
CSC2125:  Safety and 
Certification of Autonomous 

Vehicles
Lecture 1:  Autonomous Driving System 

(ADS)

http://www.cs.toronto.edu/~chechik/courses19/csc2125

University of Toronto, CSC2125,  Lecture 1:  ADS 1



Goal of the Course

ADS 
(autonomous 

driving system)

SafetyML
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Assuring Safety of ML components 
through testing, verification or 
synthesis (safe by construction)

What is Safety of 
ML components?Challenges of Safe ML



The Dream of Self-Driving
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Lecture plan

• Levels of automation of ADS
• Current big players in ADS
• Functional reference architecture for ADS

• And a look at some sensing technology

• A1 vs A2 autonomy
• A look at several ADS accidents
• Safety assurance of ADS
• ADS challenges
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SAE J3016 Levels of Automation
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SAE J3016 Levels of Automation
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SAE J3016 Levels of Automation vs. Operational 
Design Domain (ODD)
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Beyond Traditional Levels:  Two types of AI
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Beyond Traditional Levels:  Two types of AI
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Example Players
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Uber
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Tesla
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Audi A8 (released end of 2018)
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Notable Progress
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Paths to Autonomous Future

University of Toronto, CSC2125,  Lecture 1:  ADS 16



What does it take to drive a car?

1. Perception

2. Decision
making

3. Control
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Self-Driving Car Tasks

• Localization and Mapping – Where am I
• Scene Understanding – Where is Everyone Else?
• Movement Planning – How to get from Point A to Point B
• Driver State – What is the Driver Up to?

• Essential if driver is part of the loop!

• Safety Monitoring
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Functional Reference 
Architecture

Source:  Krzysztof Czarnecki, Waterloo
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1. Perception
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Radar
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Camera
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Comparisons
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Source: https://cleantechnica.com/2016/07/29/tesla-google-disagree-lidar-right/ 



Lidar
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Ultrasonic
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Radar
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Passive Visual
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Sensor Fusion
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Future of Sensor Technology:  Camera vs Lidar
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HD Map by HERE
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Vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication

V2X
V2I

V2V

…
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Vehicle ModelInputs
• Wheel speeds
• GPS/IMU
• Visual Odometry
• Laser scans
• …
Outputs
• Position
• Speed
• Accel
• Yaw
• Yaw rate
• …

dx.doi.org/10.1631/jzus.A1400101
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See https://www.cityscapes-dataset.com
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Supervised Learning

http://mi.eng.cam.ac.uk/projects/segnet/
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AVOD, https://arxiv.org/abs/1712.02294
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Multiplayer games at a roundabout

Reinforcement Learning

Shalev-Shwartz et al., 2016
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Stanley method

dx.doi.org/10.5772/61391
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Traffic Data

57

Naturalistic driving

AV sensors & perception

Infrastructure mounted

Birds-eye view
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A1 vs A2 Autonomy

58University of Toronto, CSC2125,  Lecture 1:  ADS



A1 vs A2 Autonomy
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Human-Centric Approach to AI (also see Safety)
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Paths to Autonomous Future
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Yes, with nothing to do, drivers quickly stop paying attention, get distracted, fall asleep



Public Perception of What Drivers Do in Semi-
Automated Vehicles
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What Does Data Say?  
A look at several autonomous driving accidents

Based on work of  Prof. Mark Lawford, McMaster University
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1st Fatal Tesla Autopilot Crash
2016 - January 20th - Fatal - Tesla Model S(China)
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1st Fatal Tesla Autopilot Crash
Analysis

• Model S was equipped with 
• a single forward facing radar, 
• a single forward facing camera, 
• a set of 12 ultrasonic sensors. 

• Camera was used by MobileEye's EyeQ3 computing platform 
implementing a Deep Neural Network (DNN) for its object identification 
and detection

• Vehicle was also equipped with Tesla's Automatic Emergency Braking 
(AEB) system

• AEB system required agreement between both the camera and the radar before 
any action was taken.

• Driver monitoring system consisted of a torque sensor in the steering 
wheel
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2nd Fatal Tesla Autopilot Crash
2017 - May 7th - Fatal - Tesla Model S (Florida)
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2nd Fatal Tesla Autopilot Crash
Analysis

• Similar Model S sensors and features to 1st Tesla Autopilot crash
• No braking or avoidance action prior to collision
• Tesla commented that the camera failed to detect the truck due to 

white color of the trailer against a brightly lit sky and a high ride height.
• They further commented that the radar filtered out the truck as an 

overhead road sign to prevent false braking.
• In both cases MobilEye commented that:

• MobileEye's system was not designed to cover all accident 
scenarios and that Tesla was using it outside of its intended 
purpose.
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3rd Tesla Autopilot Crash
2018 - January 22nd - Non-Fatal – Tesla Model S (California)
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Tesla Collision with Fire Truck

• Tesla Model S in Autopilot mode was 
following a pickup truck in left lane

• Pickup changed lanes to avoid a stationary 
firetruck

• Tesla accelerated into the back of the 
firetruck at 65 m.p.h
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Similar Autopilot, lane changing lead vehicle  & 
stationary vehicle failure
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Autopilot, lane changing lead vehicle  & 
stationary vehicle

• Tesla Model S Handbook states:

“Traffic-Aware Cruise Control cannot detect all objects and may not 
brake/decelerate for stationary vehicles, especially in situations when you are 
driving over 50 mph (80 km/h) and a vehicle you are following moves out of your 
driving path and a stationary vehicle or object is in front of you instead.”
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Why the acceleration?

• ACC is part of Autopilot
• Set max speed (normal 

cruising speed) & time 
gap (headway) when 
following a lead vehicle 
@speed < max speed

74

Hypothesis: 
 When pickup changed lane distance to new lead 

vehicle (firetruck) increased
 ACC commanded acceleration to close the gap
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Another Tesla Autopilot Crash show what this 
might be like at full speed
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Uber Autonomous Vehicle Crash
2018 - March 18th - Fatal – Uber Volvo XC90 (Arizona)
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Uber Accident Details

• Uber
• Switched off Volvo’s standard Aptiva/Intel Mobile Eye collision 

avoidance/mitigation system
• Initially detected unknown object 6 seconds before impact
• It decided it was a bicycle 1.3 second before impact and would have started braking

• Why?
• To reduce interference with their software? Avoid false positives?
• Think of trying to making a right turn @Yonge & Dundas in Toronto

• Also switched off Volvo’s Driver Distraction Detection System

• What’s a poor autonomous vehicle to do?
• Maybe requiring having these features turned on by an industry standard assurance case 

would help!
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4th Tesla Autopilot Crash
2018 - March 23rd - Fatal - Tesla Model X (California)
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4th Tesla Autopilot Crash
Analysis

NTSB preliminary report summary states:
• During the 60 seconds prior to the crash, the drivers hands were detected on 

the steering wheel on three separate occasions, for a total of 34 seconds;
• for the last 6 seconds prior to the crash, the vehicle did not detect the 

driver’s hands on the steering wheel.
• At 8 seconds prior to the crash, the Tesla was following a lead vehicle and 

was traveling about 65 mph.
• At 7 seconds prior to the crash, the Tesla began a left steering movement 

while following a lead vehicle.
• At 4 seconds prior to the crash, the Tesla was no longer following a lead 

vehicle.
• At 3 seconds prior to the crash and up to the time of impact with the crash 

attenuator, the Tesla’s speed increased from 62 to 70.8 mph, with no pre-
crash braking or evasive steering movement detected.
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4th Tesla Autopilot Crash
Analysis

• Tesla stated after the accident:
• “The driver had about five seconds and 150 meters of unobstructed view of the 

concrete divider with the crushed crash attenuator, but the vehicle logs show 
that no action was taken.“

• Oddly enough, Tesla failed to mention that the Tesla sensors and AEB 
had the exact same opportunity to see the concrete divider and react in 
a timely fashion to mitigate the outcome
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A similar Tesla crash
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Following lane marks – to an accident

1. Location of Police vehicle
2. Right hand lane marker as road 

starts to widen for turn lane 
Probably during “rush hour” no 
vehicles park there 
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Main Fallacy in existing (implicit) Assurance 
Cases for ADAS

• The driver is going to catch the Machine Learning (ML) failures . . . 
without driver attentiveness monitoring! 
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Getting too (artificially) intelligent with safety

• Object identification is very useful
• Can help predict and plan in addition to help partially meet some safety 

goals 
• Pedestrian detection is an example of how ML fails badly with the key 

safety requirement: “Don’t hit things!”
AI/ML Version:

“I don’t know what it is so it’s not there.”
vs
Safety Version:

“I don’t know what it BUT IT’S THERE!”
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If ML Doesn’t Recognize It, It’s Not There
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The trouble with AI in safety critical situations
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• Using ML to deal with cross walks:
• AI does a good job with this but not …
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Lessons learned

• Production is currently taking precedence over safety and that is 
resulting in accidents

• The driver is not a sufficient mitigation without *real* driver 
attentiveness monitoring

• Interactions with other systems requirements is compromising safety 
(ACC acceleration in stopped vehicle accidents, interactions between 
control loops at different time scales)

• Current systems are not providing confidence information from ML 
components resulting in unsafe behaviour

• When in doubt, slow down! 

• New failure modes not discussed here – maintenance 
• replacing your windshield can now cause accidents due to sensor calibration 

errors!
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Proper Monitoring of Driver Attentiveness
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Also work from MIT (see 
Lecture 2 of MIT course on 
Deep Learning and Self-Driving)



Self-Driving Car Tasks

• Localization and Mapping – Where am I
• Scene Understanding – Where is Everyone Else?
• Movement Planning – How to get from Point A to Point B
• Driver State – What is the Driver Up to?

• Essential if driver is part of the loop!

• Safety Monitoring
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Safety Assurance of ADS
Source:  Krzysztof Czarnecki, Waterloo
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Operational Design Domain (ODD)
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A set of conditions under which
the driving automation can operate a vehicle

SAE J3016 Levels of Driving Automation

Time of day
day
night

Types of roads 
residential
urban
highway

Geographic
area

Traffic conditions 
stop-and-go
free flowing

Weather conditions
clear
raining
snowing
icy
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Dynamic Driving Task (DDT)
Fallback
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ComputerDriver

Who performs the DDT
in the case of system malfunction or
when leaving the ODD?
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Automated Driving Systems (ADS)
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Fallback

limited unlimited

Conditional
Automation

ADS for
stop-and-go

High
Automation

Shuttle in
geo fenced

area

Full
Automation

Robo
Taxi

anywhere

3 4 5

ODD

Example

SAE J3016 Levels of
Automation

Driver ADS
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ADS Hazard Sources
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Mechanical
faults

Electrical
faults

Computer
HW faults

Computer
SW faults

Sensor
noise &

limitations

Machine
learning
errors

Inadequate
driving

behavior

DDT fallback
failures

Cyber attacks

Mature best practices ISO 26262

(ISO / PAS 21448) SAE J3061
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HW/SW Dev

Verification
Test

HARA

Safety
Concept

Vehicle
Validation

Test

Architecture

Safety Case

Assurance: ISO 26262
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ADS Hazard Sources
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Mechanical
faults

Electrical
faults

Computer
HW faults

Computer
SW faults

Sensor
noise &

limitations

Machine
learning
errors

Inadequate
driving

behavior

DDT fallback
failures

Mature best practices ISO 26262

(ISO / PAS 21448)

Cyber attacks

SAE J3061
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Safety
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Absence of unreasonable risk of mishap

risk 

severity

likelihood
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Driving Behavior Safety
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Absence of unreasonable crash risk due to ADS driving behavior

Noncollisions Collisions
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Factors Influencing Risk Acceptability

• Risk level
• Risk reduction cost
• Benefit of the risky functionality (risk taking)
• Best practice (state of technology)
• Replacement risk
• Who controls risk
• Perception/public opinion
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ODD boundary

Assurance Target
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ODD

Acceptable
risk of
unknown
unsafe
scenarios

Acceptable
risk of
known
unsafe
scenarios
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Responsibility-Driven Safety

• Normal driving scenarios
• Must not cause unacceptable risk increase 
• Low/high demand (incl. other road user errors)

• Emergency scenarios
• Near-crash

• Must avoid crash if it can
• Crash

• Must mitigate if it can
• Dilemmas often addressed by blame assignment

• Fallback
• Must minimize overall risk

110

(related: Responsibility-Sensitive Safety, https://arxiv.org/pdf/1708.06374)
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Blame vs. Injury Risk
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GM Cruise Chevy vs. motorcycle crash
https://www.dmv.ca.gov/portal/wcm/connect/1877d019-d5f0-4c46-b472-78cfe289787d/GMCruise_120717.pdf?MOD=AJPERES
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Blame vs Injury Risk (from the Accident Report)
A Cruise autonomous vehicle ("Cruise AV"), operating in autonomous mode in 
heavy traffic, was involved in a collision while traveling east on Oak Street just 
past the intersection with Fillmore Street. The Cruise AV was traveling in the 
center of three one-way lanes. Identifying a space between two vehicles (a 
minivan in front and a sedan behind) in the left lane, the Cruise AV began to 
merge into that lane. At the same time, the minivan decelerated. Sensing that its 
gap was closing, the Cruise AV stopped making its lane change and returned fully 
to the center lane. As the Cruise AV was re-centering itself in the lane, a 
motorcycle that that had just lane-split between two vehicles in the center and 
right lanes moved into the center lane, glanced the side of the Cruise AV, 
wobbled, and fell over. At the time of the collision, the Cruise AV was traveling 
with the flow of traffic at 12mph, while the motorcycle was traveling at 
approximately 17mph. The motorcyclist got up and walked his vehicle to the side 
of the road, where the parties exchanged information. 911 was called pursuant to 
Cruise policy. The motorcyclist reported shoulder pain and was taken to receive 
medical care, and a police report was taken. As reported in Traffic Collision 
Report#l70989746, the motorcyclist was determined to be at fault for attempting 
to overtake and pass another vehicle on the right under conditions that did not 
permit that movement in safety in violation of CVC 21755(a). 
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High-Level Behavior Safety 
Requirements (Normal Driving)

113

1. Vehicle stability

2. Assured clear distance ahead

3. Minimum separation

4. Traffic regulations

5. Informal traffic rules
(best practices)University of Toronto, CSC2125,  Lecture 1:  ADS

Presenter
Presentation Notes
In normal driving



Behavioral Safety: 1. Vehicle Stability
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Tripped

Untripped
Roll stability

e + µy = v2 / 127R 

Skid stability

Friction ellipses
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Behavioral Safety: 2. Assured Clear Distance 
Ahead (ACDA)
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Stopping sight distance
(Perception-reaction time and
braking distance)

Perception distance
(Range + road geometry)

Limits safe speedUniversity of Toronto, CSC2125,  Lecture 1:  ADS



Behavioral Safety: 2. ACDA
Perception Distance

116

Crests Curves

Intersections Overtaking
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Behavioral Safety:
3. Minimum Separation
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Separation in terms of distance gap, time gap, and time-to-collision
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Behavioral Safety: 
4. Traffic Regulations
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Safe speed (ACDA) Safe following gap

Passing rules

Obeying regulatory traffic signs &
signals Signaling stops & turns

Reacting to emergency vehicles &
school buses

Use of passing beam

Yielding to other road users rules

…

Where to drive Parking restrictions

U-turn prohibitions
Required behavior
at railway crossings
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Behavioral Safety:
5. Informal Traffic Rules
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Delayed acceleration at signalized intersections

Responding to tailgaters

Lane selection

How early to signal turns

2/3 – second rule

Anticipating aberrant behaviors of other road users

Responding to animals on the roadway
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ADS Hazard Sources
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Mechanical
faults

Electrical
faults

Computer
HW faults

Computer
SW faults

Sensor
noise &

limitations

Machine
learning
errors

Inadequate
driving

behavior

DDT fallback
failures

Mature best practices ISO 26262

(ISO / PAS 21448)

Cyber attacks

SAE J3061
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Fail-Operational ADS Architecture
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Primary channel

Secondary channel

High-performance AD function
(gracefully degradable)

Minimal AD fallback function

Monitor A

Monitor B

Vehicle
Platform

Enable
Out

Enable
Out

Dependability patterns:
• Redundancy
• Diversity
• Simplex
• Graceful degradation
• Monitoring of monitoring
• Minimized cost

No single-point failures
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ODD vs. ROD
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Operational Design Domain

Restricted Operational Domain

I Colwell, B Phan, S Saleem, R Salay, K Czarnecki. An Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design 
Domain. IEEE Intelligent Vehicles Symposium (IV), 2018
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ROD Monitoring for
Graceful Degradation
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System
Health
Monitor

ROD
Monitor

ROD
Manager

System functions

System
configurator

System supervisor
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ADS Hazard Sources
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Mechanical
faults

Electrical
faults

Computer
HW faults

Computer
SW faults

Sensor
noise &

limitations

Machine
learning
errors

Inadequate
driving

behavior

DDT fallback
failures

Mature best practices ISO 26262

(ISO / PAS 21448)

Cyber attacks

SAE J3061
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Challenges of Assuring Machine Learned 
Components
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Lack of specification Lack of inspectability

R. Salay, R. Queiroz, K. Czarnecki. An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software. SAE, 
2018-01-1075, 2018; preliminary version also available at https://arxiv.org/abs/1709.02435
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Lack of Complete Spec Affects Verification and 
Testing (see Lecture 4 by R. Salay)
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Best practices

Verification methods

Fault tolerance

Testing methods
Spec notations

Design guidelines

Coding guidelines

Walkthroughs

Error detection &
handling

Requirements-based 
testing

Inspections

Formal verification

Static code analysis

Error guessing

Interface test

Fault injection test

Resource usage test

Structural coverage

Requirements 
Specification

Architectural 
design

Unit design & 
implementation

System Integration 
and V&V

Software 
Integration and 

testing

Unit testing

Design-phase
verification

Design-phase
verification

ISO 26262 Part 6
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Key Recommendations (see Lecture 4)

• Partial specifications
• Assumptions, necessary/sufficient conditions, in- and eqivariants
• Runtime monitoring, test generation, regularization

• Data requirements
• Domain coverage (e.g., ontology)
• Risk profiling

130University of Toronto, CSC2125,  Lecture 1:  ADS



ADS Challenges
(an unsorted list)
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Road User Intension
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Will she cross the street?
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Will she cross the street?
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Traffic Lights in Toronto
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Bad Weather Driving
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“Plastic Bag” Problem
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Edge Cases
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Driving into a Tornado
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Autonomous Trap 101
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Crossing Double Yellow Lines
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http://iamtraffic.org/engineering/crossing-double-yellow-line/
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Place Charles de Gaulle, Paris
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Busy City Traffic
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Vehicle To Pedestrian Communication
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Clamann et al. 2016
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Daimler Prototype
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Unexpected Road Incursion by Pedestrians
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Sudden Emergency Doctrine for human drivers

What is the expected standard for AVs?
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Presenter
Presentation Notes
"The sudden emergency doctrine provides that "[a] person who, through no fault of his or her own, is placed in a sudden emergency, is not chargeable with negligence if the person exercises that degree of care which a reasonably careful person would have exercised under the same or similar circumstances.”www.duhaime.org/LegalDictionary/S/SuddenEmergencyDoctrine.aspxEmergencies might be, but are not limited to: children running into the street, unexpected pedestrians, or even untied bikinis - See more at: http://www.legalmatch.com/law-library/article/defenses-to-tort-liability-sudden-emergency.html#sthash.AFAocPlm.dpuf



Moral Machines
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Safety of Sensors and AI
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AI

University of Toronto, CSC2125,  Lecture 1:  ADS
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Testing Challenges

• 100 million miles driven between deadly crashes (US)
• Crashes are rare events
• Human drivers are extremely good, when they pay attention

• Showing equal performance by an AV with 95% confidence requires 
demonstrating 300 million miles driven without a deadly crash
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California DMV Disengagement Reports

• Google (miles driven between 
disengagements):

• 2015: 2000 miles
• 2016: 5000 miles
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Tesla Autopilot Data Collection and Testing

• In 2016, on average, 1 million 
miles per 10h data collected

• Object lists
• Driver inputs
• Vehicle state 

• Since May 5, 2017, Tesla asks for 
permission to gather video clips 
from their customers

• OtA Update staging
• Dormant mode
• Gradual release
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ttps://electrek.co/2017/05/06/tesla-data-sharing-policy-collecting-video-self-driving/
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Testing in Virtual World

152

Vehicle Physics and 3D Photo-Realistic Simulation
by Aleksandar Pocuc & Igor Ilic University of Toronto, CSC2125,  Lecture 1:  ADS



V2X: Major Infrastructure Requirements
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