
CSC2125: Safety and
Certification of Autonomous

Vehicles
Lecture 2 (and perhaps a bit of 3)

Verification and Testing Primer

Marsha Chechik

University of Toronto, CSC2125, Lecture 2-3: Testing and
Verification 1

Validation of Systems

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 2

Simulation

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 3

Deductive Verification

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 4

Plan for this portion of the material

• Model-checking intro
• Temporal logics
• Models
• Bounded model-checking with SAT

• Testing coverage and adequacy criteria
• Deductive verification by an example (if time allows)

Material for these slides came from CSC410 (Testing and Verification),
CSC2108 (Automated Verification) and an Advanced BMC tutorial by Keijo

Heljanko and Tommi Junttila

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 5

Model Checking Intro

University of Toronto, CSC2125, Lecture 2-3: Testing and
Verification 6

Guaranteeing system properties
• Safety critical systems:

• Air traffic control systems.
• Launch and control systems for space exploration.
• Nuclear power plants.

• For complex systems like these, certain system properties must be
guaranteed to hold.

• In other words, certain consequences must follow from the specification of
the system.

e.g., Two aircrafts must never try to use the same incoming runway within a one
minute interval.

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 7

Model checking
• In systems that respond to events or signals, it is often useful to think of the

system as starting in some initial state, and making transitions from state to state.
examples: telephones, ATMs, elevators

• For systems of this sort, we are interested in verifying properties (typically, about
infinite behaviours) like the following:

• Can the system ever get into a certain state?
• If it ever gets into state A, can it eventually then go into state B?
• From any state it gets into, will it always get back to a starting state?

• One technique that has been found useful for verifying properties like these is the
following:

• model the system as a structure of a certain logical language
• formulate the property to be checked as a sentence in the language
• determine whether or not the sentence is true in the structure.

• This is called model-checking.

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 8

Overview of Model Checking

Yes/No and
Counter-example

SW/HW
artifact

Correctness
properties

Temporal
logic

Model of
System

Model
Extraction Translation

Model-checker

Correct?

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 9

Model Checking in Industry

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 10

Modeling

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 11

Some Model Checking Approaches

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 12

Models: Kripke Structures
• State Transition Systems

• K = <V, S, s0, I , R>
• V is a (finite) set of atomic propositions,

e.g., {p, q, r, f, b}
• “Call button is on”
• “There are no requested jobs for the printer”
• “Conveyer belt is stopped”

Should not involve time!

• S is a (finite) set of states
• s0 ∈ S is a start state
• I: S → 2V is a labeling function that maps each state to the set of propositional variables that

hold in it
Alternatively: a set of interpretations specifying which propositions are true in each state

• R ⊆ S × S is a transition relation over S

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 13

Paths

• A path over 〈S, s0, R 〉 is a non-empty sequence h of states such that
if h = ... s·s′..., then (s, s′) ∈ R.

For example, consider the system 〈S, s0 , R 〉
where S = {s0, s1} and

R = { (s0, s0), (s0, s1), (s1, s0) }
Then here are some paths over this system:
• s1
• s1·s0
• s0·s1·s0·s0
• s0·s0·s0·s0·s0·s0· ...
• s0·s1·s0·s0·s1·s0·s0·s0·s1·s0·s0·s0·s0·s1· ...
The last two are infinite paths

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 14

Computation Tree Logic (CTL)

• CTL: Branching-time propositional temporal logic
• Model - a tree of computation paths
• Example:

State-transition graph
(called Kripke structure)

Tree of computation

S1 S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 15

CTL: Computation Tree Logic
• Def. CTL is a branching-time temporal logic. It allows explicit quantification

over possible futures. CTL is a language without quantifiers that includes the
usual boolean connectives as well as the following temporal connectives:

EX p : p holds in some next states
(translated as ∃s [Next(s,start) ∧ P(s)])

EF p: along some path, p is true in a future state
E[p U q] : along some path, p holds until q holds
EG p : along some path, p holds in every state
AX p: p holds in all next states
AF p: along all paths, p is true in a future state
A[p U q]: along all paths, p holds until q holds
AG p: along all paths, p holds in every state
A state is mentioned explicitly or else the property is assumed to be about the initial state
• More compact representation than first-order logic but less expressive.
• Meant to reason only about infinite behaviours.

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 16

Examples

p

EX p (exists next)

p

AX p (all next)

p

p
p

p
p

EG p (exists global)

p
p

p pp
pp p p p

AG p (all global)

p

Examples (Cont’d)

p

EF p (exists future)

p
p p

AF p (all future)

p

p
p

q

E[pUq] (exists until)

p
p

p q
q

A[pUq] (all until)

q

CTL Examples
• Which of the properties hold?

• (AX f1)(s0)
• (EG f2)(s2)
• A [b1 U f1] (s3)
• AG (b1 ⇒ AF f1)
• AG (f1 ∨ f2)

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 19

Some More Statements To Express

• When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

• A process is enabled infinitely often on every computation path
• AG AF enabled

• A process will eventually be permanently deadlocked
• AF AG deadlock

• Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 20

CTL Model-Checking

• Receive:
• Kripke structure K
• Temporal logic formula f

• Assumptions:
• Finite number of processes

• Each having a finite number of finite-valued variables
• Finite length of a CTL formula

• Algorithm:
• Label states of K with subformulas of f that are satisfied there and working

outwards towards f.
• Output states labeled with f
Example: EX EG (p ⇒ E[p U q])

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 21

CTL Model-Checking (Cont’d)
• EX p

• Label any state with EX p if any of
its successors are labeled with p

• E [p U q]
• If any state s is labeled with q, label it

with E[p U q]
• Repeat:

label any state with E[p U q]
if it is labeled with p and at least one

of its successors is labeled with E[p U q]
until there is no change

p p

qp
p

q
qp

p

q

qp
p

q
qp

p

q

Fragment of
Kripke structure.

Dark dots are
states labelled
with appropriate
subformula

EX p

E[pUq]
E[pUq]

E[pUq]

E[pUq]
University of Toronto, CSC2125, Lecture 2-3: Testing and

Verification 22

CTL Model-Checking (Cont’d)

• EG p
• Label every node labeled with p by EG p
• Repeat:

remove label EG p from any state that does not
have successors labeled by EG p

until there is no change

p
p pp

p

p
p pp

p

p
p pp

pFragment of Kripke structure.

Dark dots are states labelled with
appropriate subformula

E[pUq]E[pUq]
E[pUq]

E[pUq]
E[pUq] E[pUq]

E[pUq] E[pUq]
E[pUq]

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 23

Counterexamples
• Explain why the property fails to hold
• to disprove that φ holds on all elements of S, produce a single element s ∈

S s.t. ¬φ holds on s.
– counterexamples restricted to universally-quantified formulas

– counterexamples are paths (trees) from initial state illustrating the failure of
property

• AG ¬b2

s0
s1

• AF b2 ∨ AX ¬b2

s0

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2

f1
b2
f1

f1

s1

b2
f1

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 24

Generating Counterexamples
Negate the prop. and express using EX, EU, EG

• e.g., AG (p ⇒ AF q) becomes EF(p ∧ EG ¬q)
EX p :
find a successor state labeled with p

EG p:
follow successors labeled with EG p until a loop

is found

p

p
p

p

p

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 25

Generating Counterexamples (Cont’d)

E[p U q]:
remove all states not labeled with
p or q, then look for path to q

• This procedure works only for universal properties
• AX p
• AG (p ⇒ AF q)
• etc.

p
p

q

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 26

State Explosion

• How fast do Kripke structures grow?
• Composing linear number of structures yields exponential growth!
• Models of size 2100 are very easy to obtain

• How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, SAT).

• Do not need to represent and manipulate the entire model.
• Abstraction

• abstract away variables in the model which are not relevant to the formula being checked
• Composition

• Break the verification problem down into several simpler verification problems

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 27

Symbolic Model Checking

• Why?
• Saves us from constructing a model state space explicitly. Effective “cure” for

state space explosion.

• How?
• Sets of states and the transition relation are represented by formulas. Set

operations are defined in terms of formula manipulations

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 28

Representing Models Symbolically
• A system state represents an interpretation (truth assignment) for a set of

propositional variables V
Formulas represent sets of states that satisfy it

False = ∅, True = S
f1 – set of states in which f1 is true – {s0, s1}
f2 – set of states in which f2 is true – {s2, s3}

f1 ∨ f2 = {s0, s1 , s2 , s3} = S

State transitions are described by relations over two sets of variables: V (source state) and V’
(destination state)
Transition (s2, s3) is ¬b1 ∧ ¬b2 ∧ ¬f1 ∧ f2 ∧ b1‘ ∧ ¬b2 ‘∧ ¬f1‘∧ f2‘

Relation R is described by disjunction of formulas for individual transitions

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 29

A slight aside – SAT solving

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 30

What is SAT?

SATisfying
assignment!

Given a propositional formula in CNF, find if there exists an assignment to
Boolean variables that makes the formula true:

ω1 = (b c)

ω2 = (¬a ¬d)

ω3 = (¬b d)

ϕ = ω1 ω2 ω3

A = {a=0, b=1, c=0, d=1}

∧ ∧

clauses

literals

∨∨

∨

∨

University of Toronto, CSC2125, Lecture 2-3: Testing and
Verification 31

DPLL: Historical Perspective

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 32

DPLL Insight

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 33

Deduction in DPLL

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 34

Propositional Resolution

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 35

Unit Resolution

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 36

Boolean Constraint Propagation (BCP) Example

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 37

Basic DPLL

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 38

An Optimization: Pure Literal Propagation

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 39

DPLL with Pure Literal Propagation

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 40

Example

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 41

Example Cont.

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 42

SAT-Based Model-Checking

• Expand transition relation a fixed number of steps (e.g., loop unrolling),
resulting in a formula

• For this unrolling, check whether the property holds
• Continue increasing the unrolling until error is found, resources are exhausted,

or diameter of the problem is reached
• Based on very fast SAT solvers (e.g., ZChaff)

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 43

Given: transition system M, temporal logic formula f,
user-supplied time bound k

Construct: propositional formula Ω(k) that is satisfiable iff f is valid along a
path of length k

Path of length k:)()(1,

1

00 +

−

=
∧∧ ii

k

i
ssRsI

Say f = EF p (p is reachable) and k = 2, then

)(),(),()((2) 21021100 pppssRssRsI ∨∨∧∧∧=Ω

Bounded Model Checking

starting from the initial state, go k steps forward

An approach to symbolic model-checking that uses SAT solvers. It is called
Bounded Model Checking.

Applications:
• A.I. Planning problems: can we reach a desired state in k steps?
• Verification of safety properties: can we find a bad state in k steps?
• Verification: can we find a counterexample in k steps?

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

44

BMC idea: Checking Invariants
AG p means p must hold in every state along any path of length k

i

k

iii

k

i
pssRsIk

01,

1

00))()(()(
=+

−

=
∧∧ →∧=Ω¬

i

k

iii

k

i
pssRsIk ¬∧∧=Ω

=+

−

=
∨∧

01,

1

00)()()(

We take

So

p is preserved up to k-th transition iff Ω(k) is unsatisfiable:

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

pssRsIk
k

iii

k

i
¬∧∧=Ω

=+

−

=
∨∧

01,

1

00)()()(

If satisfiable, satisfying assignment gives counterexample to the
safety property.

University of Toronto, CSC2125, Lecture 2-3: Testing and
Verification 45

Safety property: AG

00

01 10

11

Ω(2) is unsatisfiable.

Ω(3) is satisfiable.

Initial state:

Transition:

∧
∨∧
∨∧

∧

¬=∧≠=

∧¬=∧≠=
∧¬∧¬Ω

)(
)(
)(

)(
)(

)(:)2(

22

11

00

12112

01001
00

rl
rl
rl

rrrll
rrrll

rl

:R

rlI ¬∧¬:

¬=
∧≠=

rr
rll

'
)('

)(rl ¬∨¬

Example: A two-bit counter

University of Toronto, CSC2125, Lecture 2-3: Testing and
Verification 46

Unbounded Model Checking

• A variety of methods to exploit SAT and BMC for unbounded model
checking:

• Completeness Threshold
• k - induction
• Abstraction (refutation proofs useful here)
• Exact and over-approximate image computations (refutation proofs useful

here)
• Use of Craig interpolation

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 47

Pros and Cons of Model-Checking
• Often cannot express full requirements

• Instead check several smaller properties

• Largely automatic and fast

• Few systems can be checked directly

• Must generally abstract

• Work better for certain types of problems

• Very useful for control-centered concurrent systems, such as avionics software,
hardware, communication protocols

• Not very good at data-centered systems such as user interfaces and databases

• Better use for debugging rather than assurance

• Testing vs model-checking
• Usually, find more problems by exploring all behaviours of a downscaled system

than by testing some behaviours of the full system
• Bounded exploration – all behaviors of a downscaled system up to a particular

depth

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 48

(White-Box) Testing Primer

University of Toronto, CSC2125, Lecture 2-3: Testing and
Verification 49

Code Coverage

Introduced by Miller and Maloney in 1963

50University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

51

Coverage Criteria

• Line coverage
• Statement
• Function/Method coverage
• Branch coverage
• Decision coverage
• Condition coverage
• Condition/decision coverage
• Modified condition/decision coverage
• Path coverage
• Loop coverage
• Mutation adequacy
• …

Basic Coverage

Advanced Coverage

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Line Coverage

• Percentage of source code lines executed by test cases.
• For developer easiest to work with

• Precise percentage depends on layout?
• var x = 10; if (z++ < x) y = x+z;

• Requires mapping back from binary?

• In practice, coverage not based on lines, but on
control flow graph

52University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Statement coverage

• Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

void foo (z) {
var x = 10;
if (z++ < x) {
x=+ z;

}
}

• Coverage:
executed statements

statements

@Test
void testFoo() {

foo(10);
}

53University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Statement coverage

• Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

void foo (z) {
var x = 10;
if (z++ < x) {
x=+ z;

}
}

• Coverage:
executed statements

statements

@Test
void testFoo() {

foo(10);
}

54University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Statement coverage

• Adequacy criterion: each statement (or node in the CFG) must be
executed at least once

void foo (z) {
var x = 10;
if (z++ < x) {
x=+ z;

}
}

• Coverage:
executed statements

statements

@Test
void testFoo() {

foo(5);
}
// 100% statement coverage

55University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

56

Deriving a Control Flow Graph

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

Splitting multiple
conditions depends
on goal of analysis

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Control Flow Based
Adequacy Criteria

• Every block /
Statement?

57

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

One test case: b2,3,4,5,6,7,3,8
Input: “a”

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

58

Branch Coverage

• Every path going out of node executed at least once
• Decision-, all-edges-, coverage
• Coverage: percentage of edges hit.

• Each predicate must be both true and false

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

Branch Coverage

• One longer input:
• “a\n\n”

• Alternatively:
• Block (“a”) and
• “\n” and
• “\n\n”

59University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Condition Testing

• Compound predicates:
• (((a || b) && c) || d) && e

• Should we test the effect of individual conditions on the
outcome?

1. Basic condition: each cond. true, false
2. Branch and condition: same, + branch
3. Compound condition: each combination, 2^N (costly)
4. Modified Condition / Decision Coverage (MC/DC)

60University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

MC/DC: Modified Condition +
Decision Coverage

• Basic condition + decision coverage + ...
• each basic condition should independently affect outcome

of each decision
• Requires:

• For each basic condition C, two test cases,
• values of all evaluated conditions except C are the same
• compound condition as a whole evaluates to true for one

and false for the other
• N + 1 cases, for N conditions.

61University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Example: Basic Condition Coverage

foo (A, B, C) {
if ((A || B) && C) {

/* statements*/
}
else {
/* statements*/

}
}

In order to ensure Condition coverage criteria for this
example, A, B and C should be evaluated at least one time
"true" and one time "false" during tests:

T1: foo(true, true, true)
// A = true, B = true, C = true

T2: foo(false, false, false)
// A = false, B = false, C = false

62University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Example: Decision Coverage

if ((A || B) && C) {

/* instructions */

}

else {

/* instructions */

}

In order to ensure Decision coverage criteria, the
condition ((A or B) and C) should also be evaluated
at least one time to "true" and one time to "false”:

A = true, B = true, C = true ---> "true"

A = false, B = false, C = false ---> "false"

63University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Example: MC/DC

if ((A || B) && C) {
/* instructions */

}
else {
/* instructions */
}

In order to ensure MC/DC criteria, each boolean variable
should be evaluated one time to "true" and one time to
"false", and this with affecting the decision's outcome:

A = true / B = false / C = true ---> "true”
A = false / B = false / C = true ---> "false”
A = false / B = true / C = true ---> "true"
A = false / B = true / C = false ---> "false”

64University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

65

(((a || b) && c) || d) && e

#tc a b c d e outcome
t1 T F T F T T
t2
t3
t4
t5
t6
t7
t8
t9
t10

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

66

(((a || b) && c) || d) && e

#tc a b c d e outcome
t1 T F T F T T
t2 F F T F T F
t3 F T T F T T
t4 F F T F T F =t2
t5 T F T F T T =t1
t6 T F F F T F
t7 - - F T T T
t8 T F F F T F =t6
t9 - - - T T T =t7
t10 - - - - F F

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

67

(((a || b) && c) || d) && e

#tc a b c d e outcome
t1 T F T F T T
t2 F F T F T F
t3 F T T F T T
t6 T F F F T F
t7 - - F T T T
t10 - - - - F F

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

DO-178B/ED-12B Software Considerations in
Airborne Systems and Equipment Certification

Failure Condition Software Level Coverage

Catastrophic A MC/DC

Hazardous / Severe B Decision Coverage

Major C Statement Coverage

Minor D

No Effect E

68

• The worldwide avionics software standard which
all airborne software is required to comply.

• The world’s strictest software standard
• Influences other domains including medical

devices, transportation, and telecommunications.
University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

69

Coverage Criteria

• Line coverage
• Statement
• Function/Method coverage
• Branch coverage
• Decision coverage
• Condition coverage
• Condition/decision coverage
• Modified condition/decision coverage
• Path coverage
• Loop coverage
• Mutation adequacy
• …

Basic Coverage

Advanced Coverage

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Path Coverage

70

for I = 1...N

if ...

x[i] += 100; x[i] *= 100;

endfor I = 1...N

if ...

x[i] += 100; x[i] *= 100;

Adequacy criterion: each path must be executed at least once
Coverage:

executed paths
paths

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Branch vs Path Coverage

71

if(cond1)
f1();

else
f2();

if(cond2)
f3();

else
f4();

How many test cases to achieve
branch coverage?

Two, for example:

1. cond1: true, cond2: true
2. cond1: false, cond2: false

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Branch vs Path Coverage

72

if(cond1)
f1();

else
f2();

if(cond2)
f3();

else
f4();

How about path
coverage?

Four:

1. cond1: true, cond2: true
2. cond1: false, cond2: true
3. cond1: true, cond2: false
4. cond1: false, cond2: false

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Branch vs Path Coverage

73

if(cond1)
f1();

else
f2();

if(cond2)
f3();

else
f4();

if(condN)
fN();

else
fN();

if(condN)
fN();

else
fN();

if(condN)
fN();

else
fN();

if(condN)
fN();

else
fN();

if(condN)
fN();

else
fN();

How many test cases for
path coverage?

2n test cases

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Path Coverage

• “Loop boundary” testing:
• Limit the number of traversals of loops: Zero, once, many

• “Boundary interior” testing:
• Unfold loop as tree

• “Linear Code Sequence and Jump”, LCSJ
• Limit the length of the paths to be traversed

• “Cyclomatic complexity” / McCabe
• “Linearly independent paths”

74University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

75

Is 100% Coverage Feasible?

• Mutually exclusive conditions
• (a < 0 && a < 10)

• (T && F) is not feasible

• Dead code / unreachable code
• “This should never happen” code

Systems in practice:
Statement coverage 85-90%

feasible

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

76

Infeasible Paths Example

int example (int a) {
int r = OK;
int a = -1;

if(a == -1) {
r = ERROR_CODE;
ERXA_LOG(r);

}

if(a == -2) {
r = OTHER_ERROR_CODE;
ERXA_LOG(r);

}

return r;
}

Three feasible paths: a = -1; a = -2 or any other a.
Infeasible path: a == -1 as well as a == -2.

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

77

Coverage Strategy Subsumption

• Strategy X subsumes strategy Y if
• all elements that Y covers are also covered by X

• Subsumes hierarchy:
• Analytical ranking of coverage metrics
• E.g.: MC/DC > all branches > all statements

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Subsumption relation

78University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Coverage: Useful or Harmful?

• Measuring coverage (% of satisfied test obligations) can be a useful
indicator ...

• Of progress toward a thorough test suite, of trouble spots requiring more
attention

• ... or a dangerous seduction
• Coverage is only a proxy for thoroughness or adequacy
• It’s easy to improve coverage without improving a test suite (much easier than

designing good test cases)

• The only measure that really matters is effectiveness

79University of Toronto, CSC2125, Lecture 2-3: Testing and Verification

Deductive Reasoning by
Example

University of Toronto, CSC2125, Lecture 2-3: Testing and
Verification 80

Example: a library information system

• Consider a (very) simplified library, where new books can be added to and
removed from the library’s holdings, and users can borrow and return books.

• Some examples of specifications for this domain:
• No matter what the state of the library is, every book in the library’s holdings must be

available to be borrowed, or be on loan.
∀b,s[InHoldings(b,s) Available(b,s) ∨ ∃p OnLoan(b,p,s)]

Here, s is a state variable.
• In every state, no book may be simultaneously on loan and available to be borrowed.

∀b,s{InHoldings(b,s) ⇒ ¬[Available(b,s) ∧ ∃p OnLoan(b,p,s)]}
• Two different people cannot have the same book on loan.

∀b,s {InHoldings(b,s) ⇒ ¬∃p,p′[OnLoan(b,p,s) ∧ OnLoan(b,p′,s) ∧ p ≠ p′]}

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 81

System transactions
• Operations that change the state of the system are called transactions.

For the library system,

• a person p borrowing book b
is such a transaction, whose effect is to change the current state s of the library to a
state s′ in which OnLoan(b,p,s′) and ¬Available(b,s′) hold.

• Transactions have preconditions, which are conditions on the system state
under which it is possible to perform the transaction.

• Transactions have postconditions, which are the properties that must be true
in the system state resulting from performing the transaction.

• We specify a transaction by specifying its precondition and postcondition.

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 82

Invariance under transactions

• What kinds of properties do we want to prove?
• The most important are system properties that are invariant under transactions,

defined as follows:

When property P holds in system state s, and a transaction changes the system state from s
to s′, then P continues to hold in the new state s′.

• So for a property P that is invariant, assuming that P holds in the initial state of
the system, P will be true in every state that the system passes through.

That is, no matter what transactions are performed, and no matter how many of them are
performed, nothing will ever make P false.

• Why is this good?
For an air traffic control system, consider the property:

No two planes are on an arrival runway within a one minute time period.

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 83

Invariance as an entailment

• Now assume that the programmer has done his/her job correctly. This means we
have the following:

If the precondition holds in s, and the transaction changes the system from s to s′, then
the postcondition holds from s to s′,

• To show invariance, it is therefore sufficient to prove:
If P holds in s, and the precondition holds in s, and the postcondition holds from s to s′,
then P will hold in s′.

• Formally, we wish to prove that
Σ ∀ x1,...,xn,s, s′ (P(s) ∧ TransPrecond(x1,...,xn,s) ∧ TransPostcond(x1,...,xn,s,s′) ⊃ P(s′))

where Σ defines the transaction pre and postconditions
x1,...,xn are the arguments of the transaction
P is the property to be shown invariant
TransPrecond is the transaction precondition
TransPostcond is the transaction postcondition

=

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 84

Showing invariants for the library

Aim to show that the first desired property
∀b [InHoldings(b,s) ⇒ Available(b,s) ∨ ∃p OnLoan(b,p,s)]
is invariant under the transaction of borrowing a book.

In other words, we prove the following:
Σ ∀ b,p,s,s′ (P(s) ∧ BorrowPrecond(b,p,s) ∧ BorrowPostcond(b,p,s,s′) ⇒

P(s′)),
where P(s) is the property above, and where Σ contains the equivalences

BorrowPrecond and BorrowPostcond.

=

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 85

Proof sketch

We sketch the structure of a derivation, starting with the entailment to be proved as
the root:
1.Using ∀I and ⊃I repeatedly, replace universals by new constants and move antecedents into Σ:

Σ′ Available(β,σ′) ∨ ∃p OnLoan(β,p,σ′)
2.Using the derived rule for equivalences (see below), expand the BorrowPrecond and BorrowPostcond in

Σ. Then use the equivalences from the postcondition to eliminate all of the σ′ arguments to predicates:

Σ′′ (Available(β,σ) ∧ β ≠ γ) ∨ ∃p (β=γ ∧ p=ρ ∨ OnLoan(β,p,σ)))
3.Use logical equivalences (see below) to reformulate the conclusion in the following equivalent form:

Σ′′ Available(β,σ) ∨ β=γ ∨ ∃p OnLoan(β,p,σ)
4.Use the rule ∨I to reduce this to:

Σ′′′ Available(β,σ) ∨ ∃p OnLoan(β,p,σ)
5.Reduce this to two goals using ⊃E:

Σ′′′ InHoldings(β,σ)
Σ′′′ InHoldings(β,σ) ⊃ (Available(β,σ) ∨ ∃p OnLoan(β,p,σ))

6.The first goal is solved immediately in Σ′′′. The second is solved by applying ∀E (to the initial invariant in
Σ′′′).

=

=

=

=

=

=

new
constant

Greek
letter

=

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 86

Using equivalences
• The use of equivalences is very important in proofs. In the above proof, we used two
• derived rules of inference for equivalences:

• IF Σ ∀x1...xn(P(x1,...,xn) ≡ H) and Σ F THEN Σ′ F′
where F′ and Σ′ are like F and Σ, but with some occurrences of P(t1,...,tn) replaced by H[x1/t1,...,xn/tn]

This derived rule is most often used when a “definition” of P is included as part of Σ.
The equivalences that were used in Step 2:

• Σ ∀p∀b∀s (BorrowPrecond(p,b,s) ≡ ...)
• Σ ∀p∀b∀s∀s′ (BorrowPostcond(p,b,s,s′) ≡ ...)
• Σ ∀b′(Available(b′,σ′) ≡ ...) (from the postcondition)
• Σ ∀b′(InHoldings(b′,σ′) ≡ ...) (from the postcondition)
• Σ ∀b′p′(OnLoan(b′,p′σ′) ≡ ...) (from the postcondition)

• IF Σ (G ≡ H) and Σ F THEN Σ′ F′
where F′ and Σ′ are like F and Σ, but with some occurrences of G as a subformula replaced by H.

This derived rule is most often used when H is logically equivalent to but simpler than G. A
separate subproof is usually needed to prove this equivalence.

The equivalences that were used in Step 3 of the proof are on the next slide.

= ==

= ==

=

=

=

=

=

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 87

Equivalences used in the invariant proof
• In Step 3 of the proof above, a number of logical equivalences were used to

reformulate the conclusion:
(Available(β,σ) ∧ β ≠ γ) ∨ ∃p (β=γ ∧ p=ρ ∨ OnLoan(β,p,σ)))

use equivalence: ∃x(F∨G) ≡ ∃xF ∨ ∃xG
(Available(β,σ) ∧ β ≠ γ) ∨ ∃p (β=γ ∧ p=ρ) ∨ ∃p OnLoan(β,p,σ))

then use equivalence: ∃x(F∧G) ≡ F ∧ ∃xG, when x is not free in F

(Available(β,σ) ∧ β ≠ γ) ∨ (β=γ ∧ ∃p (p=ρ)) ∨ ∃p OnLoan(β,p,σ))
then use equivalence: F ∧ ∃x(x=c) ≡ F

(Available(β,σ) ∧ β ≠ γ) ∨ β=γ ∨ ∃p OnLoan(β,p,σ)
then use equivalence: (F ∧¬G) ∨G ≡ F ∨G

Available(β,σ) ∨ β=γ ∨ ∃p OnLoan(β,p,σ)

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 88

Computer-aided theorem-proving

• Even for the simple library system, proving the invariant properties by hand is
lengthy and tedious.

• Fortunately, much of this work can be automated.
The rules of inference, plus their derived rules, can be implemented.

• The resulting theorem-proving system can be fully automatic, or interactive.
• In the first case, the system is expected to find a derivation on its own. This is feasible for

simple theorems like those for the library.
cf. systems such as Otter, SETHEO

• But many theorems require human ingenuity and insight, in which case interactive
theorem-provers perform the “routine” work, interactively asking the user for help when
they get stuck.

cf. systems such as PVS, NuPerl

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 89

Summary: Validation of Systems

University of Toronto, CSC2125, Lecture 2-3: Testing and Verification 90

	CSC2125: Safety and Certification of Autonomous Vehicles
	Validation of Systems
	Simulation
	Deductive Verification
	Plan for this portion of the material
	Model Checking Intro
	Guaranteeing system properties
	Model checking
	Overview of Model Checking
	Model Checking in Industry
	Modeling
	Some Model Checking Approaches
	Models: Kripke Structures
	Paths
	Computation Tree Logic (CTL)
	CTL: Computation Tree Logic
	Examples
	Examples (Cont’d)
	CTL Examples
	Some More Statements To Express
	CTL Model-Checking
	CTL Model-Checking (Cont’d)
	CTL Model-Checking (Cont’d)
	Counterexamples
	Generating Counterexamples
	Generating Counterexamples (Cont’d)
	State Explosion
	Symbolic Model Checking
	Representing Models Symbolically
	A slight aside – SAT solving
	What is SAT?
	DPLL: Historical Perspective
	DPLL Insight
	Deduction in DPLL
	Propositional Resolution
	Unit Resolution
	Boolean Constraint Propagation (BCP) Example
	Basic DPLL
	An Optimization: Pure Literal Propagation
	DPLL with Pure Literal Propagation
	Example
	Example Cont.
	SAT-Based Model-Checking
	Bounded Model Checking
	BMC idea: Checking Invariants
	Example: A two-bit counter
	Unbounded Model Checking
	Pros and Cons of Model-Checking
	(White-Box) Testing Primer
	Code Coverage
	Coverage Criteria
	Line Coverage
	Statement coverage
	Statement coverage
	Statement coverage
	Deriving a Control Flow Graph
	Control Flow Based �Adequacy Criteria
	Branch Coverage
	Branch Coverage
	Condition Testing
	MC/DC: Modified Condition + �Decision Coverage
	Example: Basic Condition Coverage
	Example: Decision Coverage
	Example: MC/DC
	Slide Number 65
	Slide Number 66
	Slide Number 67
	DO-178B/ED-12B Software Considerations in �Airborne Systems and Equipment Certification
	Coverage Criteria
	Path Coverage
	Branch vs Path Coverage
	Branch vs Path Coverage
	Branch vs Path Coverage
	Path Coverage
	Is 100% Coverage Feasible?
	Infeasible Paths Example
	Coverage Strategy Subsumption
	Subsumption relation
	Coverage: Useful or Harmful?
	Deductive Reasoning by Example
	Example: a library information system
	System transactions
	Invariance under transactions
	Invariance as an entailment
	Showing invariants for the library
	Proof sketch
	Using equivalences
	Equivalences used in the invariant proof
	Computer-aided theorem-proving
	Summary: Validation of Systems

