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What is machine learning?

e A class of algorithms that allows us to infer rules and parameters based on
example data.
e In contrast to: hand coded rules



Types of Machine Learning
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Supervised Learning

o @) O
e %?8 e Input: Training data and labels.
° 0‘ o e Goal: Learn function to map new
® unlabelled data to labels

Supervised Learning
Algorithms



Supervised Learning: Classification vs. Regression

Classification Regression
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Input: data and discrete labels  Input: data and continuous values
Goal: Map data to discrete Goal: Learn an approximate function
categories that maps data to values



Supervised Learning: Classification vs. Regression

Regression
What is the temperature going to
be tomorrow?

PREDICTION
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Classification
Will it be Cold or Hot tomorrow?

Fahrenheit
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Regression: labels are continuous values

Classification: labels are discrete values



Unsupervised Learning

Data
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Input: training data without labels.
Goal: Learn structure in the data
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Semi-Supervised Learning
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Classification

Input: training data, some of which is labelled
Goal: Learn function to map new unlabelled data to labels and/ or learn structure in

the data

Clustering

10



Reinforcement Learning

e Framework for decision making

O

O

Agent with the capacity to act

Each action influences the
agent’s future state
Success is measured by a
reward signal

Goal: Select actions to
maximize future reward

internal state

?r'ewa rd

learning rate a.
inverse temperature 3
discount rate

enwronment

observation
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Outline

e How machine learning is used in self-driving cars
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Self-Driving Car Tasks

* Localization and Mapping:
Where am |?
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Visual Odometry

* 6-DOF: freed of movement
* Changes in position:
* Forward/backward: surge
* Left/right: sway
* Up/down: heave
* Orientation:
* Pitch, Yaw, Roll

* Source:
* Monocular: | moved 1 unit
*» Stereo: | moved 1 meter

* Mono = Stereo for far away objects

* PS: For tiny robots everything is “far away” relative to inter-camera
distance

Forward
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Self-Driving Car Tasks

* Scene Understanding:
Where is everyone else?

15



Object Detection

* Past approaches: cascades classifiers (Haar-like features)

* Where deep learning can help:
recognition, classification, detection
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Frequency (kHz)

Road Texture and Condition from Audio

(with Recurrent Neural Networks)

tu! I \F'( nllr.r\‘vbn% ' "‘ b

Current Tlme Offset (secs) Current Time Offset (secs)

17



Self-Driving Car Tasks

* Movement Planning:
How do | get from A to B?
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* Previous approaches: optimization-based control

* Deep reinforcement learning: give the ability to deal with
under-actuated control, uncertainty, motion blur, lack of sensor
calibration or prior map information.
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Self-Driving Car Tasks

* Driver state:
What'’s the driver up to?
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Drive State Detection:
A Multi-Resolutional View

Increasing level of detection resolution and difficulty

>
Body Head Blink Blink Eye Blink Pupil Micro
Pose Pose Rate Duration || Pose Dynamics Diameter Saccades
Gaze © T — | Micro Cognitive
Classification || Glances Load
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Outline

e Deep learning
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Outline

o Neural Network Basics
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Performance

Deep Learning: Scalable Machine Learning

>

Amount of Data

Deep
Learning

Most Learning
Algorithms

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer

(corners and

contours)

1st hidden layer
(edges)

Visible layer
(input pixels)
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Neurons - Building block of neural networks
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Activation Functions
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Combining neurons into layers

output layer

input layer

hidden layer
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Combing Neurons in Hidden Layers:
The “Emergent” Power to Approximate

> [z, 23, 23)

To » output 29 DO

» [z, 23, 33)

L3

Universality: For any arbitrary function f(x), there exists a neural
network that closely approximate it for any input x

Universality is an incredible property!* And it holds for just 1 hidden layer.
* Given that we have good algorithms for training these networks.
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Outline

o Structures in Neural Networks
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Combining Neurons into Layers

Feed Forward Neural Network

Recurrent Neural Network

- Have state memory
- Are hard to train
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Fully Connected Neural Network

an output
unit

output layer
e No connections within a layer

Each neuron is connected to
all neurons in the previous
layer

Used in classification
problems, sometimes image
input layer recognition, etc.

second hidden layer

first hidden layer

a hidden
unit

| a connection

depth an input
unit
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Size of Fully Connected Neural Networks

Suppose we want to train a network that takes a 200 x 200 RGB image as
input.

| 1000 hidden units |

densely connected

200
200
[ 3

What is the problem with having this as the first layer ?

@ Too many parameters! Input size = 200 x 200 x 3 = 120K.
Parameters = 120K x 1000 = 120 million.

@ What happens if the object in the image shifts a little 7
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Alternative: Convolutional Neural Networks

Not all layers are fully connected

Primarily used for image clustering, recognition, and classification
Convolutional layers - apply same filter at every location in the image

Pooling layers - reduce the size of the network and build in invariance to small
transformations

33



Convolution

00000
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Motivation: Learn a set of features that occur at all image locations
Apply same weights to every region of the image
Functions as a feature detector

input neurons input neurons
first hidden layer Q0000 first hidden layver
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Example: 28x28 image, 5x5 filter - 25 shared weights
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Pooling

e Summarize the output of a group of units
e Reduce the size of the representation

e |nvariances to small perturbations in input.
e Example: maximum of every 2x2 region

hidden neurons (output from feature map)

max-pooling units

00
o0

-0



Convolutional neural networks

Putting pooling and convolutional layers together

RELU RELU

FT'I

LU RELU RELU RELU

CONV
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Higher layers capture more abstract information

Here are the image regions that most strongly activate various neurons at
different layers of the network. (zeiker and Fergus, 2014)
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Combining Neurons into Layers

Feed Forward Neural Network

Recurrent Neural Network

- Have state memory
- Are hard to train
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Recurrent Neural Networks
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Often used for language modelling

Hard to train long term dependencies, e.g. remembering
what happened hundreds of words ago.
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Long Short-Term Memory (LSTM)

Capable of learning
long-term dependencies
Composed of memory
cells which have
controllers saying when
to store or forget
information.

Used for time series
data

Example application:
text generation
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LSTM Components

e X-inputtoLSTM

e h - hidden state (output
vector)

e cC - cell state vector: (carries
information down the
sequence of the LSTM)

F - forget gate activation
| - input gate activation

e O - output gate activation

LSTM unit




LSTM general behaviour

e |=0F=1:Remember
previous value

e |=1,F=1:Addto previous
value

e |=0,F=0; Erase the value

e |=1F=0:Overwrite the
value

LSTM unit




Forget Gates

f t between O (forget previous input) and 1 (keep) previous input
Function of previous and current input

Ji fe=0Ws|h—1,3¢] + by)

hi—1

Tt
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Ignore gate and temporarily cell state

| - ignore or keep new inputs
C - proposed new cell state

it =0 (Wi-lhi—1,2¢] + b;)
ét :tanh(WC'[ht_l,ZCt] + bc)
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Outputting Data

Cell state: output a combination of previous and new cell state.

ftT th'%% Cr = fixCr_1 + 14 * ét
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LSTMs

o - Output gate’s activation vector. Decides what the next hidden/output state
should be.

h - Output vector of the LSTM

1

Ot = U(Wo [ht—laxt] =+ bo)
= 0; * tanh (C})

S
|
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Application: Visual Odometry

e Combines Convolutional and Recurrent layers

End-to-End, Sequence-to-Sequence Method
Video (Image Sequence) CNN RNN FC

Pose &
SE@) Uncertainty




Restricted Boltzmann Machine

Bipartite Graph over hidden and visible nodes

Model the joint distribution of the data and the hidden layers.

Unsupervised and semi-supervised learning
Generative graphical model

h
\%\%
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Deep Belief Networks

Similar to RBMs with multiple hidden layers.

Hidden layer 3

']

Hidden layer 2

'

Hidden layer 1

'

Visible layer (observed)




Outline

Introduction to machine learning

How machine learning is used in self-driving cars
Deep learning

o Neural Network Basics

o Structures in Neural Networks

o Training Neural Networks

o Challenges with deep learning

Reinforcement learning
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Deep Learning: Training and Testing

Training Stage:

Input
Data

Testing Stage:

New Input
Data

Learning ‘ Correct
System Output

{aka “Ground Truth”)
Learning '

System
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How Neural Networks Learn: Backpropagation

Forward Pass:

Input
Data

Neural
Network

Prediction

Backward Pass (aka Backpropagation):

Neural
Network

_

Measure
of Error

Adjust to Reduce Error
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Loss Function

N
e Example Loss Function: MSE = 1 Z $; — y)?
N

e Y; Predicted labels are a function of the weights and biases in the neural
network.

e Loss Function is a function of weights and biases in the neural network.
e Weights and biases can be optimized by gradient descent.
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Gradient Descent: Example

Loss function: C = f(w), wis a Y
weight

Weight's gradient: dC/dw
dC/dw > 0: Decreasing w

(finding this point x is the
goal of gradient descent)

(increasing
(decreasing values)

increases C egath\._ Y21) - A
dC/dw < 0: Increasing w Fredent | o
increases C | .

For small s > 0, updating X 2ero gradient. X, X, X

w =w -s *dC/dw decreases C
Repeatedly adjust weights
looking for local minimum in C

54



Key Concepts:

Backpropagation
.,_” vy =aef*? (error term of the output layer)
(compute gradient) 5 =a®—y
——
@ O @ e -
O %
Input x O — Q N output /y\ gt Q Q \output y <= target y
O O o Ll )
O ii
8% = (Wi )b‘ )

(error term of the hidden lyer)

Task: Update the weights and biases to decrease loss function

Subtasks:
1. Forward pass to compute network output and “error”
2. Backward pass to compute gradients

3. Afraction of the weight’s gradient is subtracted from the weight.

1

Learning Rate



Outline

o Challenges with deep learning
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Backpropagation and gradients

d

e~ u)l(w)‘ a8/ (error term of the output layer) Gradients at laver n-1 are
(compute gradient) 63 =qB) —y y
functions of gradients in layer
unctions of gradients y
D @2 .
O e Gradients are multiplied as
Ve ,
/ they’re passed through the
Input x output y <= target y
network
\ O e Leads to vanishing gradients:
> el ) )
Gradients in lower levels are
S close to 0.
5(2)_(w(z))75(3) ‘79(2 ) . .
FTON e Exploding gradients: Update too
(error term of the hidden layer) strongly or have numerical

overflow
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Activation Functions

Sigmoid Activation Function Derivative of Sigmoid Activation Function
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Key Concepts:
Regularization: Early Stoppage

Original Set

Training Testing

Training : Validation Testing

* Create “validation” set (subset of the training set).
* Validation set is assumed to be a representative of the testing set.

 Early stoppage: Stop training (or at least save a checkpoint)
when performance on the validation set decreases



Key Concepts:
Regularization: Dropout

p=0.5

hidden fc layer dropout layer

=S

* Dropout: Randomly remove some nodes in the network (along
with incoming and outgoing edges)

input layer

B2
—_

Training time

* Notes:
* Usually p>=0.5 (pis probability of keeping node)
* |Input layers p should be much higher (and use noise instead of dropout)
* Most deep learning frameworks come with a dropout layer



Key Concepts:
Regularization: Weight Penalty (aka Weight Decay)

* L2 Penalty: Penalize squared weights. Result:
* Keeps weight small unless error derivative is

W 0 very large.
* Prevent from fitting sampling error.
Q * Smoother model (output changes slower as

the input change).

* |f network has two similar inputs, it prefers to
put half the weight on each rather than all the

weight on one.

w/2 w/2
* L1 Penalty: Penalize absolute weights. Result:

* Allow for a few weights to remain large.
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Adversarial examples

“panda” “gibbon”
57.7% confidence 09.3% confidence

Noise is set to be a function of the gradient in the neural network
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Adversarial Stickers

Misclassified as speed signs

¢

%
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Environment Modeling Challenge — Uncertainty and
Unknowns

Self-Driving Vehicles: Interact with Humans in Complex Environments;
Significant use of machine learning!

=0
-

Known Unknowns and
Unknown Unknowns!!

Cannot represent all possible
environment scenarios

S. A. Seshia 6
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What's the Specification for Perception Tasks?

Convolutional Neural Network trained to recognize cars

RELU RELU RELU RELU RELU RELU
CONV CONVl CONVlCONVl CONVlCONVl

by

fruck
aifplane

=
=
= | car
=

'
;
=
-
=

ship

=

|- .

= ’ horse
E .

=

S. A. Seshia

10
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Modeling Learning Systems with High-Dimensional
Input & State Space

A 4

=

Histogram of
(label, confidence)

Stream of images

Input Space: ~10° dimensions for single time point
System Parameters: >1M, continuous+discrete

Need New Methods for Abstraction and Modular Reasoning!

S. A. Seshia 8
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Challenges for Verified Al

S. A. Seshia, D. Sadigh, S. S. Sastry.
Towards Verified Artificial Intelligence. July 2016. https://arxiv.org/abs/1606.08514.

System S YES [+ proof]
: DoesS || E
Environment E ——> g E—
satisfy @?
Specification ¢ — NO

[+ counterexample]

Design Correct-by-
Construction

. Counterexamples,
instead? How?

Inputs, etc. from High-
Dimensional Signal
Spaces

S. A. Seshia 11
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Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making
» RL is for an agent with the capacity to act
» Each action influences the agent's future state
» Success is measured by a scalar reward signal

» Goal: select actions to maximise future reward



Agent and Environment

* At each step the agent:
* Executes action
* Receives observation (new state)
* Receives reward

* The environment:
* Receives action
* Emits observation (new state)

* Emits reward

Environment

Action
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Markov Decision Process

S0, A0, T1,S1,A1, 72, o+, Sy—=1,An—-1, T Sn
t t
state

Terminal state
action

reward
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Examples of Reinforcement Learning

Bin Packing

» Goal - Pick a device from a box and put it into a container

» State - Raw pixels of the real world

» Actions - Possible actions of the robot

* Reward - Positive when placing a device successfully, negative otherwise
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Major Components

» An RL agent may include one or more of these components:

» Policy: agent's behaviour function
» Value function: how good is each state and/or action
» Model: agent’s representation of the environment
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Policy

» A policy is the agent’s behaviour

» |t is a map from state to action:
» Deterministic policy: a = 7(s)
» Stochastic policy: 7(als) = P[als]
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Value Function

» A value function is a prediction of future reward
» “How much reward will | get from action a in state s?”
» ()-value function gives expected total reward

» from state s and action a reward at time t: r,
» under policy
» with discount factor ~

QR"(s,a) =E [rt+1 pol [T ’72ft+3 )] B 3]
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Approaches to Reinforcement Learning

Value-based RL

» Estimate the optimal value function Q*(s, a)

» This is the maximum value achievable under any policy
Policy-based RL

» Search directly for the optimal policy 7*

» This is the policy achieving maximum future reward
Model-based RL

» Build a model of the environment

» Plan (e.g. by lookahead) using model
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Optimal Case

» An optimal value function is the maximum achievable value
Q*(s,a) = max Q%(s,a) = QF (s;a)
,
» Once we have Q™ we can act optimally,
77 (s) = argmax Q7(s. a)
a

» Optimal value maximises over all decisions. Informally:

QR*(s,a) = rt+1 + 7y max reyo + V2 max re43 + ...

at+l at42

= rt4+1 + 7 LS Q7(St+1: ar+1)
t+1



Qir1(st, at) = Qt(st, at)+a

Q-Learning: Value Iteration

Old State
Al A2 A3 A4
S1 +1 +2 -1
S2 +2 0 +1
S3 -1 +1 0

(Rt-I—l + V‘V’m‘gx Qt(st41, a) — Qt(st, at))

Reward

initialize Q[num states,num_actions]

observe initial state s

repeat
select and carry out an action
observe reward r and new state
Q[s,al = Q[s,a] + a(r + y max,.
s = s'

until terminated

arbitrarily

a

sl

Qls',a']l - Qls,al
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What is Deep Reinforcement Learning?

Deep reinforcement learning is standard reinforcement learning where a
deep neural network is used to approximate either a policy or a value

function
Deep neural networks require lots of real/simulated interaction with the

environment to learn
Lots of trials/interactions are possible in simulated environments, as done

in ADS
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Autonomous Driving: A Hierarchical View

Road network data

— _L|

1
Sequence of waypoints through road network

destination

User specifiied i

Route Planning

Il

X

Perceived agents,
obstacles, and

signage

—_— |

Behavioral Layer

Parking Lane Change
aneuver, Following Lanes

Motion S')eciﬁcation

Estimated pose and
collision free space

-
>

v

Motion Planning

Estimate of vehicle
state

—_—

Reference path or trajectory

Local Feedback
Control

Steering, throttle and brake commands

\

Paden B, Cdp M, Yong SZ, Yershov D, Frazzoli E. "A Survey of Motion Planning and Control Techniques for Self-
driving Urban Vehicles." IEEE Transactions on Intelligent Vehicles 1.1 (2016): 33-55.
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Summary

Introduction to machine learning
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o Neural Network Basics
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o Challenges with deep learning
Reinforcement learning
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