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1 INTRODUCTION
Recent progress in deep neural network literature paved the
way for applications in many safety critical domains such
as autonomous vehicles, human surveillance, and medical
diagnosis. Unfortunately, deep neural networks can be very
vulnerable to maliciously generated adversarial examples.
Such adversarial examples are usually generated by perturba-
tions that are imperceptible to humans. This project proposes
to study the ability of neural networks to become aware of
such perturbations through estimating the uncertainty in
their predictions.
Two sources of uncertainty can be identified in any ma-

chine learned model. Epistemic or model uncertainty is the
uncertainty in the model’s parameters, usually as a result
of the confusion about which model generated the training
data, and can be explained away given enough representa-
tive training data points [4]. On the other hand, aleatoric or
observation uncertainty results from the stochastic nature
of the observed input, and persist in network output despite
expanded training on additional data [7].
Methods to estimate both uncertainty types in deep neu-

ral network models have been recently proposed [7], with
applications in one-to-one perception tasks such as semantic
segmentation and monocular depth regression. Recent work
[5] argued that idealized Bayesian neural networks (ones
that estimate epistemic uncertainty) are not susceptible to
adversarial attacks, but was rejected by the reviewers in ICLR
2019, due to the fact that the ‘ideal’ settings in the paper can
never be achieved in reality. However, no previous work
has studied the ability of aleatoric uncertainty estimation
mechanisms to reject adversarial examples.

In summary, I aim to answer the following question: Can
a neural networkmitigate the effects of adversarial at-
tacks by estimating the uncertainty in its predictions?
To do so, the following report is comprised of the following
sections. Section 2 presents an overview of recent uncer-
tainty estimation mechanisms in deep neural networks and
prominent adversarial attacks used to develop the experi-
ments. Section 4 presents a description of the methodology
used for experiments, the experimental results, and a brief
discussion on these results. Section 5 concludes the report
with the most prominent lessons learnt from the performed

experiments. Finally Appendix A shows how much I was
able to achieve given what was planned for the project.

2 LITERATURE REVIEW
Uncertainty Estimation In Deep Neural Networks:
Epistemic (Model) Uncertainty: To capture the epistemic un-
certainty of a deep neural network model, a prior distribu-
tion is imposed over its parameters θ to compute a posterior
distribution p(θ |D) over the set of all possible parameters
given the training data D. A marginal distribution is then
computed for every input image xi as:

p(ŷi |xi ,D) =

∫
θ

p(ŷi |xi ,D,θ )p(θ |D)dθ , (1)

where ŷi is the classification logits of the neural network.
Unfortunately, the integral is usually intractable, and approx-
imate inference is usually needed to evaluate the posterior
distribution. A simple and computationally efficient Monte-
Carlo sampling method, Monte-Carlo Dropout [4], allows
drawing i.i.d samples from Eq. (1) by performing neural
network inference with dropout enabled. The output of the
neural network can then be expressed as:

ŷi =
1
T

T∑
t=1

so f tmax(f (xi ,θt )), (2)

where T is the number of runs performed with dropout, and
f (xi ,θt ) is the logit output from the neural network. It has
to be noted that one can also use more computationally ex-
pensive and data hungry ensemble methods to approximate
the integral.

Aleatoric (Process) Uncertainty:Motivated by heteroscedas-
tic regression[9], a loss attenuation formulation has been
proposed [7] that estimates the variance of the classification
output of a deep neural network model by modifying the
training loss as follows:

L =
1
N

N∑
i=1

H (yi , ŷi )

ŷi = so f tmax(f (xi ,θ ) + σ (xi ,θ )N(0, I )),
(3)

where I is the identity matrix, and σ (xi ,θ ) is the estimated
heteroscedastic aleatoric variance. I will be using these two
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formulations in the experiments presented bellow to estimate
both types of uncertainty.

Adversarial Examples
Szegedy et al. [13] discovered that despite deep neural net-
works having an extraordinary accuracy when applied to
the classification task, a small imperceptible perturbations
to the image can cause a catastrophic misclassification of
previously well classified examples. Such perturbed exam-
ples are usually maliciously generated and are referred to as
Adversarial Examples. This section provides an overview of
the four types of attack generators used in the experiments.

Fast Gradient Sign Method (FGSM) [6]: FGSM is a method
to solve the optimization problem:

ρ = ϵsiдn(∇J (θ ,x , ℓ)), (4)

where ρ is the required adversarial perturbation, ϵ is a small
value that restricts the norm of the perturbation, and ∇J (...)
computes the gradient of the cost function around the cur-
rent value of the model parameters θ with respect to the
input x .

Jacobian-Based Saliency Map Attack (JSMA) [12]: JSMA
restricts the l0 norm of the perturbation instead of the regu-
larly used l∞ or l2 norm. The algorithm thus modifies only
a few pixels in the image instead of perturbing the whole
image to fool the classifier. This is performed by modifying
the pixels of the clean image one at a time, while monitor-
ing the effects of the change on the resulting classification
output through the a gradient based saliency map. A larger
value in this map indicates a higher probability of fooling
the classifier by pushing its classification output towards a
target class. Once this process is done, the algorithm gener-
ates the adversarial example by choosing the k most effective
pixels and altering them, where k is restricted by the l0 norm.

Carlini and Wagner Attacks (CW) [2]: CW attacks can use
l0, l2 and l∞ norms to produce adversarial examples that
are much more powerful than previous approaches, while
keeping the perturbations quasi-imperceptible. The reader
is referred to [2] for the exact optimization procedure as it is
too long and complex to be described here.

Black Box Attack (BB) [11]: Unlike all previously discussed
attacks, BB uses only the input-output relation of a classifier
to construct adversarial examples, effectively treating the
classifier as a black-box. Heuristics are designed to query a
black box classifier a limited number of times. The attack
strategy is to train a substitute network on a small number
of initial queries, then iteratively perturb inputs based on

the substitute network’s gradient information to augment
the training set. The Substitute DNN training algorithm is:
(1) Acquire a small initial dataset.
(2) Select an architecture for the substitute network thatâĂŹs

sensible for the domain.
(3) Query the oracle (target) network for labels to any

unlabeled datapoints.
(4) Train the substitute network on current datapoints.
(5) Augment the dataset with Jacobian based data aug-

mentation (JBDA) perturbations.
(6) Repeat as necessary.

Once the substitute network is trained, one can use stan-
dard adversarial attack algorithms to generate adversarial
examples.

3 METHODOLOGY
To test whether a neural network gains adversarial robust-
ness by estimating the prediction uncertainty, the following
experiments are performed. The neural network is first modi-
fied to estimate epistemic or aleatoric uncertainty. The neural
network is then attacked by various adversarial perturba-
tions, generated from the algorithms described in Section
2. The effectiveness of these attacks are then measured on
the vanilla unmodified network, the network with epistemic
uncertainty estimation, and the network with aleatoric un-
certainty estimation.

Neural Networks Models and Datasets
Two classification datasets are used for testing, the MNIST
handwritten digits dataset [3], and the CIFAR-10 natural
image dataset [8]. Fig. 1 shows the neural network architec-
tures used on each of the two datasets, as well as example
images from both datasets. On MNIST, a simple network
is trained, comprising of three 3x3 convolution layers each
with 64 filters followed by a Fully Connected layer to output
10 logit values corresponding to the 10 digits in the dataset.
On CIFAR-10, a more complex fully convolutional network
is trained, comprising of two 3x3 convolution layers each
with 64 filters, followed by a 2x2 average pooling layers,
followed by another 3x3 convolution layer with 10 filters,
and finally one average pooling layer over the full feature
map to provide the logits. Those two architectures are the
ones used usually to test adversarial attacks and as such has
been chosen for the experiments.

Uncertainty Estimation Algorithms
To estimate epistemic uncertainty, integration over the pa-
rameters of the neural network is approximated using MC-
Dropout [4]. The two architectures are modified by adding
dropout layers with 0.5 dropout probability after the con-
volutional layers as shown in Fig. 1, which are kept to run
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Type Algorithm Description

Neural Networks Basic CNN A basic neural network comprising of 3 convolutional layers and 1 fully connected layer.

Fully Convolutional Network A moderately complex neural network comprising of convolutional and average pooling layers

Uncertainty Estimation Methods Monte-Carlo Dropout[7] An approximation to the integral in equation (1), used for epistemic uncertainty estimation.

Heteroscedastic Regression [7] Allows nueral network to output a variance that is used as described in equation (3).

Adversarial Perturbation Generators

FGSM [6] A fast method used to optimize the image pixels to increase a target loss according to equation (??).

CW [12] Uses the L2 norm to generate adversarial perturbations. Stronger than FGSM.

JSMA [12] Uses the L0 norm to optimize for the minimum number of non-zero pixels that can be use to fool an neural network.

BB [11] Uses a surrogate neural network to generate adversarial perturbations. Does not require access to neural network parameters.

Table 1: A summary of the algorithms provided in Section 3. For both neural networks, both uncertainty estimation mech-
anisms were incorporated into the implementation. For Basic CNN, all adversarial attack algorithms were used. For Fully
Convolutional Network, only FGSM was used due to time restrictions.
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Figure 1: Neural Network architectures used on both datasets for experiments. Top Row: vanilla architectures. Middle Row:
Modified Bayesian architectures to integrate over the neural network parameters. Bottom Row:Modified architectures used to
estimate the variance and sample from a Gaussian distribution describing the logits.

during inference. The results of T runs are then averaged according to equation (2) to get the mean, which can be then
computed to get the variance as a measure of uncertainty.
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To estimate aleatoric uncertainty, I follow the method of
[7]. A Gaussian distribution is put over the logits output
of the neural network. The variance of this distribution is
estimated by adding and additional layer as shown in Fig.
1. Logits are then sampled from the Gaussian distribution,
averaged, and passed through the softmax to get the final
classification output.

Generating Adversarial Perturbations:
Adversarial perturbations are generated using FGSM [6],
JSMA [12], CW [1], and BB [11], all of which are described in
Section 2. FGSM and BB is used to generate a perturbation for
every test image in the dataset, allowing for the computation
of adversarial accuracy on the whole dataset. On the other
hand, JSMA and CW are targeted attacks, and as such, 10
repeated runs of 90-100 adversarial examples are generated
for each of the attacks. The minimum and maximum fooling
rate of these attacks is used as the measure of performance
of the neural network.

Implementation Details
The code to perform these experiments is provided as an
attachment to this report. Datasets are automatically down-
loaded as needed by running the specific experiment code.
Neural networks and uncertainty estimation algorithms are
implemented using TensorFlow, a deep learning API. To gen-
erate adversarial examples, the Cleverhans [10] library is
used which works natively with TensorFlow based models.
All hyperparameters and training details are chosen based
on recommended values from Cleverhans tutorials, and can
be found in the code submitted alongside this report. It has
to be noted that the code provided is a modified version of
Cleverhans tutorials, where I added custom neural networks
that employ the described uncertainty estimation mecha-
nisms and made the command prompt interface easier to use
by non-experts.

4 RESULTS AND DISCUSSION
Quantitative Results
Table 2 provides quantitative results for all experiments per-
formed on both datasets. The three variants of the neural
network architectures shown in Fig. 1 are trained and evalu-
ated for each of the four adversarial attack methods. This is
indicated in the column header "Defense Type" to indicate
uncertainty mechanisms used to alleviate the effect of an
adversarial attack.
I will begin the analysis with the MNIST dataset. First it

has to be noted that the accuracy of basic CNN on MNIST
flucuates around 99%. FGSM is shown to reduce the accu-
racy of basic CNN by an order of magnitude, from 99.37%

to 9.96%. When epistemic uncertainty is estimated, the ac-
curacy on FGSM generated adversarial examples increases
to 22.92%. Aleatoric uncertainty estimation does not seem
to help at all in the case of FGSM, and the accuracy on ad-
versarial examples remain low at 8.75%. Carlini and Wagner
attacks are extremely powerful when used, resulting in a
fooling rate of around 99 − 100%. That means that out of
100 adversarial perturbed images, at least 99 successfully
trick the neural network to provide erroneous classification.
Surprisingly, epistemic uncertainty estimation for basic CNN
reduces the fooling rate to a maximum of 37%. Although to
a lower degree, aleatoric uncertainty estimation for basic
CNN also reduces the fooling rate to a maximum of 80%. A
similar trend to CW attacks can be observed in JSMA attacks,
where the original fooling rate of 89 − 92% was reduced to
a maximum of 27% with epistemic uncertainty estimation,
and a maximum of 81% with aleatoric uncertainty estima-
tion. Finally, the black box attack resulted in an adversarial
accuracy of around 67.78%. Surprisingly, neither epistemic
nor aleatoric uncertainty estimation mechanisms worked to
increase the accuracy, which remained around 62 − 63%.

A final experiment that needs to be discussed uses a more
complex Fully Convolutional Neural Network trained on the
CIFAR-10 dataset. For this experiment, FGSM adversarial per-
turbations are used to attack the neural network, resulting
in a decrease in accuracy from 77.84% to 9.98%. Surprisingly,
the improvement in accuracy from epistemic uncertainty
estimation is much lower than the improvement observed
using the same attack type on MNIST resulting in an ac-
curacy of 12.44%. Similar to the neural network on MNIST,
aleatoric uncertainty failed to help increase the accuracy on
adversarial examples generated by FGSM.

Observations and Discussion
This section will provide a description of deductions that
can be derived from the above experiments in bullet point
format.

Adversarial examples are out of distribution examples, created
through the exploitation of point estimates of neural network
parameters. This phenomenon has been previously discussed
in [5], where the claim was that truly Bayesian neural net-
works cannot be fooled by adversarial examples. A confir-
mation of this phenomenon in my experiments is shown by
observing that the estimation of epsitemic uncertainty im-
proves the neural network performance in most adversarial
settings. The estimation of epistemic uncertainty requires
the marginalization over the neural network weights, that
is taking every set of possible weights into consideration,
which is usually approximated through monte-carlo dropout.

Another confirmation for the above hypothesis, is the in-
ability of neural networks used in my experiments to identify
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Dataset Network Attack Type Defense Type Accuracy (%) Adversarial Accuracy (%) Fooling Rate (%)

MNIST Basic CNN

FGSM[6]
None 99.37 9.96 -

Epistemic 98.50 22.92 -
Aleatoric 99.35 8.75 -

CW[1]
None 99.30 - 99-100

Epistemic 98.37 - 30-37
Aleatoric 99.32 - 67-80

JSMA[12]
None 99.35 - 89-92

Epistemic 98.62 - 22-27
Aleatoric 99.34 - 73-81

BB[11]
None 99.32 67.78 -

Epistemic 98.51 63.29 -
Aleatoric 99.20 62.08 -

CIFAR10 Fully Convolutional Network FGSM[6]
None 77.84 9.98 -

Epistemic 76.28 12.44 -
Aleatoric 78.00 10.38 -

Table 2: Results of various adversarial attacks on two datasets using two neural network architectures. Accuracy measures the
percent correct classification, the higher the better. Fooling rate measures how likely the architecture is to be fooled by an
attack, the lower the better. On CIFAR-10, only FGSM was tested due to lack of time.

adversarial perturbation as input noise. Given the intuition
that perturbation is added noise, I was hoping that perturbed
examples will have a higher aleatoric variance output for
the logits. However, the results show that such examples are
actually classified with low variance as the wrong class.

The blackbox attack of [11] work even when epistemic uncer-
tainty is estimated by the neural network. The mode of action
of the blackbox attack proposed by [11] proposed to produce
adversarial examples on a surrogate system to that that is
observed as a blackbox. Epistemic uncertainty estimation
cannot help in such cases, as the attack algorithm does not
care about the black box weights! This phenomenon can be
observed by noticing that the blackbox adversarial perturba-
tions were able to maintain the same adversarial accuracy
in the neural network even after incorporating epistemic
uncertainty estimation.

Monte-Carlo dropout might not be a good approximation
of marginalization over the weights. Monte-Carlo dropout
is used to approximate marginalization over weights, and
hence estimate epistemic uncertainty, according to equation
(2). However, it can be noted that the effect of such approx-
imation varies between neural network architectures. The
improvement in accuracy on MNIST using basic ConvNet
is much better than on CIFAR-10 using Fully Convolutional
Network. I suspect that this is due to MC-Dropout failing
to properly approximate the integral in more complex neu-
ral networks, especially ones with non-standard layers such
as average pooling for example. However, the reason be-
hind this phenomenon might also be due to the difference in

datasets. CIFAR-10 is much more complex, and might allow
more difficult adversaries, which would counteract the effect
of epistemic uncertainty estimation.

Can a neural network mitigate the effects of
adversarial attacks by estimating the uncertainty in
its predictions?
When it comes to aleatoric uncertainty estimation, the an-
swer is no. Both neural networks seem to no be able to factor
out adversarial perturbations as input noise. However, when
it comes to epistemic uncertainty estimation, the results are
inconclusive. On MNIST, the results show quite a lot of im-
provement in adversarial robustness for all adversarial attack
methods except the black box attack. On CIFAR-10 however,
the results were not as good, with a mere 3% increase in
accuracy for the neural network employing epistemic un-
certainty estimation. In summary, it is recommended to not
assume that uncertainty estimation in neural networks in-
crease adversarial robustness.

Threats to Validity:
Before concluding, some threats to validity need to be noted.
First, due to restrictions on computational power, relatively
shallow neural networks were tested. The conclusions made
might not transfer well to neural networks with tens of lay-
ers comprising the state-of-the-art. Second, most of the work
was performed on the MNIST dataset, a very common ap-
proach in literature. As I discussed earlier, MNIST properties
may not hold on any other datasets. This phenomenon has
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also been observed and warned against in recent literature
[1].

5 CONCLUSION
This report studies the adversarial robustness of neural net-
works given the estimation of epistemic and aleatoric uncer-
tainty in their output predictions. The results show that at
their current state, both epistemic and aleatoric uncertainty
estimation mechanisms do not guarantee adversarial robust-
ness. However, there is some evidence that a proper Bayesian
neural network, with exact epistemic uncertainty estimates,
might be immune to adversarial examples. Until an exact
solutions for the marginalization in equation (1) is found,
I do not recommend approximations such as Monte-Carlo
dropout as a trusted adversarial defence mechanisms. As a
final thought, methods to prove adversarial robustness are
still the best approach to guarantee the safety of deep neural
networks when it comes to malicious adversarial attacks.
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A ACHIEVED REQUIREMENTS FOR PROJECT:
Bellow are bullet points to reflect what was achieved in this
project compared to my goals. Achieved bullet points are in
blue, non-achieved bullet points are in red, deprecated bullet
points are in green. Deprecated bullet points are ones that
were skipped due to their simplicity.

• Implement a fully connected Feedforward classifica-
tion Neural Network on the MNIST dataset. (Instead,
a moderate complexity convolutional neural network
was used on MNIST).

• Use Cleverhans [10] to generate adversarial attacks us-
ing common algorithms such as the FGSM [6], Carlini
and Wagner L2 [2] attacks for the given network.

• Implement Monte-Carlo dropout to extract model un-
certainty [4, 7].

• Test if extracted uncertainty can be used to reject ad-
versarial examples.

Hopefully Achievable Outcomes From the project:
• Implement ensembles to extract model uncertainty of
given network.

• Implement heteroscedastic regression [4, 7] to extract
input/process uncertainty for given network.

Highly Optimistic Outcomes Of the project, probably
not achievable in 1 month:

• Extend the above experiments to moderately compli-
cated convolutional neural networks.

• Extend the above experiments to CIFAR-10 dataset.
(Managed to do this with one type of adversarial at-
tacks, FGSM.)

• Extend the above methodology to complicated multi-
task networks, specifically those used for object detec-
tion networks in 2D and 3D.
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