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Validation of Systems 
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Simulation
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Deductive Verification
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Plan for this portion of the material

• Model-checking intro
• Temporal logics
• Models
• Bounded model-checking with SAT

• Testing coverage and adequacy criteria
• Deductive verification by an example (if time allows)

Material for these slides came from CSC410 (Testing and Verification), 
CSC2108 (Automated Verification) and an Advanced BMC tutorial by Keijo 

Heljanko and Tommi Junttila
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Model Checking Intro
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Guaranteeing system properties
• Safety critical systems:

• Air traffic control systems.
• Launch and control systems for space exploration.
• Nuclear power plants.

• For complex systems like these, certain system properties must be 
guaranteed to hold.

• In other words, certain consequences must follow from the specification of 
the system.

e.g., Two aircrafts must never try to use the same incoming runway within a one 
minute interval.
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Model checking
• In systems that respond to events or signals, it is often useful to think of the 

system as starting in some initial state, and making transitions from state to state. 
examples: telephones, ATMs, elevators

• For systems of this sort, we are interested in verifying properties (typically, about 
infinite behaviours) like the following:

• Can the system ever get into a certain state?
• If it ever gets into state A, can it eventually then go into state B?
• From any state it gets into, will it always get back to a starting state?

• One technique that has been found useful for verifying properties like these is the 
following:

• model the system as a structure of a certain logical language
• formulate the property to be checked as a sentence in the language
• determine whether or not the sentence is true in the structure.

• This is called model-checking.
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Overview of Model Checking

Yes/No and
Counter-example

SW/HW 
artifact

Correctness
properties

Temporal
logic

Model of
System

Model 
Extraction Translation

Model-checker 

Correct?
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Model Checking in Industry
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Modeling
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Some Model Checking Approaches
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Models: Kripke Structures
• State Transition Systems 

• K = <V, S, s0, I , R>
• V is a (finite) set of atomic propositions, 

e.g., {p, q, r, f, b}
• “Call button is on”
• “There are no requested jobs for the printer”
• “Conveyer belt is stopped”

Should not involve time!

• S is a (finite) set of states
• s0 ∈ S is a start state
• I: S → 2V is a labeling function that maps each state to the set of propositional variables that 

hold in it 
Alternatively: a set of interpretations specifying which propositions are true in each state

• R ⊆ S × S is a transition relation over S

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2
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Paths

• A path over 〈S, s0, R 〉  is a non-empty sequence h of states such that                  
if h = ... s·s′..., then (s, s′) ∈ R.

For example, consider the system 〈S, s0 , R 〉
where S = {s0, s1} and 

R = { (s0, s0), (s0, s1), (s1, s0) }
Then here are some paths over this system:
• s1
• s1·s0
• s0·s1·s0·s0
• s0·s0·s0·s0·s0·s0· ...
• s0·s1·s0·s0·s1·s0·s0·s0·s1·s0·s0·s0·s0·s1· ...
The last two are infinite paths
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Computation Tree Logic (CTL)

• CTL: Branching-time propositional temporal logic
• Model - a tree of computation paths
• Example:

State-transition graph
(called Kripke structure)

Tree of computation

S1 S2

S3

S2

S1 S3

S1 S3S2

S2

S1

S1 S3 S1 S3
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CTL:  Computation Tree Logic
• Def. CTL is a branching-time temporal logic.  It allows explicit quantification 

over possible futures.   CTL is a language without quantifiers that includes the 
usual boolean connectives as well as the following temporal connectives:

EX p :          p holds in some next states                                                                            
(translated as ∃s [Next(s,start) ∧ P(s)] )

EF p:           along some path,  p is true in a future state
E[p U q] :    along some path, p holds until q holds
EG p :          along some path, p holds in every state
AX p:           p holds in all next states
AF p:           along all paths, p is true in a future state
A[p U q]:     along all paths, p holds until q holds
AG p:          along all paths, p holds in every state
A state is mentioned explicitly or else the property is assumed to be about the initial state
• More compact representation than first-order logic but less expressive.
• Meant to reason only about infinite behaviours.
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Examples

p

EX p (exists next)

p

AX p (all next)

p

p
p

p
p

EG p (exists global)

p
p

p pp
pp p p p

AG p (all global)

p



Examples (Cont’d)

p

EF p (exists future)

p
p p

AF p (all future)

p

p
p

q

E[pUq] (exists until)

p
p

p q
q

A[pUq] (all until)

q



CTL Examples
• Which of the properties hold?

• (AX f1)(s0)
• (EG f2)(s2)
• A [b1 U f1] (s3) 
• AG (b1 ⇒ AF f1)
• AG (f1 ∨ f2)

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2
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Some More Statements To Express

• When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

• A process is enabled infinitely often on every computation path
• AG AF enabled

• A process will eventually be permanently deadlocked
• AF AG deadlock

• Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]
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CTL Model-Checking

• Receive: 
• Kripke structure K
• Temporal logic formula f

• Assumptions:
• Finite number of processes

• Each having a finite number of finite-valued variables
• Finite length of a CTL formula

• Algorithm:
• Label states of K with subformulas of f that are satisfied there and working 

outwards towards f.
• Output states labeled with f
Example:  EX EG (p ⇒ E[p U q]) 
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CTL Model-Checking (Cont’d)
• EX p

• Label any state with EX p if any of 
its successors are labeled with p

• E [p U q]
• If any state s is labeled with q, label it 

with E[p U q]
• Repeat:  

label any state with E[p U q]
if it is labeled with p and at   least one 

of its successors is labeled with E[p U q]
until there is no change

p p

qp
p

q
qp

p

q

qp
p

q
qp

p

q

Fragment of 
Kripke structure.

Dark dots are 
states labelled 
with appropriate 
subformula

EX p

E[pUq]
E[pUq]

E[pUq]

E[pUq]
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CTL Model-Checking (Cont’d)

• EG p
• Label every node labeled with p by EG p
• Repeat:  

remove label EG p from any state that does not 
have successors labeled by EG p

until there is no change

p
p pp

p

p
p pp

p

p
p pp

pFragment of Kripke structure.

Dark dots are states labelled with 
appropriate subformula

E[pUq]E[pUq]
E[pUq]

E[pUq]
E[pUq] E[pUq]

E[pUq] E[pUq]
E[pUq]
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Counterexamples
• Explain why the property fails to hold
• to disprove that φ holds on all elements of S, produce a single element s ∈

S s.t. ¬φ holds on s.
– counterexamples restricted to universally-quantified formulas

– counterexamples are paths (trees) from initial state illustrating the failure of 
property

• AG ¬b2

s0
s1

• AF b2 ∨ AX ¬b2

s0

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2

f1
b2
f1

f1

s1

b2
f1
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Generating Counterexamples
Negate the prop. and express using EX, EU, EG

• e.g., AG (p ⇒ AF q) becomes EF(p ∧ EG ¬q)
EX p :
find a successor state labeled with p

EG p:
follow successors labeled with EG p until a loop                                                   

is found

p

p
p 

p 

p 
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Generating Counterexamples (Cont’d)

E[p U q]:
remove all states not labeled with 
p or q, then look for path to q

• This procedure works only for universal properties
• AX p
• AG (p ⇒ AF q)
• etc.

p
p

q
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State Explosion

• How fast do Kripke structures grow? 
• Composing linear number of structures yields exponential growth!
• Models of size 2100 are very easy to obtain

• How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, SAT). 

• Do not need to represent and manipulate the entire model.
• Abstraction 

• abstract away variables in the model which are not relevant to the formula being checked 
• Composition

• Break the verification problem down into several simpler verification problems

University of Toronto, CSC2125,  Lecture 2-3:  Testing and Verification 27



Symbolic Model Checking

• Why?
• Saves us from constructing a model state space explicitly.  Effective “cure” for 

state space explosion.

• How?
• Sets of states and the transition relation are represented by formulas.  Set 

operations are defined in terms of formula manipulations 
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Representing Models Symbolically
• A system state represents an interpretation (truth assignment) for a set of 

propositional variables V
Formulas represent sets of states that satisfy it

False = ∅, True = S
f1 – set of states in which f1 is true – {s0, s1}
f2 – set of states in which f2 is true – {s2, s3}

f1 ∨ f2 = {s0, s1 , s2 , s3} = S

State transitions are described by relations over two sets of variables:  V (source state) and V’
(destination state)
Transition (s2, s3) is ¬b1 ∧ ¬b2 ∧ ¬f1 ∧ f2 ∧ b1‘ ∧ ¬b2 ‘∧ ¬f1‘∧ f2‘

Relation R is described by disjunction of formulas for individual transitions

s0

s1

s2 s3

b2
f1

f2

f1

b1
f2
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A slight aside – SAT solving
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What is SAT?

SATisfying 
assignment!

Given a propositional formula in CNF, find if there exists an assignment to 
Boolean variables that makes the formula true:

ω1 = (b c) 

ω2 = (¬a ¬d)

ω3 = (¬b d)

ϕ = ω1 ω2 ω3

A = {a=0, b=1, c=0, d=1}

∧ ∧

clauses

literals

∨∨

∨

∨
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DPLL:  Historical Perspective
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DPLL Insight
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Deduction in DPLL
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Propositional Resolution
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Unit Resolution
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Boolean Constraint Propagation (BCP) Example
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Basic DPLL

University of Toronto, CSC2125,  Lecture 2-3:  Testing and Verification 38



An Optimization:  Pure Literal Propagation
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DPLL with Pure Literal Propagation
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Example
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Example Cont.
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SAT-Based Model-Checking

• Expand transition relation a fixed number of steps (e.g., loop unrolling), 
resulting in a formula

• For this unrolling, check whether the property holds
• Continue increasing the unrolling until error is found, resources are exhausted, 

or diameter of the problem is reached
• Based on very fast SAT solvers (e.g., ZChaff)
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Given: transition system M, temporal logic formula f,                                         
user-supplied time bound k

Construct: propositional formula Ω(k) that is satisfiable iff f is valid along a 
path of length k

Path of length k:  )()( 1,

1

00 +

−

=
∧∧ ii

k

i
ssRsI

Say   f = EF p (p is reachable)  and   k = 2, then

)(),(),()( (2) 21021100 pppssRssRsI ∨∨∧∧∧=Ω

Bounded Model Checking

starting from the initial state, go k steps forward 

An approach to symbolic model-checking that uses SAT solvers.  It is called 
Bounded Model Checking.

Applications:
• A.I. Planning problems: can we reach a desired state in k steps?
• Verification of safety properties: can we find a bad state in k steps?
• Verification: can we find a counterexample in k steps?
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BMC idea:  Checking Invariants
AG p means p must hold in every state along any path of length k

i

k

iii

k

i
pssRsIk

01,

1

00 ))()(()(
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1
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We take

So

p is preserved up to k-th transition iff Ω(k) is unsatisfiable: 

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

pssRsIk
k

iii

k

i
¬∧∧=Ω

=+

−

=
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01,

1

00 )()()(

If satisfiable, satisfying assignment gives counterexample to the 
safety property.
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Safety property: AG
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Ω(2) is unsatisfiable.

Ω(3) is satisfiable.
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Example:  A two-bit counter
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Unbounded Model Checking

• A variety of methods to exploit SAT and BMC for unbounded model 
checking:

• Completeness Threshold
• k - induction
• Abstraction (refutation proofs useful here)
• Exact and over-approximate image computations (refutation proofs useful 

here)
• Use of Craig interpolation
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Pros and Cons of Model-Checking
• Often cannot express full requirements

• Instead check several smaller properties

• Largely automatic and fast

• Few systems can be checked directly

• Must generally abstract 

• Work better for certain types of problems

• Very useful for control-centered concurrent systems, such as avionics software, 
hardware, communication protocols

• Not very good at data-centered systems such as user interfaces and databases

• Better use for debugging rather than assurance

• Testing vs model-checking
• Usually, find more problems by exploring all behaviours of a downscaled system 

than by testing some behaviours of the full system
• Bounded exploration – all behaviors of a downscaled system up to a particular 

depth

University of Toronto, CSC2125,  Lecture 2-3:  Testing and Verification 48



(White-Box) Testing Primer
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Code Coverage

Introduced by Miller and Maloney in 1963 
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Coverage Criteria

• Line coverage
• Statement
• Function/Method coverage
• Branch coverage
• Decision coverage
• Condition coverage
• Condition/decision coverage
• Modified condition/decision coverage
• Path coverage
• Loop coverage
• Mutation adequacy
• …

Basic Coverage

Advanced Coverage
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Line Coverage

• Percentage of source code lines executed by test cases.
• For developer easiest to work with

• Precise percentage depends on layout?
• var x = 10; if  (z++ < x) y = x+z;

• Requires mapping back from binary?

• In practice, coverage not based on lines, but on 
control flow graph
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Statement coverage

• Adequacy criterion: each statement (or node in the CFG) must be 
executed at least once 

void foo (z) {                         
var x = 10; 
if (z++ < x) {
x=+ z;

}
}

• Coverage:
# executed statements

# statements

@Test
void testFoo() {

foo(10);
}
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Statement coverage

• Adequacy criterion: each statement (or node in the CFG) must be 
executed at least once 

void foo (z) {                         
var x = 10; 
if (z++ < x) {
x=+ z;

}
}

• Coverage:
# executed statements

# statements

@Test
void testFoo() {

foo(10);
}
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Statement coverage

• Adequacy criterion: each statement (or node in the CFG) must be 
executed at least once 

void foo (z) {                         
var x = 10; 
if (z++ < x) {
x=+ z;

}
}

• Coverage:
# executed statements

# statements

@Test
void testFoo() {

foo(5);
}
// 100% statement coverage
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Deriving a Control Flow Graph

  {
        char last = argStr.charAt(0);
        StringBuffer argBuf = new StringBuffer();

        for (int cIdx = 0 ; 

{
            char ch = argStr.charAt(cIdx);
            if (ch != '\n' 

cIdx < argStr.length();

True

True

{
                argBuf.append(ch);
                last = ch;
            }

True

}
cIdx++)

return argBuf.toString();
    }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

public static String collapseNewlines(String argStr)
{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
{

char ch = argStr.charAt(cIdx);
if (ch != '\n' || last != '\n')
{

argBuf.append(ch);
last = ch;

}
}

return argBuf.toString();
}

Splitting multiple 
conditions depends
on goal of analysis
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Control Flow Based 
Adequacy Criteria

• Every block / 
Statement?

57

  {
        char last = argStr.charAt(0);
        StringBuffer argBuf = new StringBuffer();

        for (int cIdx = 0 ; 

{
            char ch = argStr.charAt(cIdx);
            if (ch != '\n' 

cIdx < argStr.length();

True

True

{
                argBuf.append(ch);
                last = ch;
            }

True

}
cIdx++)

return argBuf.toString();
    }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

One test case: b2,3,4,5,6,7,3,8
Input: “a”
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Branch Coverage

• Every path going out of node executed at least once
• Decision-, all-edges-, coverage
• Coverage: percentage of edges hit.

• Each predicate must be both true and false
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  {
        char last = argStr.charAt(0);
        StringBuffer argBuf = new StringBuffer();

        for (int cIdx = 0 ; 

{
            char ch = argStr.charAt(cIdx);
            if (ch != '\n' 

cIdx < argStr.length();

True

True

{
                argBuf.append(ch);
                last = ch;
            }

True

}
cIdx++)

return argBuf.toString();
    }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

Branch Coverage

• One longer input:
• “a\n\n”

• Alternatively:
• Block (“a”) and
• “\n” and
• “\n\n”
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Condition Testing

• Compound predicates:
• (((a || b) && c) || d) && e

• Should we test the effect of individual conditions on the  
outcome?

1. Basic condition: each cond. true, false
2. Branch and condition: same, + branch
3. Compound condition: each combination, 2^N (costly)
4. Modified Condition / Decision Coverage (MC/DC)
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MC/DC: Modified Condition + 
Decision Coverage

• Basic condition  + decision coverage + ...
• each basic condition should independently affect outcome 

of each decision
• Requires:  

• For each basic condition C, two test cases,
• values of all evaluated conditions except C are the same
• compound condition as a whole evaluates to true for one 

and false for the other
• N + 1 cases, for N conditions.

61University of Toronto, CSC2125,  Lecture 2-3:  Testing and Verification



Example: Basic Condition Coverage

foo (A, B, C) {
if ( (A || B) && C ) {

/* statements*/
}
else {
/* statements*/

}
}

In order to ensure Condition coverage criteria for this 
example, A, B and C should be evaluated at least one time 
"true" and one time "false" during tests:

T1: foo(true, true, true) 
// A = true, B = true, C = true

T2: foo(false, false, false) 
// A = false, B = false, C = false
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Example: Decision Coverage

if ( (A || B) && C ) {

/* instructions */

}

else {

/* instructions */

}

In order to ensure Decision coverage criteria, the 
condition ( (A or B) and C ) should also be evaluated 
at least one time to "true" and one time to "false”:

A = true, B = true, C = true   ---> "true"

A = false, B = false, C = false  ---> "false"
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Example: MC/DC

if ( (A || B) && C ) {
/* instructions */

}
else {
/* instructions */
}

In order to ensure MC/DC criteria, each boolean variable
should be evaluated one time to "true" and one time to 
"false", and this with affecting the decision's outcome:

A = true  / B = false / C = true   --->  "true”
A = false / B = false / C = true   --->  "false”
A = false / B = true / C = true   --->  "true"
A = false / B = true  / C = false --->  "false”
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(((a || b) && c) || d) && e

#tc a b c d e outcome
t1 T F T F T T
t2
t3
t4
t5
t6
t7
t8
t9
t10
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(((a || b) && c) || d) && e

#tc a b c d e outcome
t1 T F T F T T
t2 F F T F T F
t3 F T T F T T
t4 F F T F T F =t2
t5 T F T F T T =t1
t6 T F F F T F
t7 - - F T T T
t8 T F F F T F =t6
t9 - - - T T T =t7
t10 - - - - F F
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(((a || b) && c) || d) && e

#tc a b c d e outcome
t1 T F T F T T
t2 F F T F T F
t3 F T T F T T
t6 T F F F T F
t7 - - F T T T
t10 - - - - F F
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DO-178B/ED-12B Software Considerations in 
Airborne Systems and Equipment Certification

Failure Condition Software Level Coverage

Catastrophic A MC/DC

Hazardous / Severe B Decision Coverage

Major C Statement Coverage

Minor D

No Effect E

68

• The worldwide avionics software standard which 
all airborne software is required to comply. 

• The world’s strictest software standard
• Influences other domains including medical 

devices, transportation, and telecommunications.
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Coverage Criteria

• Line coverage
• Statement
• Function/Method coverage
• Branch coverage
• Decision coverage
• Condition coverage
• Condition/decision coverage
• Modified condition/decision coverage
• Path coverage
• Loop coverage
• Mutation adequacy
• …

Basic Coverage

Advanced Coverage
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Path Coverage

70

for I = 1...N

if ...

x[i] += 100; x[i] *= 100;

endfor I = 1...N

if ...

x[i] += 100; x[i] *= 100;

Adequacy criterion: each path must be executed at least once 
Coverage:

# executed paths
# paths
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Branch vs Path Coverage

71

if( cond1 )
f1();

else
f2();

if( cond2 )
f3();

else
f4();

How many test cases to achieve
branch coverage?

Two, for example:

1. cond1: true, cond2: true
2. cond1: false, cond2: false
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Branch vs Path Coverage

72

if( cond1 )
f1();

else
f2();

if( cond2 )
f3();

else
f4();

How about path
coverage?

Four:

1. cond1: true, cond2: true
2. cond1: false, cond2: true
3. cond1: true, cond2: false
4. cond1: false, cond2: false
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Branch vs Path Coverage

73

if( cond1 )
f1();

else
f2();

if( cond2 )
f3();

else
f4();

if( condN )
fN();

else
fN();

if( condN )
fN();

else
fN();

if( condN )
fN();

else
fN();

if( condN )
fN();

else
fN();

if( condN )
fN();

else
fN();

How many test cases for 
path coverage?

2n test cases
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Path Coverage

• “Loop boundary” testing:
• Limit the number of traversals of loops: Zero, once, many

• “Boundary interior” testing:
• Unfold loop as tree

• “Linear Code Sequence and Jump”, LCSJ
• Limit the length of the paths to be traversed

• “Cyclomatic complexity” / McCabe
• “Linearly independent paths”
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Is 100% Coverage Feasible?

• Mutually exclusive conditions
• (a < 0 && a < 10)

• (T && F) is not feasible

• Dead code / unreachable code
• “This should never happen” code

Systems in practice:
Statement coverage 85-90%

feasible
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Infeasible Paths Example

int example (int a) {
int r = OK;
int a = -1;

if(a == -1) {
r = ERROR_CODE;
ERXA_LOG(r);

}

if(a == -2) {
r = OTHER_ERROR_CODE;
ERXA_LOG(r);

}

return r;
}

Three feasible paths: a = -1; a = -2 or any other a.
Infeasible path: a == -1 as well as a == -2.
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Coverage Strategy Subsumption

• Strategy X subsumes strategy Y if
• all elements that Y covers are also covered by X

• Subsumes hierarchy:
• Analytical ranking of coverage metrics
• E.g.:  MC/DC >  all branches > all statements
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Subsumption relation
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Coverage: Useful or Harmful?

• Measuring coverage (% of satisfied test obligations) can be a useful 
indicator ...

• Of progress toward a thorough test suite, of trouble spots requiring more 
attention

• ... or a dangerous seduction
• Coverage is only a proxy for thoroughness or adequacy
• It’s easy to improve coverage without improving a test suite (much easier than 

designing good test cases)

• The only measure that really matters is effectiveness
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Deductive Reasoning by 
Example
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Example: a library information system

• Consider a (very) simplified library, where new books can be added to and 
removed from the library’s holdings, and users can borrow and return books.

• Some examples of specifications for this domain:
• No matter what the state of the library is, every book in the library’s holdings must be 

available to be borrowed, or be on loan.
∀b,s[InHoldings(b,s) Available(b,s) ∨ ∃p OnLoan(b,p,s)]

Here, s is a state variable.
• In every state, no book may be simultaneously on loan and available to be borrowed.

∀b,s{InHoldings(b,s) ⇒ ¬[Available(b,s) ∧ ∃p OnLoan(b,p,s)]}
• Two different people cannot have the same book on loan.

∀b,s {InHoldings(b,s) ⇒ ¬∃p,p′[OnLoan(b,p,s) ∧ OnLoan(b,p′,s) ∧ p ≠ p′]}
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System transactions
• Operations that change the state of the system are called transactions.

For the library system, 

• a person p borrowing book b
is such a transaction, whose effect is to change the current state s of the library to a 
state s′ in which OnLoan(b,p,s′) and ¬Available(b,s′) hold.

• Transactions have preconditions, which are conditions on the system state 
under which it is possible to perform the transaction.

• Transactions have postconditions, which are the properties that must be true 
in the system state resulting from performing the transaction.

• We specify a transaction by specifying its precondition and postcondition.  
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Invariance under transactions

• What kinds of properties do we want to prove?
• The most important are system properties that are invariant under transactions, 

defined as follows:

When property P holds in system state s, and a transaction changes the system state from s
to s′, then P continues to hold in the new state s′.

• So for a property P that is invariant, assuming that P holds in the initial state of 
the system, P will be true in every state that the system passes through.

That is, no matter what transactions are performed, and no matter how many of them are 
performed, nothing will ever make P false.

• Why is this good?
For an air traffic control system, consider the property: 

No two planes are on an arrival runway within a one minute time period.
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Invariance as an entailment

• Now assume that the programmer has done his/her job correctly. This means we 
have the following:

If the precondition holds in s, and the transaction changes the system from s to s′, then 
the postcondition holds from s to s′,

• To show invariance, it is therefore sufficient to prove:
If P holds in s, and the precondition holds in s, and the postcondition holds from s to s′, 
then P will hold in s′.

• Formally, we wish to prove that
Σ     ∀ x1,...,xn,s, s′ (P(s) ∧ TransPrecond(x1,...,xn,s) ∧ TransPostcond(x1,...,xn,s,s′)  ⊃  P(s′))

where Σ defines the transaction pre and postconditions
x1,...,xn are the arguments of the transaction
P is the property to be shown invariant
TransPrecond is the transaction precondition
TransPostcond is the transaction postcondition

=
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Showing invariants for the library

Aim to show that the first desired property               
∀b [InHoldings(b,s) ⇒ Available(b,s) ∨ ∃p OnLoan(b,p,s)]
is invariant under the transaction of borrowing a book.

In other words, we prove the following:
Σ     ∀ b,p,s,s′ (P(s) ∧ BorrowPrecond(b,p,s) ∧ BorrowPostcond(b,p,s,s′)  ⇒ 

P(s′)),
where P(s) is the property above, and where Σ contains the equivalences 

BorrowPrecond and BorrowPostcond.

=
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Proof sketch

We sketch the structure of a derivation, starting with the entailment to be proved as 
the root:
1.Using ∀I and ⊃I repeatedly, replace universals by new constants and move antecedents into Σ:

Σ′     Available(β,σ′) ∨ ∃p OnLoan(β,p,σ′)
2.Using the derived rule for equivalences (see below), expand the BorrowPrecond and BorrowPostcond in 

Σ.  Then use the equivalences from the postcondition to eliminate all of the σ′  arguments to predicates:

Σ′′     (Available(β,σ) ∧ β ≠ γ) ∨ ∃p (β=γ  ∧  p=ρ ∨  OnLoan(β,p,σ)))
3.Use logical equivalences (see below) to reformulate the conclusion in the following equivalent form:

Σ′′     Available(β,σ) ∨  β=γ ∨  ∃p OnLoan(β,p,σ)
4.Use the rule ∨I to reduce this to:

Σ′′′     Available(β,σ) ∨  ∃p OnLoan(β,p,σ)
5.Reduce this to two goals using  ⊃E:

Σ′′′     InHoldings(β,σ)
Σ′′′     InHoldings(β,σ)  ⊃  (Available(β,σ) ∨  ∃p OnLoan(β,p,σ))

6.The first goal is solved immediately in Σ′′′.  The second is solved by applying ∀E (to the initial invariant in 
Σ′′′).

=

=

=

=

=

=

new
constant

Greek
letter

=

University of Toronto, CSC2125,  Lecture 2-3:  Testing and Verification 86



Using equivalences
• The use of equivalences is very important in proofs.  In the above proof, we used two
• derived rules of inference for equivalences:

• IF Σ ∀x1...xn(P(x1,...,xn) ≡ H) and  Σ F THEN Σ′ F′
where  F′ and Σ′ are like F and Σ, but with some occurrences of P(t1,...,tn) replaced by H[x1/t1,...,xn/tn]

This derived rule is most often used when a “definition” of P is included as part of Σ. 
The equivalences that were used in Step 2:

• Σ    ∀p∀b∀s (BorrowPrecond(p,b,s) ≡ ...)
• Σ    ∀p∀b∀s∀s′ (BorrowPostcond(p,b,s,s′) ≡ ...)
• Σ    ∀b′(Available(b′,σ′) ≡ ...) (from the postcondition)
• Σ    ∀b′(InHoldings(b′,σ′) ≡ ...) (from the postcondition)
• Σ    ∀b′p′(OnLoan(b′,p′σ′) ≡ ...) (from the postcondition)

• IF Σ (G ≡ H) and  Σ F THEN Σ′ F′
where  F′ and Σ′ are like F and Σ, but with some occurrences of G as a subformula replaced by H.

This derived rule is most often used when H is logically equivalent to but simpler than G.  A 
separate subproof is usually needed to prove this equivalence. 

The equivalences that were used in Step 3 of the proof are on the next slide.

= ==

= ==

=

=

=

=

=
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Equivalences used in the invariant proof
• In Step 3 of the proof above, a number of logical equivalences were used to 

reformulate the conclusion:
(Available(β,σ) ∧ β ≠ γ) ∨ ∃p (β=γ  ∧  p=ρ ∨  OnLoan(β,p,σ)))

use equivalence: ∃x(F∨G)  ≡  ∃xF ∨ ∃xG
(Available(β,σ) ∧ β ≠ γ) ∨ ∃p (β=γ  ∧  p=ρ) ∨  ∃p OnLoan(β,p,σ))

then use equivalence: ∃x(F∧G)  ≡  F ∧ ∃xG,  when  x is not free in F

(Available(β,σ) ∧ β ≠ γ) ∨ (β=γ  ∧  ∃p (p=ρ)) ∨  ∃p OnLoan(β,p,σ))
then use equivalence: F ∧ ∃x(x=c)  ≡  F

(Available(β,σ) ∧ β ≠ γ) ∨ β=γ ∨  ∃p OnLoan(β,p,σ)
then use equivalence: (F ∧¬G) ∨G   ≡   F ∨G

Available(β,σ) ∨  β=γ ∨  ∃p OnLoan(β,p,σ)
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Computer-aided theorem-proving

• Even for the simple library system, proving the invariant properties by hand is 
lengthy and tedious.

• Fortunately, much of this work can be automated.
The rules of inference, plus their derived rules, can be implemented. 

• The resulting theorem-proving system can be fully automatic, or interactive. 
• In the first case, the system is expected to find a derivation on its own. This is feasible for 

simple theorems like those for the library.
cf.  systems such as Otter, SETHEO

• But many theorems require human ingenuity and insight, in which case interactive 
theorem-provers perform the “routine” work, interactively asking the user for help when 
they get stuck.

cf.  systems such as PVS, NuPerl
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Summary: Validation of Systems 
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