
APRIL 29TH, 2019
PREPARED BY: ALI HARAKEH

ON THE ADVERSARIAL ROBUSTNESS OF UNCERTAINTY 
AWARE DEEP NEURAL NETWORKS



QUESTION
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Can a neural network mitigate the effects of adversarial 
attacks by estimating the uncertainty in its predictions ?



ADVERSARIAL ROBUSTNESS



HOW GOOD IS YOUR NEURAL NETWORK ?

• Neural networks are not robust to input perturbations.

• Example: Carlini and Wagner Attack on MNIST
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ADVERSARIAL PERTURBATIONS
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UNCERTAINTY IN DNNS



SOURCES OF UNCERTAINTY IN DNNS

• Two sources of uncertainty exist in DNNs.

• Epistemic (Model) Uncertainty: Captures the ignorance about which model 
generated our data.

• Aleatoric (Observation) Uncertainty: Captures the inherent noise in the 
observations.
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• Marginalizing over neural network parameters:

CAPTURING EPISTEMIC UNCERTAINTY
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CHANGE IN DECISION BOUNDARIES
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• Heteroscedastic variance estimation:

CAPTURING ALEATORIC UNCERTAINTY
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CHANGE IN DATA POINT
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METHODOLOGY



NEURAL NETWORKS AND DATASETS

4/29/2019 Ali Harakeh 13

Conv3-64

Conv3-64

Average Pool

Soft M
ax

Conv3-10

Average Pool

ConvNet On CIFAR10

ConvNet On MNIST

Conv3-64

Conv3-64

Conv3-64

FC-10

Soft M
ax



Conv3-64

Conv3-64

Average Pool

Soft M
ax

Conv3-10

Dropout

Dropout

Average Pool

Conv3-64

Dropout

Conv3-64

Dropout

Conv3-64

Dropout

FC -10

Soft M
ax

EPISTEMIC UNCERTAINTY: AN APPROXIMATION
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ALEATORIC UNCERTAINTY ESTIMATION
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GENERATING ADVERSARIAL PERTURBATIONS

• Use Cleverhans: https://github.com/tensorflow/cleverhans

• Adversarial Attacks:
1. Fast Gradient Sign Method (FGSM): Goodfellow et. Al.
2. Jacobian- Based Saliency Map Attacks (JSMA): Paparnot et. Al. 
3. Carlini and Wagner Attacks: Carlini et. Al.
4. Black Box Attack: Papernot et. Al.
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RESULTS



RESULTS
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EPISTEMIC UNCERTAINTY ESTIMATION

4/29/2019 Ali Harakeh 19



ALEATORIC UNCERTAINTY ESTIMATION
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BLACK BOX ATTACK
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MC-DROPOUT APPROXIMATION
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CONCLUSION



QUESTION
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Can a neural network mitigate the effects of adversarial 
attacks by estimating the uncertainty in its predictions ?



ANSWER(S)

• Adversarial perturbations cannot be distinguished as input noise through 
aleatoric uncertainty estimation.

• Epistemic uncertainty estimation, manifested as Bayesian Neural Networks 
might be robust to adversarial attacks.

• Results inconclusive, due to the lack of mathematical bounds on the 
approximation through ensembles and MC-Dropout.

• Sufficient Conditions for Robustness to Adversarial Examples: a 
Theoretical and Empirical Study with Bayesian Neural Network.

• https://openreview.net/forum?id=B1eZRiC9YX
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CONCLUSION

• There is no easy way out of using robustness certification to guarantee 
safety of deep neural networks.

• Even then, the mode of action of a specific type of adversarial attack needs 
to be taken into consideration. 

• Research Question: How to certify against black box attacks?
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