9.96 -
FGSM[6] Epistemic 98.50 22.92 -
Aleatoric 99.35 8.75 -
None 99.30 - 99-100
CW/[1] Epistemic 08.37 - 30-37
MNIST Basic CNN Aleatoric 99.32 - 67-80
None 99.35 - 89-92
JSMA[12] Epistemic 08.62 - 22-27
Aleatoric 99.34 - 73-81
None 99.32 67.78 -
BB[11] Epistemic 98.51 63.29 -
Aleatoric 99.20 62.08 -
None 77.84 9.98 -
CIFAR10 | Fully Convolutional Network | FGSM[6] Epistemic 76.28 12.44 -
Aleatoric 78.00 10.38 -
@
UNIVERSITY OF

22



CONCLUSION

&

@ | UNIVERSITY OF TORONTO
NT FACULTY or APPLIED SCIENCE « ENGINEERING



QUESTION

Can a neural network mitigate the effects of adversarial
attacks by estimating the uncertainty in its predictions ?
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ANSWER(S)

e Adversarial perturbations cannot be distinguished as input noise through
aleatoric uncertainty estimation.

e Epistemic uncertainty estimation, manifested as Bayesian Neural Networks
might be robust to adversarial attacks.

e Results inconclusive, due to the lack of mathematical bounds on the
approximation through ensembles and MC-Dropout.

e Sufficient Conditions for Robustness to Adversarial Examples: a
Theoretical and Empirical Study with Bayesian Neural Network.

e https://openreview.net/forum?id=B1eZRiC9YX
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CONCLUSION

e There is no easy way out of using robustness certification to guarantee
safety of deep neural networks.

e Even then, the mode of action of a specific type of adversarial attack needs
to be taken into consideration.

e Research Question: How to certify against black box attacks?
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