CSC2125: Safety and
Certification of Autonomous
Vehicles

Lecture 1: Autonomous Driving System
(ADS)

http://www.cs.toronto.edu/~chechik/courses19/csc2125



Goal of the Course

What is Safety of

Challenges of Safe ML ML components?

Assuring Safety of ML components
through testing, verification or
synthesis (safe by construction)
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The Drea_m of Self-Driving
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Lecture plan

e Levels of automation of ADS
e Current big players in ADS

 Functional reference architecture for ADS
 And a look at some sensing technology

e Al vs A2 autonomy

* A look at several ADS accidents
e Safety assurance of ADS

e ADS challenges
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SAE J3016 Levels of Automation vs. Operational
Design Domain (ODD)

Some ODD parameters: Level 2 example:

* Speed * Traffic * Roadway == expressway Level 4 example:

* Geography * Temporal * Speed <=35mph * Roadway == campus roads
* Roadway * etc. * Daytime only * Speed <= 25mph

* Environment * Daytime only

Total driver-manageable

oDD i
‘ domain i

Level O Level 1

Unlimited ODD

oy

Level 5

Level 3

Level 2

Level 4



Beyond Traditional Levels: Two types of Al

* Starting point:

* All cars are manually controlled until the Al system shows itself to be available
and is elected to be turned on by the human.

* Al: Human-Centered Autonomy
* Definition: Al is not fully responsible

* Feature axis:
* Where/how often is it “available”? (traffic, highway, sensor-based, etc.)
* How many seconds for take-over? (0, 1, 10, etc)

* Teleoperation support

 A2: Full Autonomy
* Definition: Al is fully responsible
* Notes:

* No teleoperation

* No 10-second rule: It’s allowed to ask for human help, but not guaranteed to ever
receive it.

* Arrive to a safe destination or safe harbor.
* Allow the human to take over when they choose to.

University of Toronto, CSC2125, Lecture 1: ADS



Beyond Traditional Levels: Two types of Al

LO

14, 12 13-

L4, L5 -

» * Starting point:

* All cars are manually controlled until
the Al system shows itself to be
available and is elected to be turned
on by the human.

» « Al: Human-Centered Autonomy
* Definition: Al is not fully responsible

> ¢ A2: Full Autonomy
* Definition: Al is fully responsible
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Example Players
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Notable:
* April 2017: Exits testing: first rider in Phoenix

* November 2017: 4 million miles driven autonomously

 December 2017: No safety driver in Phoenix
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UBERATCCOM/CAR

Notable:

* December 2017: 2 million miles driven autonomously
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Notable:

* Sep 2014: Released Autopilot

* Oct 2016: Started Autopilot 2 from scratch.

* Jan 2018: ~1 billion miles driven in Autopilot

* Jan 2018: ~300,000 Autopilot equipped vehicles

University of Toronto, CSC2125, Lecture 1: ADS 13



Audi A8 (released end of 2018)

* Thorsten Leonhardt, head of Automated Driving, Audio:
“When the function is operated as intended, if the customer turns the traffic jam
pilot on and uses it as intended, and the car was in control at the time of the
accident, the driver goes to his insurance company and the insurance company will

compensate the victims of the accident and in the aftermath they come to us and
we have to pay them,” he said.

University of Toronto, CSC2125, Lecture 1: ADS 14



Notable Progress

* Full autonomy (A2)  Human-centered autonomy (A1)
 Waymo * Tesla Autopilot - Model S/3/X
 Uber * \olvo PilotAssist - S90/XC90/XC60/V90
* GM Cruise * Audi Traffic Jam Assist - A8
* nuTonomy * Mercedes-Benz Drive Pilot Assist - E-Class
 OptimusRide e Cadillac Super Cruise - CT6
* Zenuity e Comma.ai openpilot

* Voyage .

University of Toronto, CSC2125, Lecture 1: ADS 15



Paths to Autonomous Future

Al:

Human-Centered Autonomy

Localization and Mapping:
Where am [?

Scene Understanding:
Where/who/what/why of
everyone else?

Movement Planning:
How do | get from A to B?

Human-Robot Interaction:
What is the physical and
mental state of the driver?

Communicate:
How to | convey intent to
the driver and to the world?

Blue Text: Easier
Red Text: Harder

University of Toronto, CSC2125, Lecture 1: ADS

A2:

Full Autonomy

Localization and Mapping:
Where am I?

Scene Understanding:
Where/who/what/why of
everyone else?

Movement Planning:
How do | get from A to B?

Human-Robot Interaction:
What is the physical and
mental state of the driver?

Communicate:
How to | convey intent to the
driver and to the world?
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What does it take to drive a car?

1. Perception

2. Decision
making

3. Control



Presenter
Presentation Notes
Dynamic Driving Task


Selt-Driving Car Tasks

e Localization and Mapping — Where am |
e Scene Understanding — Where is Everyone Else?
* Movement Planning — How to get from Point A to Point B

e Driver State — What is the Driver Up to?
e Essential if driver is part of the loop!

e Safety Monitoring

University of Toronto, CSC2125, Lecture 1: ADS
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Functional Reference
Architecture

Source: Krzysztof Czarnecki, Waterloo



Functional Reference Architecture

Sensor Input

System Supervisor

Cloud Data
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Functional Reference Architecture

1. Perception

Sensor Input

Cloud Data

System Supervisor
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Functional Reference Architecture

1. Perception

Sensor Input

Cloud Data
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Functional Reference Architecture

1. Perception

Sensor Input

Cloud Data

System Supervisor

Ego Perception
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Functional Reference Architecture

System Supervisor

Laser Scanner (LiDAR)
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Functional Reference Architecture
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Functional Reference Architecture

Velodyne HDL-32
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Functional Reference Architecture
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Radar

Frame: 1

Time: 00:00.0

Cheap
Does well in extreme weather

Low resolution

Most used automotive sensor for object detection and tracking

University of Toronto, CSC2125, Lecture 1: ADS
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Velodyne LIDAR

Expensive

Extremely accurate depth
information

Resolution much higher
than radar

360 degrees of visibility




Camera

* Cheap
* Highest resolution
* Huge data = deep learning

* Human brains use similar sensor
technology for driving

* Bad at depth estimation

* Not good in extreme weather

: 4
= AR

P o
Zydiine 48
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Comparisons

Clear, well-lit conditions
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Lidar

Proximity

Detection
5

Sensor Cost 4 Range

Sensor size Resolution

Detects speed Works in dark

Provides Colour /

Contrast orks in bright

Works in snow/
fog / rain

University of Toronto, CSC2125, Lecture 1: ADS

32



Ultrasonic

Proximity
Detection

Sensor Cost Range

Sensor size Resolution

Detects speed Works in dark

Provides Colour /

Contrast Works in bright

Works in snow/
fog / rain
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Radar

Proximity

Detection
S

Sensor Cost Range

Sensor size Resolution

Detects speed Works in dark

Provides Colour /

Contrast Works in bright

Works in snow/ fog
/ rain
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Passive Visual

Proximity

Detection
85—

Sensor Cost 4

Sensor size Resolution

Detects speed = ~ Works in dark

Provides Colour / Works in bright
Contrast
Works in snow/
fog / rain
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Sensor Fusion
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Future of Sensor Technology: Camera vs Lidar

* Radar and Ultrasonic:
* Always there to help

e Camera:

* Annotated driving data grows
* Deep learning algorithms improve

* LIDAR:

* Range increases

* Cost drops (solid-state LIDAR)
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Functional Reference Architecture

HD Map by HERE

Cloud Data




Functional Reference Architecture

System Supervisor

Vehicle

University of Toronto, CSC2125, Lecture 1: ADS Actuator
Command




Functional Reference Architecture
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“ Functional Reference Architecture

.
Crvictnrm Ciinarvvicnr

Eea Percen
Road Netwt

A 4

Wheel

Odometry

Cameras

A 4

Lane Leve
LIDAR

O dx.doi.org/10.1631/jzus.A1400101

RADAR e L e oo
S

: Time to -

Time to Collision with S

> Precise State | collision with T : | Motion Control c

: : Moving o

Static Objects c

Objects

Traffic

Vehicle

Weather

University of Toronto, CSC2125, Lecture 1: ADS Actuator iy}
Command



Presenter
Presentation Notes
State estimation using a Kalman filter


Functional Reference Architecture
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Functional Reference Architecture
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Presenter
Presentation Notes
Rule-based vs. reinforcement learning (e.g., using recurrent NN)


Functional Reference Architecture
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Functional Reference Architecture
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Presenter
Presentation Notes
Semantic segmentation

https://www.cityscapes-dataset.com/

Functional Reference Architecture
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AVOD, https://arxiv.org/abs/1712.02294
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Functional Reference Architecture
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Presenter
Presentation Notes
Semantic segmentation
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Presenter
Presentation Notes
Rule-based vs. reinforcement learning (e.g., using recurrent NN)


Functional Reference Architecture
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Presenter
Presentation Notes
Rule-based vs. reinforcement learning (e.g., using recurrent NN)


Functional Reference Architecture
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Presenter
Presentation Notes
Rule-based vs. reinforcement learning (e.g., using recurrent NN)


Functional Reference Architecture
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Functional Reference Architecture
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Functional Reference Architecture
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Traffic Data

Naturalistic driving

AV sensors & perception

Infrastructure mounted

Birds-eye view

pcture 1: ADS 57
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Presentation Notes
1.7 TB per hour for UW Moose


Al vs A2 Autonomy

* Starting point:

* All cars are manually controlled until the Al system shows itself to be available
and is elected to be turned on by the human.

 Al: Human-Centered Autonomy
* Definition: Al is not fully responsible

* Feature axis:
* Where/how often is it “available”? (traffic, highway, sensor-based, etc.)
* How many seconds for take-over? (0, 1, 10, etc)

* Teleoperation support

 A2: Full Autonomy
* Definition: Al is fully responsible
* Notes:

* No teleoperation

* No 10-second rule: It’s allowed to ask for human help, but not guaranteed to ever
receive it.

* Arrive to a safe destination or safe harbor.
* Allow the human to take over when they choose to.

University of Toronto, CSC2125, Lecture 1: ADS
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Al vs A2 Autonomy

LO

11,12, L3

L4, L5

» « Starting point:

* All cars are manually controlled until
the Al system shows itself to be
available and is elected to be turned
on by the human.

>« Al: Human-Centered Autonomy
* Definition: Al is not fully responsible

>+ A2: Full Autonomy

* Definition: Al is fully responsible

University of Toronto, CSC2125, Lecture 1: ADS
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Human-Centric Approach to Al (also see Safety)

No Yes
o) Human 0
90 A) Needed 10 A)
Solve the perception-control And where not possible:
problem where possible: involve the human

L 4
—» { F I¥ .
(W 51 '
)
()
Perception / control (via Deep- Effective human-robot

. University of Toronto, CSC2125, Lecture 1: ADS . .
Learning) interaction



Paths to Autonomous Future

Al:

Human-Centered Autonomy

Localization and Mapping:
Where am I?

Scene Understanding:
Where/who/what/why of
everyone else?

Movement Planning:
How do | get from Ato B?

Human-Robot Interaction:
What is the physical and
mental state of the driver?

Communicate:
How to | convey intent to
the driver and to the world?

Blue Text: Easier
Red Text: Harder

University of Toronto, CSC2125,

Lecture 1: ADS

A2:

Full Autonomy

Localization and Mapping:
Where am I?

Scene Understanding:
Where/who/what/why of
everyone else?

Movement Planning:
How do | get from A to B?

Human-Robot Interaction:
What is the physical and
mental state of the driver?

Communicate:
How to | convey intent to the
driver and to the world?
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[s partially automated driving a bad idea? Observations from an on-
road study

Article - April 2018 with 447 Reads

DOk 10.1076/j.aperge.2017.11.0710 ‘i' Cite this publmatlon

Victoria Banks Alexander Eriksson
¢ ol 14.44 - University of Southampton a111.13 - Swedish National Road and Transport Research Inst...
)
Jim O'donoahue __- Neville A Stanton
9 143 23 . University of Southampton

WAYMO

Chris Urmson

Yes, with nothing to do, drivers quickly stop paying attention, get distracted, fall asleep

University of Toronto, CSC2125, Lecture 1: ADS
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Public Perception of What Drivers Do in Semi-
Automated Vehicles

e i
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What Does Data Say?

A look at several autonomous driving accidents

Based on work of Prof. Mark Lawford, McMaster University

University of Toronto, CSC2125, Lecture 1: ADS
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15t Fatal Tesla Autopilot Crash
2016 - January 20th - Fatal - Tesla Model S(China)

University of Toronto, CSC2125, Lecture 1: ADS 65



15t Fatal Tesla Autopilot Crash

Analysis

* Model S was equipped with
e asingle forward facing radar,
e a single forward facing camera,
e asetof 12 ultrasonic sensors.

 Camera was used by MobileEye's EyeQ3 computing platform
implementing a Deep Neural Network (DNN) for its object identification
and detection

* Vehicle was also equipped with Tesla's Automatic Emergency Braking
(AEB) system

e AEB system required agreement between both the camera and the radar before
any action was taken.

* Driver monitoring system consisted of a torque sensor in the steering
wheel

University of Toronto, CSC2125, Lecture 1: ADS 66



2"d Fatal Tesla Autopilot Crash
2017 - May 7th - Fatal - Tesla Model S (Florida)

us 2

Traller turns left
in front of the Tesla

Tesla doesn't stop,
hitting the trailer and :
traveling under it S~

Tesla veers off road sNCg =~
and strikes two fences !
and a power pole /

PSR rash report
5 :






2"% Fatal Tesla Autopilot Crash

Analysis

e Similar Model S sensors and features to 1% Tesla Autopilot crash
* No braking or avoidance action prior to collision

* Tesla commented that the camera failed to detect the truck due to
white color of the trailer against a brightly lit sky and a high ride height.

e They further commented that the radar filtered out the truck as an
overhead road sign to prevent false braking.

* |n both cases MobilEye commented that:

 MobileEye's system was not designed to cover all accident
scenarios and that Tesla was using it outside of its intended

purpose.



3" Tesla Autopilot Crash
2018 - January 22nd - Non-Fatal — Tesla Model S (California)
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Tesla Collision with Fire Truck

* Tesla Model S in Autopilot mode was
following a pickup truck in left lane

* Pickup changed lanes to avoid a stationary
firetruck

* Tesla accelerated into the back of the
firetruck at 65 m.p.h

i oforonto, I | octure 1: ADS 71




Similar Autopilot, lane changing lead vehicle &
stationary vehicle failure
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Autopilot, lane changing lead vehicle &
stationary vehicle

* Tesla Model S Handbook states:

“Traffic-Aware Cruise Control cannot detect all objects and may not
brake/decelerate for stationary vehicles, especially in situations when you are
driving over 50 mph (80 km/h) and a vehicle you are following moves out of your
driving path and a stationary vehicle or object is in front of you instead.”
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Why the acceleration?

Acc \Uﬂl I "”.-"_..

Adaptive Cruise Control 1 ﬂ12t‘.l= 14']15;_

e ACC is part of Autopilot

e Set max speed (hormal
cruising speed) & time
gap (headway) when
following a lead vehicle
@speed < max speed

Hypothesis:

= When pickup changed lane distance to new lead
vehicle (firetruck) increased

= ACC commanded acceleration to close the gap
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Another Tesla Autopilot Crash show what this
might be like at full speed

L ] [ e ] [
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Uber Autonomous Vehicle Crash
2018 - March 18th - Fatal — Uber Volvo XC90 (Arizona)




Uber Accident Details

e Uber

e Switched off Volvo’s standard Aptiva/Intel Mobile Eye collision
avoidance/mitigation system

e |nitially detected unknown object 6 seconds before impact
* |t decided it was a bicycle 1.3 second before impact and would have started braking

e Why?
e To reduce interference with their software? Avoid false positives?
e Think of trying to making a right turn @Yonge & Dundas in Toronto

e Also switched off Volvo’s Driver Distraction Detection System

 What’s a poor autonomous vehicle to do?

 Maybe requiring having these features turned on by an industry standard assurance case
would help!



At Tesla Autopilot Crash
2018 - March 23rd - Fatal - Tesla Model X (California)




At Tesla Autopilot Crash

Analysis

NTSB preliminary report summary states:

* During the 60 seconds prior to the crash, the drivers hands were detected on
the steering wheel on three separate occasions, for a total of 34 seconds;

e for the last 6 seconds prior to the crash, the vehicle did not detect the
driver’s hands on the steering wheel.

* At 8 seconds prior to the crash, the Tesla was following a lead vehicle and
was traveling about 65 mph.

At 7 seconds prior to the crash, the Tesla began a left steering movement
while following a lead vehicle.

At 4 seconds prior to the crash, the Tesla was no longer following a lead
vehicle.

e At 3 seconds prior to the crash and up to the time of impact with the crash
attenuator, the Tesla’s speed increased from 62 to 70.8 mph, with no pre-
crash braking or evasive steering movement detected.



4™ Tesla Autopilot Crash

Analysis

e Tesla stated after the accident:

* “The driver had about five seconds and 150 meters of unobstructed view of the
concrete divider with the crushed crash attenuator, but the vehicle logs show
that no action was taken.”

 Oddly enough, Tesla failed to mention that the Tesla sensors and AEB
had the exact same opportunity to see the concrete divider and react in
a timely fashion to mitigate the outcome



A similar Tesla crash
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Following lane marks —to an accident

20568 CA-133

1. Location of Police vehicle

2. Right hand lane marker as road
starts to widen for turn lane

Probably during “rush hour” no

vehicles park there
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Main Fallacy in existing (implicit) Assurance
Cases for ADAS

e The driver is going to catch the Machine Learning (ML) failures . . .
without driver attentiveness monitoring!

84 University of Toronto, CSC2125, Lecture 1: ADS


Presenter
Presentation Notes
ADAS – Advanced Driver Assisted System

https://giphy.com/embed/3o85xswHIaaX3R19de

Getting too (artificially) intelligent with safety

* Object identification is very useful

e Can help predict and plan in addition to help partially meet some safety
goals

* Pedestrian detection is an example of how ML fails badly with the key
safety requirement: “Don’t hit things!”

Al/ML Version:

“I don’t know what it is so it’s not there.”
VS
Safety Version:

“I don’t know what it BUT IT’S THERE!”
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It ML Doesn’t Recognize It, It's Not There
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The trouble with Al in safety critical situations

e Using ML to deal with cross walks:
e Al does a good job with this but not ...

The car shall [stop] for [pedestrians|
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Lessons learned

e Production is currently taking precedence over safety and that is
resulting in accidents

* The driver is not a sufficient mitigation without *real* driver
attentiveness monitoring

* |Interactions with other systems requirements is compromising safety
(ACC acceleration in stopped vehicle accidents, interactions between
control loops at different time scales)

e Current systems are not providing confidence information from ML
components resulting in unsafe behaviour

* When in doubt, slow down!

* New failure modes not discussed here — maintenance

e replacing your windshield can now cause accidents due to sensor calibration
errors!



Proper Monitoring of Driver Attentiveness

Super Cruise Autopilot

Tested on Cadillac CTé Tested on Tesla X/S/3

Automation
System Rating

Automation
System Rating

Super Cruise uses a camera to Autopilot performed well and is
watch where the driver's eyes are easiest to use in stop-and-go
looking. traffic.
Capability & Performance Capability & Performance
() Ease of Use Ease of Use
@) Clear When Safe to Use () Clear When Safe to Use
Keeping Driver Engaged 9 Keeping Driver Engaged
Unresponsive Driver Unresponsive Driver

Also work from MIT (see
Lecture 2 of MIT course on
Deep Learning and Self-Driving)
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Selt-Driving Car Tasks

e Localization and Mapping — Where am |
e Scene Understanding — Where is Everyone Else?
* Movement Planning — How to get from Point A to Point B

e Driver State — What is the Driver Up to?
e Essential if driver is part of the loop!

[- Safety Monitoring }

University of Toronto, CSC2125, Lecture 1: ADS
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Safety Assurance of ADS

Source: Krzysztof Czarnecki, Waterloo
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Operational Desigh Domain (ODD)

SAE J3016 Levels of Driving Automation

A set of conditions under which
the driving automation can operate a vehicle

Time of day Types of roads Geographic Traffic conditions Weather conditions
day residential area stop-and-go clear
night urban free flowing raining
highway snowing
icy

University of Toronto, CSC2125, Lecture 1: ADS
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Dynamic Driving Task (DDT)
Fallback

Who performs the DDT
in the case of system malfunction or
when leaving the ODD?

: ]

AR
Driver Computer




Automated Driving Systems (ADS)

SAE J3016 Levels of
Automation

Example

Fallback

A

Conditional High Full
Automation | | Automation | | Automation
ADS for Shuttle in Robo
stop-and-go  geo fenced Taxi
area anywhere
limited unlimited

)

Driver

I

ADS




ADS Hazard Sources

Mature best practices ISO 26262
— 01100
- R Rt
11110
Mechanical Electrical Computer Computer
faults faults HW faults SW faults

(ISO / PAS 21448)

P
= VAN
( ‘°i°")) /ﬂ\ @
Sensor Machine
noise & learning Inadfeguate DDT.faIIback
limitations errors driving failures

behavior

SAE J3061

y W
=

Cyber attacks



Assurance: ISO 26262 .
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ADS Hazard Sources

Mature best practices ISO 26262 / |
Mechanical Electrical Computer Computer
faults faults HW faults SW faults
(1SO / PAS 21448) SAE J3061
S
';“‘ A VAN
((Woy) /ﬂ\ @ e
Sensor Machine
noise & learning Inadfequate DDT.faIIback Cyber attacks
limitations errors driving failures
behavior

University of Toronto, CSC2125, Lecture 1: ADS 98




Safety

Absence of unreasonable risk of mishap

severity
risk

4 . likelihood


Presenter
Presentation Notes
Safety definition
Crash
Risk
Hazard



Driving Behavior Safety

Absence of unreasonable crash risk due to ADS driving behavior

Noncollisions Collisions

Qg, > el
s o
Lo — o

S

<A JEC AN
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Acceptability: risk level, risk reduction cost, benefit of the risky functionality (risk taking), best practice (state of technology), replacement risk, perception/public opinion


Factors Influencing Risk Acceptability

* Risk level

e Risk reduction cost

e Benefit of the risky functionality (risk taking)
e Best practice (state of technology)

e Replacement risk

 Who controls risk

e Perception/public opinion
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Running read light vs. responding to tailgating



Assurance Target

Acceptable
risk of
known
unsafe
scenarios

ODD boundary

Acceptable
risk of
unknown
unsafe
scenarios

University of Toronto, CSC2125, Lecture 1: ADS
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Need to argue acceptable risk of both known and unknown unsafe scenarios; the latter though the applied rigor of uncovering of unknown unsafe scenarios


Responsibility-Driven Safety

 Normal driving scenarios
 Must not cause unacceptable risk increase
e Low/high demand (incl. other road user errors)

* Emergency scenarios

e Near-crash
e Must avoid crash if it can

e Crash

 Must mitigate if it can
 Dilemmas often addressed by blame assignment

e Fallback

e Must minimize overall risk

(related: Responsibility-Sensitive Safety, https://arxiv.org/pdf/1708.06374)
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Inspired by Responsibility-Sensitive Safety, but different


Blame vs. Injury Risk

GM Cruise Chevy vs. motorcycle crash
https://www.dmv.ca.gov/portal/wcm/connect/1877d019-d5f0-4c46-b472-78cfe289787d/GMCruise_120717.pdf?MOD=AJPERES
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Blame vs Injury Risk (from the Accident Report)

A Cruise autonomous vehicle ("Cruise AV"), operating in autonomous mode in
heavy traffic, was involved in a collision while traveling east on Oak Street just
past the intersection with Fillmore Street. The Cruise AV was traveling in the
center of three one-way lanes. Identifying a space between two vehicles (a
minivan in front and a sedan behind) in the left lane, the Cruise AV began to
merge into that lane. At the same time, the minivan decelerated. Sensing that its
gap was closing, the Cruise AV stopped making its lane change and returned fully
to the center lane. As the Cruise AV was re-centering itself in the lane, a
motorcycle that that had just lane-split between two vehicles in the center and
right lanes moved into the center lane, glanced the side of the Cruise AV,
wobbled, and fell over. At the time of the collision, the Cruise AV was traveling
with the flow of traffic at 12mph, while the motorcycle was traveling at
approximately 17mph. The motorcyclist got up and walked his vehicle to the side
of the road, where the parties exchanged information. 911 was called pursuant to
Cruise policy. The motorcyclist reported shoulder pain and was taken to receive
medical care, and a police report was taken. As reported in Traffic Collision
Report#l70989746, the motorcyclist was determined to be at fault for attempting
to overtake and pass another vehicle on the right under conditions that did not
permit that movement in safety in violation of CVC 21755(a).



Driving Quality

High-Level Behavior Safety

Requirements (Normal Driving) s =
-@‘ 1. Vehicle stability
’ 0
S 2. Assured clear distance ahead

ﬁa“ﬁ\“ﬁ 3. Minimum separation

4. Traffic regulations

5. Informal traffic rules
...(best practices)
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In normal driving


Behavioral Safety: 1. Vehicle Stability

Skid Stability L ’ Foneor

7.

Friction ellipses e+, =v//127R

Roll stability

Untripped




Behavioral Safety: 2. Assured Clear Distance
Ahead (ACDA)

Stopping sight distance
(Perception-reaction time and
braking distance)

Perception distance

(Range + road geometry)

Limits-safespeed:



Behavioral Safety: 2. ACDA
Perception Distance

Crests Curves

,l Sight distance (S)

Object height #,=2.0' +

Eye height #,=3.5'

@ Obstruction or

backslope Radius
Center of lane
Intersections Overtaking
Opposing vehicle appears
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Behavioral Safety:
3. Minimum Separation

Separation in terms of distance gap, time gap, and time-to-collision

... and various maneuver-specific gaps, including following, overtaking, turning
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Behavioral Safety:
4. Traffic Regulations

Safe speed (ACDA)
Yielding to other road users rules

Obeying regulatory traffic signhs &
signals

Where to drive

Reacting to emergency vehicles &
school buses

U-turn prohibitions

Safe following gap
Passing rules

Signaling stops & turns
Parking restrictions
Use of passing beam

Required behavior
at railway crossings



Behavioral Safety:
5. Informal Traffic Rules

2/3 — second rule

Responding to tailgaters

How early to sighal turns
Delayed acceleration at signalized intersections
Lane selection

Anticipating aberrant behaviors of other road users

Responding to animals on the roadway

University of Toronto, CSC2125, Lecture 1: ADS 119
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WISE Drive Documentation

WISE Drive comes with comprehensive documentation (over 350
pages) available from this page.

All eight documents in two zip archives: zip1, zip2

Driving Task Specification
Maneuver Catalog

K. Czarnecki. Automated Driving System (ADS) Task Analysis — Part
2: Structured Road Maneuvers. Waterloo Intelligent Systems
Engineering Lab (WISE) Report, University of Waterloo, 2018, DOL:
10.13140/RG.2.2.23280.76800

Basic Motion Control Task Catalog

K. Czarnecki. Automated Driving System (ADS) Task Analysis — Part
1: Basic Motion Control Tasks. Waterloo Intelligent Systems
Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI:
10.13140/RG.2.2.29991.65447

Road Environment Specification
0DD Taxonomy

K. Czarnecki. Operational Design Domain for Automated Driving
Systems — Taxonomy of Basic Terms. Waterloo Intelligent Systems
Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI:
10.13140/RG.2.2.18037.88803
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ADS Hazard Sources

Mature best practices 1ISO 26262 / I
Mechanical Electrical Computer Computer
faults faults HW faults SW faults
(1ISO / PAS 21448) SAE J3061
S
A A VAN
(c * ) A
( (o) (o >~
Sensor Machine
noise & learning Inadfeguate DDT.faIIback Cyber attacks
limitations errors driving failures
behavior
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Fail-Operational ADS Architecture

Primary channel

High-performance AD function

(gracefully degradable)

Minimal AD fallback function

Enable
Out
Monitor A
Monitor B
Enable
Out

Secondary channel

Vehicle
Platform

No single-point failures

University of Toronto, CSC2125, Lecture 1: ADS

Dependability patterns:

e Redundancy

* Diversity

e Simplex

*  Graceful degradation

*  Monitoring of monitoring
*  Minimized cost
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ODD vs. ROD

Operational Design Domain

Restricted Operational Domain

| Colwell, B Phan, S Saleem, R Salay, K Czarnecki. An Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design
Domain. IEEE Intelligent Vehicles Symposium (1V), 2018



ROD Monitoring for
Graceful Degradation
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ADS Hazard Sources

Mature best practices ISO 26262 / l
Mechanical Electrical Computer Computer
faults faults HW faults SW faults
(1ISO / PAS 21448) SAE J3061
S
';“‘ A VAN
(W) /ﬂ\ @ oo
Sensor Machine
~ofn o learning Inadfeguate DDT.faIIback Cyber attacks
limitations errors driving failures
behavior
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Challenges of Assuring Machine Learned
Components
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Lack of specification Lack of inspectability

R. Salay, R. Queiroz, K. Czarnecki. An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software. SAE,
2018-01-1075, 2018; preliminary version also available at https://arxiv.org/abs/1709.02435
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Lack of Complete Spec Affects Verification and
Testing (see Lecture 4 by R. Salay)

Best practices

Spec notations

S Testing methods
Design guidelines
Requirements-based

Coding guidelines testing

Error guessing

Fault tolerance

Error detection &
handling

Interface test

Fault injection test

Verification methods
Walkthroughs

Resource usage test

Structural coverage
Inspections

Formal verification

ISO 26262 Part 6

Static code analysis
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Key Recommendations (see Lecture 4)

e Partial specifications
e Assumptions, necessary/sufficient conditions, in- and egivariants
e Runtime monitoring, test generation, regularization

e Data requirements
e Domain coverage (e.g., ontology)
e Risk profiling
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ADS Challenges

(an unsorted list)
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Road User Intension
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Will she cross the street?

S
X
L
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Make training data in simulation; do you need to know that these are garbage cans? And how they are aligned?


Will she cross the street?

—ﬁ.
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Collect data on how people behave on garbage collection day (or the day before).


Traffic Lights in Toronto



Presenter
Presentation Notes
A set of three traffic lights along St. Clair Avenue in Toronto, Monday April 6, 2015.
Tyler Anderson, National Post


Bad Weather Driving
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“Plastic Bag” Problem




Edge Cases
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Driving into a Tornado




Autonomous Trap 101




Crossing Double Yellow Lines
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Presentation Notes
The Place Charles de Gaulle (Place de L'Etoile), Pari; Arc de Triomphe
Traffic circle – in contrast to a roundabout, where incoming traffic always yields, traffic circles are three way intersections with either controlled by stop signs or traffic lights, or are uncontrolled.


Busy City Traffic
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Vehicle To Pedestrian Communication

Clamann et al. 2016
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Unexpected Road Incursion by Pedestrians
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Sudden Emergency Doctrine for human drivers

KAM 2 What is the expected standard for AVs?


Presenter
Presentation Notes
"The sudden emergency doctrine provides that "[a] person who, through no fault of his or her own, is placed in a sudden emergency, is not chargeable with negligence if the person exercises that degree of care which a reasonably careful person would have exercised under the same or similar circumstances.”
www.duhaime.org/LegalDictionary/S/SuddenEmergencyDoctrine.aspx
Emergencies might be, but are not limited to: children running into the street, unexpected pedestrians, or even untied bikinis - See more at: http://www.legalmatch.com/law-library/article/defenses-to-tort-liability-sudden-emergency.html#sthash.AFAocPlm.dpuf


Moral Machines

Illllh'.ih lllIIL'IEI

http://moralmachine.mit.edu/. ;. 1ps 147
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Playing a game to elicit preferences on service sign on


Safety of Sensors and Al
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Testing Challenges

e 100 million miles driven between deadly crashes (US)
e Crashes are rare events
e Human drivers are extremely good, when they pay attention

* Showing equal performance by an AV with 95% confidence requires
demonstrating 300 million miles driven without a deadly crash
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California DMV Disengagement Reports

e Google (miles driven between
disengagements):
e 2015: 2000 miles
e 2016: 5000 miles
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Google counts only those disengagements that would have led to an accident


Tesla Autopilot Data Collection and Testing

* |n 2016, on average, 1 million
miles per 10h data collected
e Object lists
* Driver inputs
e Vehicle state

* Since May 5, 2017, Tesla asks for
permission to gather video clips
from their customers

e working hard to improve autonomous sa
e self-driving a reality for you as soon as possible.

- Inorder to do so, we need to collect short video clips using tl
= :._e}gternal._carneras to learn how to recognize things like lane line
~ signs and traffic light positions. The more fleet learning of road
~ conditions we are able to do, the better your Tesla’s self-driv
will become. :

We want to be super clear that these short video clips are not

your vehicle identification number. In order to protect your pri
have ensured that there is no way to search our system for clips
are associated with a specific car.

. Please check “I agree” below if you agree to allow us to collect tt
clips. You can change your mind later at any time.

e OtA Update staging
e Dormant mode
e Gradual release

@ lagree

In order for these features to work, Tesla measures the road \
data of all participating vehicles but in a way that does not ide
your car, and may share that with partners that contri
elp us provide the service. At no point is any per
ifiable information collected or shared during this p

2125, Lecture 1: ADS 151
p|@ctrek:eo/2017/05/06/tesla-data-sharing-policy-collecting-video-self-driving/
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OtA – Over the air


Testing in Virtual World

Vehicle Physics and 3D Photo-Realistic Simulation
by Aleksandar Pocuc & Igor llic



s

: < e i|... - . B m.“_WFrh. P.l@ ...-..__ .ﬂ..
— ' A A * \ .l ‘

A ' ...I..J [ e r.,. ..,...,, b_.?_...,..
u .r .r G O NI T T

l.r b 4 _mu;lrh-f‘.__mhf
A J. f. 0l SRRV AT G v.,...__“,r_ i | -ﬁ
Sy . .f o W, N [ .m.-a.—v\r”.r.-h

Iremen

University of Toronto, CSC2125, Lecture 1: ADS

.ﬁn‘n.ﬂ.q_‘acm di_._‘._
N ..‘.k ik, 1._..:.rd

(VWS » ﬂ. qq 8 L o

>
O
Q)
o
Q
-
-
)
O
-
-
)
(Vp)
(O
-
(-
f=
-
2,
ﬁMa

V2X




	CSC2125:  Safety and Certification of Autonomous Vehicles
	Goal of the Course
	The Dream of Self-Driving��
	Lecture plan
	SAE J3016 Levels of Automation
	SAE J3016 Levels of Automation
	SAE J3016 Levels of Automation vs. Operational Design Domain (ODD)
	Beyond Traditional Levels:  Two types of AI
	Beyond Traditional Levels:  Two types of AI
	Example Players
	Slide Number 11
	Uber
	Tesla
	Audi A8 (released end of 2018)
	Notable Progress
	Paths to Autonomous Future
	What does it take to drive a car?
	Self-Driving Car Tasks
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Radar
	Slide Number 29
	Camera
	Comparisons
	Lidar
	Ultrasonic
	Radar
	Passive Visual
	Sensor Fusion
	Future of Sensor Technology:  Camera vs Lidar
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Functional Reference Architecture
	Traffic Data
	A1 vs A2 Autonomy
	A1 vs A2 Autonomy
	Human-Centric Approach to AI (also see Safety)
	Paths to Autonomous Future
	Slide Number 62
	Public Perception of What Drivers Do in Semi-Automated Vehicles
	What Does Data Say?  
	1st Fatal Tesla Autopilot Crash�2016 - January 20th - Fatal - Tesla Model S(China)
	1st Fatal Tesla Autopilot Crash�Analysis
	2nd Fatal Tesla Autopilot Crash�2017 - May 7th - Fatal - Tesla Model S (Florida)
	Slide Number 68
	2nd Fatal Tesla Autopilot Crash�Analysis
	3rd Tesla Autopilot Crash�2018 - January 22nd - Non-Fatal – Tesla Model S (California)
	Tesla Collision with Fire Truck
	Similar Autopilot, lane changing lead vehicle  & stationary vehicle failure
	Autopilot, lane changing lead vehicle  & stationary vehicle
	Why the acceleration?
	Another Tesla Autopilot Crash show what this might be like at full speed
	Uber Autonomous Vehicle Crash�2018 - March 18th - Fatal –  Uber Volvo XC90 (Arizona)
	Uber Accident Details
	4th Tesla Autopilot Crash�2018 - March 23rd - Fatal - Tesla Model X (California)
	4th Tesla Autopilot Crash�Analysis
	4th Tesla Autopilot Crash�Analysis
	A similar Tesla crash
	Slide Number 82
	Following lane marks – to an accident
	Main Fallacy in existing (implicit) Assurance Cases for ADAS
	Getting too (artificially) intelligent with safety
	If ML Doesn’t Recognize It, It’s Not There
	The trouble with AI in safety critical situations
	Lessons learned
	Proper Monitoring of Driver Attentiveness
	Self-Driving Car Tasks
	Safety Assurance of ADS
	Operational Design Domain (ODD)
	Dynamic Driving Task (DDT)�Fallback
	Automated Driving Systems (ADS)
	ADS Hazard Sources
	Slide Number 96
	ADS Hazard Sources
	Safety
	Driving Behavior Safety
	Factors Influencing Risk Acceptability
	Assurance Target
	Responsibility-Driven Safety
	Blame vs. Injury Risk
	Blame vs Injury Risk (from the Accident Report)
	High-Level Behavior Safety Requirements (Normal Driving)
	Behavioral Safety: 1. Vehicle Stability
	Behavioral Safety: 2. Assured Clear Distance Ahead (ACDA)
	Behavioral Safety: 2. ACDA�Perception Distance�
	Behavioral Safety:�3. Minimum Separation
	Behavioral Safety: �4. Traffic Regulations
	Behavioral Safety:�5. Informal Traffic Rules�
	Slide Number 120
	ADS Hazard Sources
	Fail-Operational ADS Architecture�
	ODD vs. ROD
	ROD Monitoring for�Graceful Degradation
	ADS Hazard Sources
	Challenges of Assuring Machine Learned Components
	Lack of Complete Spec Affects Verification and Testing (see Lecture 4 by R. Salay)
	Key Recommendations (see Lecture 4)
	ADS Challenges
	Road User Intension
	Will she cross the street?
	Will she cross the street?
	Traffic Lights in Toronto�
	Bad Weather Driving
	“Plastic Bag” Problem
	Edge Cases�
	Driving into a Tornado�
	Autonomous Trap 101�
	Crossing Double Yellow Lines
	Place Charles de Gaulle, Paris
	Busy City Traffic
	Vehicle To Pedestrian Communication
	Daimler Prototype
	Unexpected Road Incursion by Pedestrians
	Moral Machines
	Safety of Sensors and AI
	Testing Challenges
	California DMV Disengagement Reports
	Tesla Autopilot Data Collection and Testing
	Testing in Virtual World
	V2X: Major Infrastructure Requirements

