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Springrobot: A Prototype Autonomous Vehicle
and Its Algorithms for Lane Detection

Qing Li, Nanning Zheng, Senior Member, IEEE, and Hong Cheng

Abstract—This paper presents the current status of the
Springrobot autonomous vehicle project, whose main objec-
tive is to develop a safety-warning and driver-assistance system
and an automatic pilot for rural and urban traffic environments.
This system uses a high precise digital map and a combination
of various sensors. The architecture and strategy for the system
are briefly described and the details of lane-marking detection
algorithms are presented. The R and G channels of the color
image are used to form graylevel images. The size of the resulting
gray image is reduced and the Sobel operator with a very low
threshold is used to get a grayscale edge image. In the adaptive
randomized Hough transform, pixels of the gray-edge image are
sampled randomly according to their weights corresponding to
their gradient magnitudes. The three-dimensional (3-D) para-
metric space of the curve is reduced to the two-dimensional (2-D)
and the one-dimensional (1-D) space. The paired parameters in
two dimensions are estimated by gradient directions and the last
parameter in one dimension is used to verify the estimated pa-
rameters by histogram. The parameters are determined coarsely
and quantization accuracy is increased relatively by a multireso-
lution strategy. Experimental results in different road scene and
a comparison with other methods have proven the validity of the
proposed method.

Index Terms—Autonomous vehicle, lane-boundary detection,
machine learning, randomized Hough transform (HT).

I. INTRODUCTION

AUTOMATIC vehicle driving aims at automating (entirely
or in part) various driving tasks. The tasks of automati-

cally driven vehicles include road following and keeping within
the correct lane, maintaining a safe distance between vehicles,
regulating the speed of a vehicle according to traffic conditions
and road characteristics, moving across lanes in order to over-
take vehicles and avoid obstacles, searching for the correct and
shortest route to a destination, and driving and parking within
urban environments [1].

The field of intelligent vehicles is growing rapidly in the
world, in terms of both the diversity of emerging applications
and the levels of interest among traditional players in the au-
tomotive, truck, public transportation, industrial, and military
communities. Intelligent vehicle (IV) systems offer the potential
for significant enhancements in safety and operational effi-
ciency. As one component of intelligent transportation systems
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(ITS), IV systems understand the surrounding environment by
a different sensor combined with an intelligent algorithm in
order to either assist the driver in vehicle operations (driver
assistance) or fully control the vehicle (automation) [2].

For solving the problem of traffic congestion and acci-
dents, especially in big cities such as Beijing, Shanghai,
and Guangzhou, the Chinese government has been increasing
funding for improving the traffic infrastructure, enforcing traffic
laws, and educating drivers about traffic regulation. In addition,
research institutes have launched research and development
projects in driver assistance and safety warning systems [3].

The Institute of Artificial Intelligence and Robotics, Xi’an
Jiaotong University, Xi’an, China, is developing an autonomous
vehicle called Springrobot. The research mainly covers the basic
vehicular dynamic behaviors, the vehicular sensory technology
and in-vehicle data communication, signal processing and the
design of information fusion for monitoring running conditions
and vehicle–road interactions, the driver-assistance and safety-
warning systems, and full control of the vehicle and mobile-
agent technology.

As one of the intelligent functionalities, lane detection is the
problem of locating lane boundaries. Up to until the present,
various vision-based lane-detection algorithms have been de-
veloped. They usually utilized different lane patterns (solid or
dashed white painted line, etc.) or different road models [two-di-
mensional (2-D) or three-dimensional (3-D), straight or curved],
and different techniques (Hough, template matching, neural net-
works, etc.).

There has been a significant development of research on ma-
chine vision for road vehicles [4] and the lane-boundary detec-
tion has been an active research area over the last decade. An
automatic lane detector should be able to handle both straight
and curved lane boundaries, the full range of the lane mark-
ings (either single or double and solid or broken), and pavement
edges under a variety of types, lane structures, weather condi-
tions, shadows, puddle, stain, and highlight.

Many systems of lane-boundary detection have been reported
in [5] and [6]. In [7], the authors proposed a B-Snake-based
lane-detection and tracking algorithm without any cameras’ pa-
rameters. The B-Snake-based lane model is able to describe a
wider range of lane structures, since B-Spline can form any ar-
bitrary shape by a set of control points. The problems of de-
tecting both sides of lane markings (or boundaries) have been
merged as the problem of detecting the midline of the lane,
by using the knowledge of the perspective parallel lines. The
Canny/Hough Estimation of Vanishing Points (CHEVP) is pre-
sented for providing a good initial position for the B-Snake and
minimum mean-square error (mmse) is proposed to determine
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the control points of the B-Snake model by the overall image
forces on two sides of lane. In [8], the authors used starting po-
sition, direction, and its graylevel intensity features to obtain a
lane vector via simple image processing. Out of the many pos-
sible lane-boundary candidates, the best one is then chosen as
the one at a minimum distance from the previous lane vector
according to a weighted distance metric in which each feature
is assigned a different weight. An evolutionary algorithm then
finds the optimal weights for combination of the three features
that minimize the rate of detection error. In [9], authors proposed
a method for lane detection using steerable filters to provide ro-
bustness to illumination changes and shadows and perform well
in picking out both circular reflector road markings, as well as
painted line road markings. The filter results are then processed
to eliminate outliers based on the expected road geometry and
are used to update a road and vehicular model along with the
data taken internally from the vehicle. A deformable template
and genetic algorithm-based road-recognition algorithm is pre-
sented in [10]. The road image was processed with an edge
operator to get the edge information and a deformable model
was constructed. Then, a genetic algorithm is used to search
the global maxima of the likelihood function to get the optimal
parameters of the deformable template model of road contour.
Reference [11] presented a method to find the lane boundaries
by combining a local line-extraction method and dynamic pro-
gramming. The line extractor obtains an initial position of road
lane boundaries from the noisy edge fragments. Then, dynamic
programming improves the initial approximation to an accurate
configuration of lane boundaries. The input image frame is di-
vided into subregions along the vertical direction. The local line
extractor extracts candidate lines of road lanes in the subregion.
Most prominent lines are found among candidate lines by dy-
namic programming that minimizes the function that measures
the deviation from a virtual straight line. The search framework
based on the dynamic programming (DP) method reduces com-
putational cost. A Hough-transform-based technique for the au-
tomated detection and tracking of road contours on high-speed
(i.e., low-curvature) roads is presented in [12]. The road con-
tours of the current lane in the near field of view are auto-
matically detected and tracked. Parameter space search opti-
mizations and tracking strategies are outlined. Reference [13]
proposed a novel image-processing algorithm to recognize the
lane curve of a structured road. The proposed algorithm uses
a lane-curve function (LCF) obtained by the transformation of
the defined parabolic function on the world coordinates into the
image coordinates and needed no transformation of the image
pixels into the world coordinates. The main idea of the algo-
rithm is to search for the best described LCF of the lane curve
in an image. In advance, several LCFs are assumed by changing
the curvature. Then, the comparison is carried out between the
slope of an assumed LCF and the phase angle of the edge pixels
in the lane region of interest constructed by the assumed LCF.
The LCF with the minimum difference in the comparison be-
comes the true LCF corresponding to the lane curve.

Most of the usual lane-markings detection algorithms rely on
local image information (edges, pixel gray levels) and often fail
if the initialization is performed too far away from the expected
solution. Some lane-detection algorithms required the operator

Fig. 1. Springrobot: prototype autonomous vehicle.

to provide the initial estimate of the road location, while others
required the specific road-structure scene (such as straight road)
as the first road image. These requirements on the road initial-
izations are clumsy for the automatic road-detection task. For
instance, in [10] they are very myopic since the curve propagates
according to genetic operator, crossover operator, and mutation
operator; that is, the children individual is selected under the
influence of a very small neighborhood of image pixels. There-
fore, the automatic initialization technique, which is able to ex-
tract the location of any type of the lane shapes, is important and
necessary. If the application requires full automatic lane-mark-
ings extraction, global information about the structure of interest
(e.g., shape) has to be encoded in the detection algorithm. How-
ever, most of the methods that rely only on global constraints do
not reflect shape variations at small scales [12]. Approaches that
combine both local and global types of information are usually
a tradeoff between global shape alignment and fidelity to local
image features.

In order to address these problems, different from the
methods discussed before, we propose a new method to ro-
bustly detect the lane boundaries on a variety of different road
types under a variety of illumination changes and shadowing
by introducing an adaptive randomized Hough transform (HT),
in which the markings are first globally and rather coarsely
detected in a reduced image; this estimate can be then refined
in the original image. The experimental results and comparison
with other methods demonstrate the effectiveness and efficiency
of the proposed method.

The principal contributions of this paper are as follows:

• presentation of the system architecture and the basic
strategy of the Springrobot: a prototype autonomous
vehicle;

• description of the adaptive randomized HT (RHT) for
robust and accurate detection of lane markings without
manual initialization or a priori information under dif-
ferent road environments.

The remainder of this paper is organized as follows. Section II
presents the system architecture and implementation strategy of
the Springrobot. In Section III, the model of lane boundary is
briefly described. Section IV describes color-feature selection
and image processing. We propose the adaptive RHT (ARHT) in
Section V. In Section VI, experiments supporting the feasibility
of recognizing various kinds of lane boundaries and showing
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Fig. 2. System architecture of Springrobot.

the advantages of the ARHT algorithm are described. Finally,
the conclusion and future work are presented in Section VII.

II. SPRINGROBOT: PROTOTYPE FOR AUTONOMOUS VEHICLES

Springrobot, shown in Fig. 1, is an experimental autonomous
vehicle that is equipped with computers; various sensors; and
communicating, remove controlling, automatic braking, accel-
erating, and steering capabilities.

Its main target is the development of an active safety system
that can also act as an automatic pilot for a land vehicle on struc-
tured highways, unstructured road, or unpaved road in rural or
city areas. The ability to perceive the environment is essential
for the intelligent vehicle. It has been proven that vision sensor
is most effective after decades of research, so the perception
system of the Springrobot is mainly based on machine vision,
combining with other sensors, such as an infrared (IR) sensor,
radar, lidar, laser, differential global position system (DGPS),
accelerometer, gyroscope, etc.

A. System Architecture

Fig. 2 shows the three-layer system architecture. The sensory
layer includes air-position indicators (APIs) and sensor-specific
drivers for data collection and communication with different
types of in-vehicle sensors and roadside devices. The computing
layer contains a geographic information system (GIS) database,
decision making, planning, and control, which is implemented
by computers. The vehicle layer consists of warning devices,
such as display; executing devices, such as an automatic steering
wheel; and commanding devices, such as a panel.

B. Machine-Learning Approaches

Much of modern statistical and adaptive signal processing
relies on learning algorithms of one form or another. Ma-
chine-learning approaches have been used to train com-
puter-controlled vehicles to correctly steer around or detect an
obstacle when driving on a variety of road types. For example,
the system [14] has used its learned strategies to recognize
vehicles, although some approaches to machine learning have
been applied in robot navigation, a variety of new techniques
that offer tremendous potential for autonomous vehicle appli-
cations, which still need further research and development to
shorten the way to practical and reliable intelligent vehicle.
Many machine-learning systems can be usefully characterized
in terms of four generic modules including the performance
system, critic, generalizer, and experiment generator [15].
Thus, the autonomous learning problem can be demonstrated
in Fig. 3 and described as follows.

Task T: perceiving traffic conditions, making decisions, plan-
ning paths, and controlling the vehicle to run on structured high-
ways and unpaved road in a rural or city area by vision sensors,
IR sensors, radar, lidar, laser, DGPS, accelerometer, gyroscope,
etc.

Performance measure P: average distance and velocity trav-
eled under various road conditions before an error (as judged by
a human overseer).

Train experience E: a set of information captured by various
sensors and stored in GIS, as well as warning, steering, braking,
or accelerating commands recorded while observing a human
driver.
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Fig. 3. Learning-based control strategy for Springrobot.

III. MODEL OF LANE BOUNDARIES

The lane-boundary model plays an important role in lane de-
tection. Lane modeling has to make some assumptions about the
road structure in the real world in order to fully recover 3-D in-
formation from the 2-D static image. In this paper, it is assumed
that the two markings of the lane are parallel to the ground plane.
According to [16] and [17], the markings and pavement bound-
aries can be approximated by circular arcs in a flat ground plane
in the length of the visible road. Due to the use of the par-
allel knowledge of roads on the ground plane, adaptation and
robustness to different road conditions, shadows, and noises is
achieved. A circular arc with curvature is approximated by a
parabola of the form

(1)

Under the perspective projection, these circular arcs on the
ground plane are transformed into curves in the image plane.
These curves can be closely approximated in a single image by

(2)

where the parameter is the row in the image plane corre-
sponding to the horizon of the ground plane and can be deter-
mined by the camera calibration. The parameter is linearly
proportional to the curvature of the arc on the ground plane. The
parameter is a function of the tangential orientation of the arc
on the ground plane, with the same coupling to the curvature as
well (the amount of this coupling depends on the camera tilt).
The parameter is a function of the offset of the arc from the
camera on the ground plane, with coupling to arc curvature and
tangential orientation (again, the relative contributions of these
couplings depends on the camera tilt). While the radius of the
curvature and tangent orientation of the left and right lane edges
will differ slightly, constraining the left and right lane edges to
have the same and parameters closely approximates the ac-
tual lane-edge shapes for all but very small radii of curvature.
The problem of detecting lane boundaries is then formulated as

estimating the parameters , and for the left and the right
lane boundaries in an image.

IV. COLOR-FEATURE SELECTION AND IMAGE PREPROCESSING

In general, lane-detection success or failure depends pri-
marily on how distinguishable a marking is from its surround-
ings. If the marking is very distinctive, a simple detector can be
used to detect it. If the marking has low contrast or is camou-
flaged, imposing a great deal of prior knowledge about a road
scene will achieve the robust detection, but it lacks generality.
The degree to which a detector can discriminate marking and
background is directly related to the feature space used. In
principle, a wide range of features could be used for detection,
including color, texture, and shape. Each potential feature
space typically has dozens of tunable parameters; therefore, the
full set of potential features that could be used for detection is
enormous. Because of the importance of color in lane markings,
we only consider color features in this paper. The set of color
candidate features are composed of linear combinations of red,
green, blue (RGB) channel values. For our experiments, we
have chosen the following set of feature-space candidates [18].

(3)

That is, linear combinations composed of integer coefficients
between 2 and 2. All features are normalized into the range of
0–255. By experiments, we found that the form

, and is suitable for lane detection. This case is con-
sistent with the fact that the red and green channels of colored
road-scene image have good contrast properties for both white
and yellow lane markings. However, the channel is used in
[19].

In order to obtain the edge information, the gradient values
of the input image are calculated using the 3 3 Sobel
operator with very low threshold. Thus, two images can be ob-
tained: a graylevel edge magnitude map , denoting gra-
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dient magnitude of the input image, and a grayscale edge direc-
tion map , denoting the ratio of vertical and horizontal
gradient magnitude of the input image.

(4)

(5)

(6)

(7)

V. ARHT

The HT [20] is a popular method for extracting global curve
segments from an image. It attracts a great amount of atten-
tion from the mainstream image-processing community and has
been used for lane detection [12], [21]–[23]. Its independent use
of image features makes it suitable for implementation in a par-
allel computing system. The HT was then generalized to non-
analytic shapes by Ballard [24]. This method is able to detect
any arbitrary shape undergoing a geometric transformation in
an image. However, increasing the number, range, or accuracy
of the parameters of the geometric transformation may lead to
high computation efforts, which are practically not amenable.
In the context of straight-lines detection, Illingworth and Kit-
tler [25] proposed to implement the HT efficiently by using an
adaptive accumulator array and a coarse-to-fine strategy. Ob-
vious advantages of this approach are that the process can go on
until a given accuracy is reached without increasing the size of
the array. A two-step adaptive generalized HT for the detection
of nonanalytic objects undergoing weak affine transformations
in images was introduced in [26].

The RHT offers a different approach to achieve increased ef-
ficiency in the detection of analytic curves [27], [28], whereby a
set of pixels is randomly selected from the edge image, deter-
mining the parameters of the curve of interest. The advantages
of the RHT include high parameter resolution, infinite scope
of the parameter space, small storage requirements, and high
speed. However, the entire process has to be repeated for every
combination of the discrete parameter values. If wide range and
high accuracy are required for the parameters, both computa-
tional time and storage space become very large.

Motivated by the above problems, here we present a new
adaptive RHT for lane detection in the application of intelligent
vehicles. This method has both advantages of adaptive HT and
RHT.

Fig. 5, combining with Fig. 4, is a flowchart that illustrates
the implementation strategy used to detect the markings in a
highway scene. The scheme consists of presenting the image

information by graylevel edges instead of binary level edges,
reducing the size of the original image, so that the marking can
be located coarsely and rapidly, and investigating the interesting
area by the coarse location and relatively increasing the quan-
tized accuracy. This cycle of events continues until parameters
are determined to a reasonable accuracy. Located parameters
can be used to identify, by an inverse mapping, the position and
orientation of vehicle relative to lane.

A. Reduction of 3-D Parametric Space to the 2-D and the
One-Dimensional (1-D) Space

The main bottlenecks of the HT-related techniques are their
computational complexity and storage requirements. To sim-
plify the complexity of algorithm, the 3-D parametric space
should be reduced to two dimensions. It is possible to elimi-
nate the feature-specific parameter by making use of local fea-
ture-orientation information [16], [17]. Taking the derivative of
the curve (2), solving for , and substituting it into the feature
equation, we can obtain the relationship among a point on any
road feature, the local feature, the local feature tangent, and the

and parameters shared by all the road features

(8)

(9)

Using (9) rather than (8) to estimate the parameter and
is because one or more lane markings and other objects in the
image, such as shoulders and lane fences, have edges sharing
the same lane structure. Among the three lane structure param-
eters, these edges approximately share the two parameters and

. The difference between them is the value of the parameter
. This property allows us to estimate and robustly and

quickly by RHT, just as detecting a circle, ellipse, or parabola
by RHT. Thus, and can be estimated directly from the
raw edge-point location and orientation data without the need
to group the edge points together into individual features. From
(9), road boundaries can be detected by using only a 2-D accu-
mulator array. Edge gradient information is used to estimate the

term.

(10)

The adaptive RHT can be used to estimate and , associ-
ated with . A pair of pixels and are sampled
in the gray-edge map, then and can be calculated as

(11)

(12)

Additionally, gradient direction represents a lot of informa-
tion on the contour. The use of the gradient directional infor-
mation acts favorably in two points [29]: It increases the de-
tection speed and improves parameter accuracy by reducing the
wrong evidences. We reduce inefficient accumulation using di-
rectional information. For the two points that are obviously not
on the lane boundaries, due to a random sample, they are likely
to be picked up in RHT. We have to calculate parameter cell
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Fig. 4. Processing procedure of the ARHT.

Fig. 5. Flow chart of adaptive RHT.

of a curve that passes the two points and searches the pa-
rameter cell set . If there is no in , a new parameter cell
will inserted into ; thus, the list structure will increase. If gra-
dient-direction information can be utilized, the result that two
points are not lane boundaries would be detected and further
work would not be done. Given a threshold for two points

and that is sampled randomly, the gradient directions
and at the two points are judged whether they satisfy the con-

dition . If not, the two points are
not thought to be on the lane boundaries and resampling will be
done.

B. Using Graylevel Edge Maps Instead of Binary-Level Edge
Maps

The task of curve detection can be conducted on a binary-
edge image that may be obtained from graylevel images by ei-
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ther simple thresholding operations or by some standard edge-
detection techniques. Suppose that the curves to be detected
can be expressed by a parametric function , with

containing independent parameters and
being the coordinates of a “white” pixel.

However, when using gradient operator to obtain edges, it is
difficult to determine an optimal threshold value for selecting
only true road lanes corresponding to the painted yellow and
white lane mark or road boundaries among many noisy edges.
Also, in many road scenes it is not possible to select a suit-
able threshold that eliminates noise edges without eliminating
many of the lane-edge points of interest. In scene analysis or 3-D
reconstruction, curves often disappear during the edge-detec-
tion processes, which becomes critical for the succeeding pro-
cesses. Therefore, a better alternative is to use whole gray-edge
map and no useful information is lost. However, the computa-
tional cost is high if all pixels are included; a very low threshold
value is assumed to insure the existence of true edges corre-
sponding to road boundaries and the remaining problem is the
selection of the real boundaries among many candidate edges.
For the gray-edge magnitude map mentioned before, a very low
threshold (e.g., 0.1 or 0.2) is set to remove those points that
do not belong to lane markings absolutely.

In RHT based on a binary edge map, every edge pixel is
sampled uniformly, without considering its probability of being
on a certain curve. In the ARHT, inspired by particle filtering
[30], pixels in gray-edge map is weighted according to its gra-
dient magnitude, then the pixels are sampled according to their
weight, i.e., pixels with larger gradient magnitudes are sampled
more frequently. In this paper, the weight of a pixel is
defined as

(13)

where

The array is the position of the pixel is
the gradient magnitude of and is the width and
the height of the grayscale edge map, respectively, and

. The pixels are sampled as follows.

Step 1) Form a sample-set using pixels whose gradient
magnitude is nonzero.

Step 2) Calculate the weight of , as defined in (13).
Step 3) Store together with cumulative probability as

, where
.

Step 4) Generate a random number .
Step 5) Find, by binary subdivision, the smallest for

which .
We select the element of to be the sampled pixel. Fol-

lowing the process that the parameters and are estimated,
the correctness of the parameters and should be verified.
Not as straight line, two parameters can determine a line, the
curve defined in (2) cannot be determined only by parameters

and . To verifying the curve, another parameter has to be
included. The parameter of the model can be found by his-
togramming the accumulation of gradient magnitude of points
on the curve supposed true in the graylevel edge image. The
pixels through the curve can be accumulated as

(14)

where represents the length of the curve determined by
and is a pixel on the assumed curve and
is the gradient magnitude of . If exceeds a specified
threshold, the curve is true.

After a marking is detected, the other marking can be obtained
by some post analysis, such as a simple histogram step.

C. Determining Parameters Coarsely and Increasing
Quantized Accuracy Relatively by the Multiresolution Strategy

A multiresolution strategy to achieve an accurate solution
rapidly and to decrease the running time to meet the real-time
requirement was employed at the stage. The size of the original
image is reduced to , where , by bicubic inter-
polation. The reduced images are called as quarter image and
half image, respectively. In these images with lower resolution,
we can roughly and efficiently locate the global optima without
regarding the accuracy using the ARHT with fixed quantized
accuracy. The parameters resulting from the previous step can
be used as starting values of another ARHT for more accu-
rate location of vehicle. The parameter search can, therefore, be
restricted to a small area around the previous solution, saving
time and storage complexities. First, the model of marking with

and is detected in the quarter image. In the second
stage, a smaller search area and a finer step size are used to ob-
tain the better model of marking with and in the half
image. At last, a smaller search area and a finer step size are
used to obtain the final model of marking with and in
the original image. This coarse-to-fine location offers us an ac-
ceptable solution at an affordable computational cost and, thus,
speeds up the process of lane detection.

When the quarter image is restored into the half image and the
half image is restored into the original image, the relationships
among the parameters of marking model are depicted as

(15)

Now, let us discuss the error criterion for regarding two
elements being the same in ARHT. When is the usual
accumulation array, two elements are regarded as the same
as they are discretized into the same coordinates. One alter-
native is that two elements are regarded as the same if we
have under a given distance measure

and a tolerance . The tolerance is more small, the
accuracy is more high in the process of using ARHT to analyze
image. The tolerance would be set smaller and smaller for the
accurate model of marking. Although the is fixed in this paper,
in fact the accuracy is improved because of the increasing of

with the restoring of reduced image. Fig. 6 shows the
multiresolution approach for lane detection.
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Fig. 6. Multiresolution algorithm for detecting the lane rapidly and accurately.

Fig. 7. Experimental results of different road scenes.

VI. EXPERIMENTS

This section presents the performance of the proposed method
in the real road scenes. We can extract the left and right lane
boundaries. The algorithm is tested on some images from video
grabbed by an onboard camera in our laboratory and images
provided by Robotics Institute, Carnegie Mellon University
(CMU), Pittsburgh, PA. All experimental images are 24-bit color
images of size 256 240. Fig. 7 shows some of our experimental
resultsoflane-boundarydetection,wheredetectedboundariesare
superimposed onto the original images. These images represent
variousrealhighwaysscenes, includingalanewhoseleftandright
markings are solid, a lane whose left marking is solid and right
marking is broken, a lane whose left marking is broken and right
marking is solid, a lane whose left and right markings are broken,
a lanewithshadows,a lanewithhighlight in farfield, a lanewhose
left marking has big blank, and also a lane whose markings are
fragmentary. The experiments show that the method retains the
desirable HT characteristics of robustness to extraneous data
and the ability to detect model parameters from disturbed data,
although imperfect detection occasionally happens because of
traffic signs drawn on the road.

Fig. 8 demonstrates the performance of genetic-algorithm-
based lane detection [10] and ARHT-based lane detection. The

Fig. 8. Comparison of the genetic algorithm and ARHT for lane detection.

experimental comparison seems to indicate that the latter has
some advantages over the former.
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VII. CONCLUSION

In this paper, we demonstrate the prototype and detail
tasks of lane detection. The accuracy and robustness of the
road-boundary detection for an intelligent vehicle is a for-
midable task under a variety of road pavement types, lane
structures, weather conditions, and noises. An adaptive RHT,
an efficient way of implementing the RHT, is employed to
deal with these difficulties and, at the same time, preserving
its advantage of high accuracy, especially for noisy images. To
reduce the high computational cost associated with the original
input image, the size of the input image is reduced. To deal with
a cluttered scene and to detect the true lane edges, a gray-edge
map with a very small threshold value is used. To simplify
the problem, the 3-D Hough space is reduced to two dimen-
sions. To save memory storage and decrease computational
cost, randomized sampling and an iterative “coarse-to-fine”
accumulation and search strategy are adopted.

Future work is to further reduce the running time in the lane
detection and to detect and recognize vehicles based on machine
learning.
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