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Abstract—Deep learning (DL) defines a new data-driven pro-
gramming paradigm where the internal system logic is largely
shaped by the training data. The standard way of evaluating
DL models is to examine their performance on a test dataset.
The quality of the test dataset is of great importance to gain
confidence of the trained models. Using an inadequate test
dataset, DL models that have achieved high test accuracy may
still lack generality and robustness. In traditional software
testing, mutation testing is a well-established technique for
quality evaluation of test suites, which analyzes to what extent
a test suite detects the injected faults. However, due to the
fundamental difference between traditional software and deep
learning-based software, traditional mutation testing techniques
cannot be directly applied to DL systems. In this paper, we
propose a mutation testing framework specialized for DL systems
to measure the quality of test data. To do this, by sharing the same
spirit of mutation testing in traditional software, we first define
a set of source-level mutation operators to inject faults to the
source of DL (i.e., training data and training programs). Then we
design a set of model-level mutation operators that directly inject
faults into DL models without a training process. Eventually, the
quality of test data could be evaluated from the analysis on to
what extent the injected faults could be detected. The usefulness
of the proposed mutation testing techniques is demonstrated on
two public datasets, namely MNIST and CIFAR-10, with three
DL models.

Index Terms—Deep learning, Software testing, Deep neural
networks, Mutation testing

I. INTRODUCTION

Over the past decades, deep learning (DL) has achieved

tremendous success in many areas, including safety-critical

applications, such as autonomous driving [1], robotics [2],

games [3], video surveillance [4]. However, with the witness of

recent catastrophic accidents (e.g., Tesla/Uber) relevant to DL,

the robustness and safety of DL systems become a big concern.

Currently, the performance of DL systems is mainly measured

by the accuracy on the prepared test dataset. Without a system-

atic way to evaluate and understand the quality of the test data,

it is difficult to conclude that good performance on the test

data indicates the robustness and generality of a DL system.

This problem is further exacerbated by many recently proposed

adversarial test generation techniques, which performs minor

perturbation (e.g., invisible to human eyes [5]) on the input

data to trigger the incorrect behaviors of DL systems. Due

to the unique characteristics of DL systems, new evaluation
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criteria on the quality of DL systems are highly desirable, and

the quality evaluation of test data is of special importance.
For traditional software, mutation testing (MT) [6] has

been established as one of the most important techniques to

systematically evaluate the quality and locate the weakness

of test data. A key procedure of MT is to design and select

mutation operators that introduce potential faults into the

software under test (SUT) to create modified versions (i.e.,

mutants) of SUT [6], [7]. MT measures the quality of tests by

examining to what extent a test set could detect the behavior

differences of mutants and the corresponding original SUT.
Unlike traditional software systems, of which the decision

logic is often implemented by software developers in the form

of code, the behavior of a DL system is mostly determined by

the structure of Deep Neural Networks (DNNs) as well as the

connection weights in the network. Specifically, the weights

are obtained through the execution of training program on

training data set, where the DNN structures are often defined

by code fragments of training program in high-level languages

(e.g., Python [8], [9] and Java [10]).1 Therefore, the training

data set and the training program are two major sources of

defects of DL systems. For mutation testing of DL systems, a

reasonable approach is to design mutation operators to inject

potential faults into the training data or the DNN training

program. After the faults are injected, the training process

is re-executed, using the mutated training data or training

program, to generate the corresponding mutated DL models. In

this way, a number of mutated DL models {M ′
1,M

′
2, . . . ,M

′
n}

are generated through injecting various faults. Then, each of

the mutant models M ′
i is executed and analyzed against the

test set T , in correspondence to original DL model M . Given

a test input t ∈ T , t detects the behavior difference of M
and M ′

i if the outputs of M and M ′ are inconsistent on t.
Similar to mutation testing for traditional software [6], the

more behavior differences of the original DL model M and

the mutant models {M ′
1,M

′
2, . . . ,M

′
n} could be detected by

T , the higher quality of T is indicated.
In this paper, we propose a mutation testing framework

specialized for DL systems, to enable the test data qual-

ity evaluation. We first design eight source-level mutation

testing operators that directly manipulate the training data

1Although the training program of a DNN is often written in high-level
languages, the DNN itself is represented and stored as a hierarchical data
structure (e.g., .h5 format for Keras [9]).
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Fig. 1: A comparison of traditional and DL software development.

and training programs. The design intention is to introduce

possible faults and problems into DL programming sources,

which could potentially occur in the process of collecting

training data and implementing the training program. For

source-level mutation testing, training DNN models can be

computationally intensive: the training process can take min-

utes, hours, even longer [11]. Therefore, we further design

eight mutation operators to directly mutate DL models for

fault inclusion. These model-level mutation operators not only

enable more efficient generation of large sets of mutants but

also could introduce more fine-grained model-level problems

that might be missed by mutating training data or programs.

We have performed an in-depth evaluation of the proposed

mutation testing techniques on two widely used datasets,

namely MNIST and CIFAR-10, and three popular DL models

with diverse structures and complexity. The evaluation result

demonstrates the usefulness of the proposed techniques as a

promising measurement towards designing and constructing

high-quality test datasets, which would eventually facilitate

the robustness enhancement of DL systems. It is worth noting

that the intention of the proposed mutation operators is for

fault injection on DL models so that test data quality could be

evaluated, instead of directly simulating the human faults.

Currently, testing for DL software is still at an early stage,

with some initial research work focused on accuracy and

neuron coverage, such as DeepXplore [12], DeepGauge [13],

and DeepCover [14]. To the best of our knowledge, our

work is the first attempt to design mutation testing techniques

specialized for DL systems. The main contributions of this

paper are summarized as follows:

• We propose a mutation testing framework and workflow

specialized for DL systems, which enables the quality

evaluation and weakness localization of the test dataset.

• We design eight source-level (i.e., on the training data and

training program) mutation operators to introduce faults into

the DL programming elements. We further design eight

mutation operators that directly inject faults into DL models.

• We propose two DL-specific mutation testing metrics to

allow quantitative measurement for test quality.

• We evaluate the proposed mutation testing framework on

widely studied DL data sets and models, to demonstrate the

usefulness of the technique, which could also potentially

facilitate the test set enhancement.

Fig. 2: Key process of general mutation testing.

II. BACKGROUND

A. Programming Paradigms

Building deep learning based systems is fundamentally

different from that of traditional software systems. Traditional

software is the implementation of logic flows crafted by

developers in the form of source code (see Figure 1), which

can be decomposed into units (e.g., classes, methods, state-

ments, branches). Each unit specifies some logic and allows

to be tested as targets of software quality measurement (e.g.,

statement coverage, branch coverage). After the source code is

programmed, it is compiled into executable form, which will

be running in respective runtime environments to fulfill the

requirements of the system. For example, in object-oriented

programming, developers analyze the requirements and design

the corresponding software architecture. Each of the architec-

tural units (e.g., classes) represents specific functionality, and

the overall goal is achieved through the collaborations and

interactions of the units.

Deep learning, on the other hand, follows a data-driven pro-

gramming paradigm, which programs the core logic through

the model training process using a large amount of train-

ing data. The logic is encoded in a deep neural network,

represented by sets of weights fed into non-linear activation

functions [15]. To obtain a DL software F for a specific task

M, a DL developer (see Figure 1) needs to collect training

data, which specifies the desired behavior of F on M, and

prepare a training program, which describes the structure of

DNN and runtime training behaviors. The DNN is built by

running the training program on the training data. The major

effort for a DL developer is to prepare a set of training

data and design a DNN model structure, and DL logic is

determined automatically through the training procedure. In

contrast to traditional software, DL models are often difficult

to be decomposed or interpreted, making them unamenable

to most existing software testing techniques. Moreover, it is

challenging to find high-quality training and test data that

represent the problem space and have good coverage of the

models to evaluate their generality.
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Fig. 3: Source-level mutation testing workflow of DL systems.

B. Mutation Testing

The general process of mutation testing [6], [16] for tra-

ditional software is illustrated in Figure 2. Given an original

program P , a set of faulty programs P ′ (mutants) are created

based on predefined rules (mutation operators), each of which

slightly modifies P . For example, a mutation operator can

syntactically change ‘+’ operator in the program to ‘−’

operator [17]–[19]. A step of preprocessing, usually before

the actual mutation testing procedure starts, is used to filter

out irrelevant tests. Specifically, the complete test set T is

executed against P and only the passed tests T ′ (a subset of

T ) are used for mutation testing. In the next step, each mutant

of P ′ is executed on T ′. If the test result for a mutant p′ ∈ P ′

is different from that of P , then p′ is killed; otherwise, p′ is

survived. When all the mutants in P ′ have been tested against

T ′, mutation score is calculated as the ratio of killed mutants to

all the generated mutants (i.e., #mutantskilled/#mutantsall ),
which indicates the quality of test set. Conceptually, a test

suite with a higher mutation score is more likely to capture

real defects in the program [20]. After obtaining the mutation

testing results, the developer could further enhance the quality

of test set (e.g., by adding/generating more tests) based on the

feedback from mutation testing [21], [22]. The general goal

of mutation testing is to evaluate the quality of test set T , and

further provide feedback and guide the test enhancement.

III. SOURCE-LEVEL MUTATION TESTING OF DL SYSTEMS

In general, traditional software is mostly programmed by

developers in the form of source code (Figure 1), which could

be a major source of defect introduction. Mutation testing

slightly modifies the program code to introduce faults, which

enables the measurement of test data quality through detecting

such deliberately changes.

With the same spirit of mutation testing for traditional

software, directly introducing potential defects into the pro-

gramming sources of a DL system is a reasonable approach

to create mutants. In this section, we propose a source-

level mutation testing technique for DL systems. We design

a general mutation testing workflow for DL systems, and

propose a set of mutation operators as the key components.

TABLE I: Source-level mutation testing operators for DL systems.

Fault Type Level Target Operation Description

Data Repetition (DR)
Global

Data
Duplicates training data

Local Duplicates specific type of data

Label Error (LE)
Global

Data
Falsify results (e.g., labels) of data

Local Falsify specific results of data

Data Missing (DM)
Global

Data
Remove selected data

Local Remove specific types of data

Data Shuffle (DF)
Global

Data
Shuffle selected training data

Local Shuffle specific types of data

Noise Perturb. (NP)
Global

Data
Add noise to training data

Local Add noise to specific type of data

Layer Removal (LR) Global Prog. Remove a layer

Layer Addition (LAs) Global Prog. Add a layer

Act. Fun. Remov. (AFRs) Global Prog. Remove activation functions

Furthermore, we define the mutation testing metrics for quan-

titative measurement and evaluation of the test data quality.

A. Source-level Mutation Testing Workflow for DL Systems

Figure 3 shows the key workflow of our source-level

mutation testing technique. At the initialization phase, a DL

developer prepares a training program P and a set of training

data D. After the training process, which runs P with D, a

DL model M is obtained. When the mutation testing starts, the

original training data D and program P are slightly modified

by applying mutation operators (defined in Table I), and the

corresponding mutants D′ and P ′ are generated. In the next

step, either a training data mutant or training program mutant

participates in the training process to generate a mutated DL

model M ′. When mutated DL models are obtained, they are

executed and analyzed against the filtered test set T ′ for

evaluating the quality of test data.2 We emphasize that, the

proposed mutation operators in this paper are not intended to

directly simulate human faults; instead, they aim to provide

ways for quantitative measurement on the quality of test data

set. In particular, the more behavior differences between the

original DL model and the mutant models (generated by

mutation operators) T ′ could detect, the higher quality of T ′

is indicated. The detailed quality measurement metrics are

defined in Section III-C.

B. Source-level Mutation Operators for DL Systems

We propose two groups of mutation operators, namely

data mutation operators and program mutation operators,

which perform the corresponding modification on sources to

introduce potential faults (see Table I).

1) Data Mutation Operators: Training data plays a vital

role in building DL models. The training data is usually large

in size and labeled manually [23]–[25]. Preparing training

data is usually laborious and sometimes error-prone. Our data

mutation operators are designed based on the observation of

potential problems that could occur during the data collection

process. These operators can either be applied globally to all

types of data, or locally only to specific types of data within

the entire training data set.

2T ′ is consisted of the test data points in T that are correctly processed by
the original DL model M .
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• Data Repetition (DR): The DR operator duplicates a small

portion of training data. The training data is often collected

from multiple sources, some of which are quite similar, and

the same data point can be collected more than once.

• Label Error (LE): Each data point (d, l) in the training

dataset D, where d represents the feature data and l is

the label for d. As D is often quite large (e.g., MNIST

dataset [23] contains 60, 000 training data), it is not un-

common that some data points can be mislabeled. The LE

operator injects such kind of faults by changing the label

for a data.

• Data Missing (DM): The DM operator removes some of

the training data. It could potentially happen by inadvertent

or mistaken deletion of some data points.

• Data Shuffle (DF): The DF operator shuffles the training

data into different orders before the training process. Theo-

retically, the training program runs against the same set of

training data should obtain the same DL model. However,

the implementation of training procedure is often sensitive

to the order of training data. When preparing training data,

developers often pay little attention to the order of data, and

thus can easily overlook such problems during training.

• Noise Perturbation (NP): The NP operator randomly adds

noise to training data. A data point could carry noise from

various sources. For example, a camera-captured image

could include noise caused by different weather condi-

tions (i.e., rain, snow, dust, etc.). The NP operator tries to

simulate potential issues relevant to noisy training data (e.g.,

NP adds random perturbations to some pixels of an image).

2) Program Mutation Operators: Similar to traditional pro-

grams, a training program is commonly coded using high-level

programming languages (e.g., Python and Java) under specific

DL framework. There are plenty of syntax-based mutation

testing tools available for traditional software [26]–[30], and

it seems straightforward to directly apply these tools to the

training program. However, this approach often does not work,

due to the fact that DL training programs are sensitive to code

changes. Even a slight change can cause the training program

to fail at runtime or to produce noticeable training process

anomalies (e.g., obvious low prediction accuracy at the early it-

erations/epochs of the training). Considering the characteristics

of DL training programs, we design the following operators

to inject potential faults.

• Layer Removal (LR): The LR operator randomly deletes

a layer of the DNNs on the condition that input and output

structures of the deleted layer are the same. Although it

is possible to delete any layer that satisfies this condition,

arbitrarily deleting a layer can generate DL models that are

obviously different from the original DL model. Therefore,

the LR operator mainly focuses on layers (e.g., Dense,

BatchNormalization layer [31]), whose deletion does

not make too much difference on the mutated model. The

LR operator mimics the case that a line of code representing

a DNN layer is removed by the developer.

Fig. 4: Example of DL model and its two generated mutant models
for binary classification with their decision boundaries. In the figure,
some data scatter closer to the decision boundary (in green color).
Our mutation testing metrics favor to identify the test data that locate
in the sensitive region near the decision boundary.

• Layer Addition (LAs): In contrast to the LR opera-

tor, the LAs operator adds a layer to the DNNs struc-

ture. LAs focuses on adding layers like Activation,

BatchNormalization, which introduces possible faults

caused by adding or duplicating a line of code representing

a DNN layer.

• Activation Function Removal (AFRs): Activation func-

tion plays an important role of the non-linearity of

DNNs for higher representativeness (i.e., quantified as VC
dimension [15]). The AFRs operator randomly removes

all the activation functions of a layer, to mimic the situation

that the developer forgets to add the activation layers.

C. Mutation Testing Metrics for DL Systems

After the training data and training program are mutated by

the mutation operators, a set of mutant DL models M ′ can be

obtained through training. Each test data point t′ ∈ T ′ that is

correctly handled by the original DL model M , is evaluated

on the set of mutant models M ′. We say that test data T ′

kill mutant m′ if there exists a test input t′ ∈ T ′ that is not

correctly handled by m′. The mutation score of traditional

mutation testing is calculated as the ratio of killed mutants

to all mutants. However, it is inappropriate to use the same

mutation score metrics of traditional software as the metrics

for mutation testing of DL systems. In the mutation testing

of DL systems, it is relatively easy for T ′ to kill a mutant

m′ when the size of T ′ is large, which is also convinced from

our experiment in Section V. Therefore, if we were to directly

use the mutation score for DL systems as the ratio of killed

mutants to all mutants, our metric would lose the precision to

evaluate the quality of test data for DL systems.

In this paper, we focus on DL systems for classification

problems.3 Suppose we have a k-classification problem and

let C = {c1, . . . , ck} be all the k classes of input data. For a

test data point t′ ∈ T ′, we say that t′ kills ci ∈ C of mutant

3Although, the mutation score metric defined in this paper mainly focuses
on classification problems, the similar idea can be easily extended to handle
numerical predication problem as well, with a user-defined threshold as the
error allowance margin [32].

103



Fig. 5: The model level mutation testing workflow for DL systems.

m′ ∈ M ′ if the following conditions are satisfied: (1) t′ is

correctly classified as ci by the original DL model M , and (2)

t′ is not classified as ci by m′. We define the mutation score

for DL systems as follows, where KilledClasses(T ′,m′) is

the set of classes of m′ killed by test data in T ′:

MutationScore(T ′,M ′) =
∑

m′∈M′ |KilledClasses(T ′,m′)|
|M ′| × |C|

In general, it could be difficult to precisely predict the

behavioural difference introduced by mutation operators. To

avoid introducing too many behavioural differences for a DL

mutant model from its original counterpart, we propose a

DL mutant model quality control procedure. In particular, we

measure the error rate of each mutant m′ on T ′. If the error

rate of m′ is too high for T ′, we don’t consider m′ a good

mutant candidate as it introduces a large behavioral difference.

We excluded such mutant models from M ′ for further analysis.

We define average error rate (AER) of T ′ on each mutant

model m′ ∈ M ′ to measure the overall behavior differential

effects introduced by all mutation operators.

AveErrorRate(T ′,M ′) =
∑

m′∈M′ ErrorRate(T ′,m′)
|M ′|

Figure 4 shows an example of a DL model for binary

classification, with the decision boundary of the original model

and the decision boundaries of two mutant models. We can

see that the mutant models are more easily to be killed by

data in green, which lies near the decision boundary of the

original DL model. The closer a data point is to the decision

boundary, the higher chance it has to kill more mutant models,

which is reflected as the increase of the mutation score and

AER defined for DL systems. In general, mutation testing

facilitates to evaluate the effectiveness of test set, by analyzing

to what extent the test data is closed to the decision boundary

of DNNs, where the robustness issues more often occur.

IV. MODEL-LEVEL MUTATION TESTING OF DL SYSTEMS

In Section III, we define the source-level mutation testing

procedure and workflow, which simulate the traditional mu-

tation testing techniques designed to work on source code

TABLE II: Model-level mutation testing operators for DL systems.

Mutation Operator Level Description

Gaussian Fuzzing (GF) Weight Fuzz weight by Gaussian Distribution
Weight Shuffling (WS) Neuron Shuffle selected weights
Neuron Effect Block. (NEB) Neuron Block a neuron effect on following layers
Neuron Activation Inverse (NAI) Neuron Invert the activation status of a neuron
Neuron Switch (NS) Neuron Switch two neurons of the same layer
Layer Deactivation (LD) Layer Deactivate the effects of a layer
Layer Addition (LAm) Layer Add a layer in neuron network
Act. Fun. Remov. (AFRm) Layer Remove activation functions

(see Figure 1). In general, to improve mutation testing ef-

ficient, many traditional mutation testing techniques are de-

signed to work on a low-level software representation (e.g.,

Bytecode [18], [30], Binary Code [33], [34]) instead of

the source code, which avoid the program compilation and

transformation effort. In this section, we propose the model-

level mutation testing for DL system towards more efficient

DL mutant model generation.

A. Model-Level Mutation Testing Workflow for DL Systems

Figure 5 shows the overall workflow of DL model level

mutation testing workflow. In contrast to the source-level

mutation testing that modifies the original training data D
and training program P , model level mutation testing directly

changes the DL model M obtained through training from D
and P . For each generated DL mutant model m′ ∈ M ′ by

our defined model-level mutation operators in Table II, input

test dataset T is run on M to filter out all incorrect data

and the passed data are sent to run each m′. The obtained

execution results adopt the same mutation metrics defined in

Section III-C for analysis and report.

Similar to source-level mutation testing, model-level muta-

tion testing also tries to evaluate the effectiveness and locate

the weakness of a test dataset, which helps a developer to

further enhance the test data to exercise the fragile regions

of a DL model under test. Since the direct modification of

DL model avoids the training procedure, model-level mutation

testing is expected to be more efficient for DL mutant model

generation, which is similar to the low-level (e.g., intermediate

code representation such as Java Bytecode) mutation testing

techniques of traditional software.

B. Model-level Mutation Operators for DL Systems

Mutating training data and training program will eventually

mutate the DL model. However, the training process can be

complicated, being affected by various parameters (e.g., the

number of training epochs). To efficiently introduce possible

faults, we further propose model-level mutation operators,

which directly mutate the structure and parameters of DL

models. Table II summarizes the proposed model-level mu-

tation operators, which range from weight level to layer level

in terms of application scopes of the operators.

• Gaussian Fuzzing (GF): Weights are basic elements of

DNNs, which describe the importance of connections be-

tween neurons. Weights greatly contribute to the decision

logic of DNNs. A natural way to mutate the weight is
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to fuzz its value to change the connection importance it

represents. The GF operator follows the Gaussian distribu-

tion N (w, σ2) to mutate a given weight value w, where

σ is a user-configurable standard deviation parameter. The

GF operator mostly fuzzes a weight to its nearby value

range (i.e., the fuzzed value locates in [w − 3σ,w + 3σ]
with 99.7% probability), but also allows a weight to be

changed to a greater distance with a smaller chance.

• Weight Shuffling (WS): The output of a neuron is often

determined by neurons from the previous layer, each of

which has connections with weights. The WS operator

randomly selects a neuron and shuffles the weights of its

connections to the previous layer.

• Neuron Effect Blocking (NEB): When a test data point is

read into a DNN, it is processed and propagated through

connections with different weights and neuron layers until

the final results are produced. Each neuron contributes

to the DNN’s final decision to some extent according to

its connection strength. The NEB operator blocks neuron

effects to all of the connected neurons in the next layers,

which can be achieved by resetting its connection weights

of the next layers to zero. The NEB removes the influence

of a neuron to the final DNN’s decision.

• Neuron Activation Inverse (NAI): The activation function

plays a key role in creating the non-linear behaviors of

the DNNs. Many widely used activation functions (e.g.,

ReLU [35], Leaky ReLU [36]) show quite different behav-

iors depending on their activation status. The NAI operator

tries to invert the activation status of a neuron, which

can be achieved by changing the sign of the output value

of a neuron before applying its activation function. This

facilitates to create more mutant neuron activation patterns,

each of which can show new mathematical properties (e.g.,

linear properties) of DNNs [37].

• Neuron Switch (NS): The neurons of a DNN’s layer often

have different impacts on the connected neurons in the next

layers. The NS operator switches two neurons within a layer

to exchange their roles and influences for the next layers.

• Layer Deactivation (LD): Each layer of a DNN transforms

the output of its previous layer and propagates its results to

its following layers. The LD operator is a layer level mu-

tation operator that removes a whole layer’s transformation

effects as if it is deleted from the DNNs. However, simply

removing a layer from a trained DL model can break the

model structure. We restrict the LD operator to layers whose

the input and output shapes are consistent.

• Layer Addition (LAm): The LAm operator tries to make the

opposite effects of the LD operator, by adding a layer to the

DNNs. Similar to the LD operator, the LAm operator works

under the same conditions to avoid breaking original DNNs;

besides, the LAm operator also includes the duplication and

insertion of copied layer after its original layers, which also

requires the shape of layer input and output to be consistent.

• Activation Function Removal (AFRm): AFRm operator

removes the effects of activation function of a whole layer.

The AFRm operator differs from the NAI operator in two

TABLE III: Evaluation subject datasets and DL models. Our selected
subject datasets MNIST and CIFAR-10 are widely studied in previous
work. We train the DNNs model with its corresponding original
training data and training program. The obtained DL model refers
to the original DL (i.e., the DL model M in Figure 3 and 5), which
we use as the baseline in our evaluation. Each studied DL model
structure and the obtained accuracy are summarized below.

MNIST CIFAR-10
A (LeNet5) [23] B [38] C [39]

Conv(6,5,5)+ReLU Conv(32,3,3)+ReLU Conv(64,3,3)+ReLU
MaxPooling (2,2) Conv(32,3,3)+ReLU Conv(64,3,3)+ReLU

Conv(16,5,5)+ReLU MaxPooling(2,2) MaxPooling(2,2)
MaxPooling(2,2) Conv(64,3,3)+ReLU Conv(128,3,3)+ReLU

Flatten() Conv(64,3,3)+ReLU Conv(128,3,3)+ReLU
FC(120)+ReLU MaxPooling(2,2) MaxPooling(2,2)
FC(84)+ReLU Flatten() Flatten()

FC(10)+Softmax FC(200)+ReLU FC(256)+ReLU
FC(10)+Softmax FC(256)+ReLU

FC(10)
#Train. Para. 107,786 694,402 1,147,978

Train. Acc. 97.4% 99.3% 97.1%
Test. Acc. 97.0% 98.7% 78.3%

perspectives: (1) AFRm works on the layer level, (2) AFRm

removes the effects of activation function, while NAI op-

erator keeps the activation function and tries to invert the

activation status of a neuron.

V. EVALUATION

We have implemented DeepMutation, a DL mutation test-

ing framework including both proposed source-level and

model-level mutation testing techniques based on Keras

(ver.2.1.3) [9] with Tensorflow (ver.1.5.0) backend [8]. The

source-level mutation testing technique is implemented by

Python and has two key components: automated training
data mutant generator and Python training program mutant
generator (see Figure 3 and Table I). The model-level mutation

testing automatically analyzes a DNN’s structure and uses

our defined operators to mutate on a copy of the original

DNN. Then the generated mutant models are serialized and

stored as .h5 file format. The weight-level and neuron-

level mutation operators (see Table II) are implemented by

mutating the randomly selected portion of the DNN’s weight

matrix elements. The implementation of layer-level mutation

operators is more complex. We first analyze the whole DNN’s

structure to identify the candidate layers of the DNN that

satisfy the layer-level mutation conditions (see Section IV-B).

Then, we construct a new DL mutant model based on the

original DL model through the functional interface of Keras

and Tensforflow [31].

In order to demonstrate the usefulness of our proposed

mutation testing technique, we evaluated the implemented

mutation testing framework on two practical datasets and three

DL model architectures, which will be explained in the rest

of this section.

A. Subject Dataset and DL Models

We selected two popular publicly available datasets

MNIST [40] and CIFAR-10 [41] as the evaluation subjects.
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MNIST is for handwritten digit image recognition, containing

60, 000 training data and 10, 000 test data, with a total number

of 70, 000 data in 10 classes (digits from 0 to 9). CIFAR-10

dataset is a collection of images for general purpose image

classification, including 50, 000 training data and 10, 000 test

data in 10 different classes (e.g., airplanes, cars, birds, and

cats).

For each dataset, we study popular DL models [23], [38],

[39] that are widely used in previous work. Table III sum-

marizes the structures and complexity of the studied DNNs,

as well as the prediction accuracy obtained on our trained

DNNs. The studied DL models A, B, and C contain 107, 786,

694, 402, and 1, 147, 978 trainable parameters, respectively.

The trainable parameters of DNNs are those parameters that

could be adjusted during the training process for higher learn-

ing performance. It is often the case that the more trainable

parameters a DL model has, the more complex a model would

be, which requires higher training and prediction effort. We

follow the training instructions of the papers [23], [38], [39]

to train the original DL models. Overall, on MNIST, model

A achieves 97.4% training accuracy and 97.0% test accuracy;

model B achieves 99.3% and 98.7%, comparable to the state

of the art. On CIFAR-10, model C achieves 97.1% training

accuracy and 78.3% test accuracy, similar to the accuracy

given in [39].

Based on the selected datasets and models, we design exper-

iments to investigate whether our mutation testing technique is

helpful to evaluate the quality and provide feedback on the test

data. To support large scale evaluation, we run the experiments

on a high performance computer cluster. Each cluster node

runs a GNU/Linux system with Linux kernel 3.10.0 on a 18-

core 2.3GHz Xeon 64-bit CPU with 196 GB of RAM and also

an NVIDIA Tesla M40 GPU with 24G.

B. Controlled Dataset and DL Mutant Model Generation

1) Test Data: The first step of the mutation testing is to

prepare the test data for evaluation. In general, a test dataset

is often independent of the training dataset, but follows a

similar probability distribution as the training dataset [42],

[43]. A good test data set should be comprehensive and

covers diverse functional aspects of DL software use-case, so

as to assess performance (i.e., generalization) and reveal the

weakness of a fully trained DL model. For example, in the

autonomous driving scenario, the captured road images and

signals from camera, LIDAR, and infrared sensors are used

as inputs for DL software to predict the steering angle and

braking/acceleration control [44]. A good test dataset should

contain a wide range of driving cases that could occur in

practice, such as strait road, curve road, different road surface

conditions and weather conditions. If a test dataset only covers

limited testing scenarios, good performance on the test dataset

does not conclude that the DL software has been well tested.

To demonstrate the usefulness of our mutation testing for the

measurement of test data quality, we performed a controlled

experiment on two data settings (see Table IV). Setting one

samples 5, 000 data from original training data while setting

TABLE IV: The controlled experiment data preparation settings.

Controlled MNIST/CIFAR-10
Data Set Setting 1 Setting 2

Group 1 Group 2 Group 1 Group 2
Source Train. data Train. data Test data Test data
Sampling Uniform Non-uniform Uniform Non-uniform
#Size 5,000 5,000 1,000 1,000

two sampled 1, 000 from the accompanied test data, both

of which take up approximately 10% of the corresponding

dataset.4 Each setting has a pair of dataset (T1, T2), where T1

is uniformly sampled from all classes and T2 is non-uniformly

sampled.5 The first group of each setting covers more diverse

use-case of the DL software of each class, while the second

group of dataset mainly focuses on a single class. It is expected

that T1 should obtain a higher mutation score, and we check

whether our mutation testing confirms this. We repeat the data

sampling for each setting five times to counter randomness

effects during sampling. This allows to obtain five pairs of

data for each setting (i.e., (T1, T2)1, (T1, T2)2, . . . , (T1, T2)5).

Each pair of data is evaluated on the generated DL mutant

models, and we average the mutation testing analysis results.

After the candidate data are prepared for mutation testing,

they are executed on each of corresponding original DL

models to filter out those failed cases, and only the passed

data are used for further mutation analysis. This procedure

generates a total of 30 (=2 settings * 3 models * 5 repetition)

pairs of candidate datasets, where each of the three DL models

has 10 pairs (i.e., 5 for each setting) of dataset for analysis.
2) DL Mutant Model Generation: After preparing the con-

trolled datasets, we start the mutation testing procedure. One

key step is to generate the DL mutant models. For each studied

DL model in Table III, we generate the DL mutant models

using both the source-level and model-level mutant generators.

To generate source-level DL mutant models, we configure

our data-level mutation operators to automatically mutate 1%

of original training data and apply each of the program-level

mutation operators to the training program (see Table I). After

the mutant dataset (program) are generated, they are trained

on the original training program (training data) to obtain the

mutant DL models. Considering the intensive training effort,

we configure to generate 20 DL mutants for each data-level

mutation operator (i.e., 10 for global level and 10 for local

level). For program-level mutators, we try to perform mutation

whenever the conditions are satisfied with a maximal 20
mutant models for each program-level operator.

To generate model-level mutants at the weight and neuron

level, we configure to sample 1%, weights and neurons from

the studied DNNs, and use the corresponding mutation oper-

ators to randomly mutate the selected targets (see Table II).

On the layer level, our tool automatically analyzes the layers

that satisfy the mutation conditions (see Section IV-B) and

4We use sampling in evaluation since the general ground-truth for test set
quality is unavailable

5To be specific, we prioritize to select one random class data with 80%
probability, while data from other classes share the remaining 20% chance.
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TABLE V: The average error rate of controlled experiment data on
the DL mutant models. We control the sampling method and data
size to be the same, and let the data selection scope as the variable.
The first group sample data from all classes of original passed test
data, while the second group sample data from a single class.

Model
Source Level (%) Model Level (%)

5000 train. 1000 test. 5000 train. 1000 test.
Samp. Uni. Non. Uni. Non. Uni. Non. Uni. Non.

A 2.43 0.13 0.23 0.17 4.55 4.30 4.38 4.06
B 0.49 0.28 0.66 0.21 1.67 1.56 1.55 1.47
C 3.84 2.99 17.20 13.44 9.11 7.34 11.48 9.00

randomly applies the corresponding mutation operator. The

model-level mutant generation is rather efficient without the

training effort. Therefore, for each weight- and neuron-level

mutation operator we generate 50 mutant models. Similarly,

our tool tries to generate layer-level mutant models when

DNN’s structure conditions are satisfied with maximal 50
mutant models for each layer-level mutation operator.

C. Mutation Testing Evaluation and Results

After the controlled datasets and mutant models are gen-

erated, the mutation testing starts the execution phase by

running candidate test dataset on mutant models, after which

we calculate the mutation score and average error rate (AER)

for each dataset. Note that the dataset used for evaluation are

those data that passed on original DL models. In addition,

we also introduce a quality control procedure for generated

mutant models. After we obtained the passed test data T ′ on

the original model (see Figure 3), we run it against each of

its corresponding generated mutant models, and remove those

models with high error rate,6 as such mutant model show big

behavioral differences from original models.

Table V summarizes the AER obtained for each controlled

dataset on all DL mutant models. We can see that the obtained

DL mutant models indeed enable to inject faults into DL

models with the AER ranging from 0.13% to 17.20%, where

most of the AERs are relatively small. In all the experimentally

controlled data settings, the uniformly sampled data group

achieves higher average error rate on the mutant models,

which indicates the uniformly sampled data has higher defect

detection ability (better quality from a testing perspective).

For model C, when considering both source-level and model-

level, a relatively low AER is obtained for the sampled training

data sets from 2.99% up to 9.11%, but with a higher AER of

sampled testing data from 9.00% to 17.20%. This indicates

that the sampled test data quality of model C is better in

terms of killing the mutants compared with the sampled

training data, although the sampled training data has larger

data size (i.e., 5, 000).

In line with the AER, the averaged mutation score for each

setting in Table IV is also calculated, as shown in Figure 6

and 7. Again, on all the controlled data pair settings, a higher

mutation score is obtained by uniform sampling method, which

6This study sets the error rate bar to be 20%. It could be configured to smaller
values to keep models with even more similar behaviors with the original
model.
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Fig. 6: The averaged mutation score of source-level mutation testing.
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Fig. 7: The averaged mutation score of model-level mutation testing.

also confirms our expectation on the test data quality. Besides

the AER that measures the ratio of data that detect the defects

of mutant models, mutation score measures how well the test

data cover mutation models from the testing use-case diversity

perspective. The mutation score does not necessarily positively

correlate with the AER, as demonstrated in the next section.

Intuitively, a test dataset with more data might uncover more

defects and testing aspects. However, this is not generally

correct as confirmed in our experiment. In Table V, for source-

level mutation testing of model B, the obtained AER of 1, 000
uniformly sampled test data (i.e., 0.66%) is higher than the one

obtained from the uniformly sampled 5, 000 training data (i.e.,

0.49%). This is more obvious on model C. When the same

sampling method is used, the AER obtained from the sampled

1000 test data is all higher than the sampled 5, 000 training

data. The same conclusion could also be reached by observing

the mutation score (see Figure 6(a) and (b)). The mutation

scores on model A and B are the cases where a larger data

size obtains a higher mutation score, whereas the result on

model C shows the opposite case.

When performed on the same set of data, the source-level

mutation testing and model-level mutation testing show some

different behaviors. Note that, on source-level, we configure

to mutate 1% of the training data; on the model-level, we use

the same ratio (i.e., 1%) for weight and neuron level mutators.

Overall, the generated mutant models by source-level and
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TABLE VI: The model-level MT score and average error rate of
test data by class. According to our mutation score definition, the
maximal possible mutation score for a single class is 10%.

M. Eval.
Classification Class (%)

0 1 2 3 4 5 6 7 8 9

A
mu. sc. 7.22 8.75 9.03 6.25 8.75 8.19 8.75 9.17 9.72 9.03
avg.err. 3.41 3.50 1.81 1.48 4.82 2.52 5.50 4.25 10.45 3.11

B
mu. sc. 1.59 3.29 8.29 7.44 5.49 4.02 8.17 3.66 5.85 8.41
avg.err. 0.41 1.42 1.12 1.55 1.07 2.92 2.95 1.21 1.24 2.11

C
mu. sc. 8.33 7.95 8.97 9.74 9.74 9.62 9.62 8.97 9.74 7.56
avg.err. 3.67 6.22 14.80 8.84 9.11 11.53 6.83 11.48 8.87 8.55

model-level mutation testing behave differently. For example,

comparing the same data pair setting of Figures 6(a) and 7(a),

the source-level mutation testing obtains lower mutation score

on model A, but obtains higher mutation score on model

B. This means that the same 1% mutation ratio results in

different DL mutant model effects by source-level and model-

level mutation testing procedure. For flexibility, in our tool,

we provide the configurable option for both source-level and

model-level mutant generation.

In both Figure 6 and 7, we observe that the mutation scores

are still low for many cases. It indicates that corresponding

evaluated tests are low-quality, which is understandable in

high-dimensional space. The fact that DL could be easily

attacked by many existing adversarial techniques despite high

performance on test data also confirms our findings [45].

D. Mutation Testing of Original Test Data by Class

Given a DL classification task, the developers often prepare

the test data with great care. On one hand, they try to collect

data from diverse classes that cover more use-case scenarios.

On the other hand, they also try to obtain more sensitive data

for each class to facilitate the detection of DNN robustness

issues. The same test dataset might show different testing

performance on different DL models; the data from different

classes of the same test data might contribute differently to

testing performance as well. In this section, we investigate

how each class of the original test dataset behaves from the

mutation testing perspective.

1) Test Data and Mutant Models: Similar to the experimen-

tal procedure in Section V-B ,we first prepare the test data of

each class for mutation testing. For the accompanied original

test data in MNIST (CIFAR-10), we separate them into the

corresponding 10 test dataset by class (i.e., t1, t2, . . . , t10).

For each class of the test data ti, we follow the same mutation

testing procedure to perform data filtering procedure on model

A, B and C, respectively. In the end, we obtain 30 test datasets,

including 10 datasets by class (i.e., t′1, t
′
2, . . . , t

′
10) for each

studied DL model. We reuse the generated model-level DL

mutant models of Section V-B and perform mutation testing

on the prepared dataset.

2) Mutation Testing Results of Test Data by Class: Table VI

summarizes the obtained mutation score and AER for each

model. We can see that, in general, the test data of different

classes obtain different mutation scores and AER. Consider

the results of model A as an example, the test data of class 3

obtains the lowest mutation score and AER (i.e., 6.25% and

1.48%). It indicates that, compared with the test data of other

classes, the test data of class 3 could still be further enhanced.

In addition, this experiment demonstrates that a higher AER

does not necessarily result in a higher mutation score. For

model A, the AER obtained by class 1 is larger than class 2
while the mutation score of class 1 is smaller.

Remark. Our mutation testing technique enables the

quantitative analysis on test data quality of each class.

It also helps to localize the weakness in test data. Based

on the mutation testing feedback, DL developers could

prioritize to augment and enhance the weak test data to

cover more defect-sensitive cases.

E. Threats To Validity

The selection of the subject datasets and DL models could

be a threat to validity. In this paper, we try to counter this issue

by using two widely studied datasets (i.e., MNIST and CIFAR-

10), and DL models with different network structures, com-

plexities, and have competitive prediction accuracy. Another

threat to validity could be the randomness in the procedure

of training source-level DL mutant models. The TensorFlow

framework by default uses multiple threads for training pro-

cedure, which can cause the same training dataset to generate

different DL models. To counter such effects, we tried our best

to rule out non-deterministic factors in training process. We

first fix all the random seeds for training programs, and use

a single thread for training by setting Tensorflow parameters.

Such a setting enables the training progress deterministic when

running on CPU, which still has non-deterministic behavior

when running on GPU. Therefore, for the controlled evaluation

described in this paper, we performed the source-level DL

mutant model training by CPU to reduce the threat caused by

randomness factor in training procedure. Another threat is the

randomness during data sampling. To counter this, we repeat

the sampling procedure five times and average the results.

VI. RELATED WORK

A. Mutation Testing of Traditional Software

The history of mutation testing dated back to 1971 in

Richard Liption’s Paper [16], and the field started to grow

with DeMillo et al. [46] and Hamlet [47] pioneering works in

late 1970s. Afterwards, mutation testing has been extensively

studied for traditional software, which has been proved to be a

useful methodology to evaluate the effectiveness of test data.

As a key component in mutation testing procedure, muta-

tion operators are widely studied and designed for different

programming languages. Budd et al. was the first to design

mutation operators for Fortran [48], [49]. Arawal et al. later

proposed a set of 77 mutation operators for ANSI C [50].

Due to the fast development of programming languages that

incorporates many features (e.g., Object Oriented, Aspect-

Oriented), mutation operators are further extended to cover

more advanced features in popular programming languages,
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like Java [51], [52], C# [53], [54], SQL [55], and AspectJ [56].

Different from traditional software, DL defines a novel data-

driven programming paradigm with different software repre-

sentations, causing the mutation operators defined for tradi-

tional software unable to be directly applied to DL based

software. To the best of our knowledge, DeepMutation is the

first to propose mutation testing frameworks for DL systems,

with the design of both source-level and model-level mutators.

Besides the design of mutation operators, great efforts have

also been devoted to other key issues of mutation testing,

such as theoretical aspects [57]–[59] of mutation testing,

performance enhancement [7], [16], [60]–[62], platform and

tool support [30], [63]–[65], as well as more general muta-

tion testing applications for test generation [7], [21], [66],

networks [67], [68]. We refer interesting readers to a recent

comprehensive survey on mutation testing [6].

B. Testing and Verification of DL Systems

Testing. Testing machine learning systems mainly relies on

probing the accuracy on test data which are randomly drawn

from manually labeled datasets and ad hoc simulations [69].

DeepXplore [12] proposes a white-box differential testing

algorithm to systematically generate adversarial examples that

cover all neurons in the network. By introducing the definition

of neuron coverage, they measure how much of the internal

logic of a DNN has been tested. DeepCover [14] proposes

the test criteria for DNNs, adapted from the MC/DC test

criteria [70] of traditional software. Their test criteria have

only been evaluated on small scale neural networks (with only

Dense layers, and at most 5 hidden layers, and no more than

400 neurons). The effectiveness of their test criteria remain

unknown on real-world-sized DL systems with multiple types

of layers. DeepGauge [13] proposes multi-granularity testing

coverage for DL systems, which is based on the observation

of DNNs’ internal state. Their testing criteria shows to be a

promising as a guidance for effective test generation, which is

also scalable to complex DNNs like ResNet-50 (with hundreds

of layers and approximately 100, 000 neurons). Considering

the high the dimension and large potential testing space of a

DNN, DeepCT [71] proposes a set of combinatorial testing

criteria based on the neuron input interaction for each layer

of DNNs, towards balancing the defect detection ability and a

reasonable number of tests.

Verification. Another interesting avenue is to provide reliable

guarantees on the security of deep learning systems by formal

verification. The abstraction-refinement approach in [72] veri-

fies safety properties of a neural network with 6 neurons. DLV

[73] enables to verify local robustness of deep neural networks.

Reluplex [74] adopts an SMT-based approach that verifies

safety and robustness of deep neural networks with ReLU
activation functions. Reluplex has demonstrated its usefulness

on a network with 300 ReLU nodes in [74]. DeepSafe [75]

uses Reluplex as its underlying verification component to

identify safe regions in the input space. AI2 [76] proposes the

verification of DL systems based on abstract interpretation,

and designs the specific abstract domains and transformation

operators. VERIVIS [77] is able to verify safety properties of

deep neural networks when inputs are modified through given

transformation functions. But the transformation functions in

[77] are still simpler than potential real-world transformations.

The existing work of formal verification shows that for-

mal technique for DNNs is promising [72]–[77]. However,

most verification techniques were demonstrated only on sim-

ple DNNs network architectures. Designing more scalable

and general verification methods towards complex real-world

DNNs would be important research directions.

DeepMutation originally proposes to use mutation testing to

systematically evaluate the test data quality of DNNs, which

is mostly orthogonal to these existing testing and verification

techniques.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the usefulness of mutation

testing techniques for DL systems. We first proposed a source-

level mutation testing technique that works on training data

and training programs. We then designed a set of source-level

mutation operators to inject faults that could be potentially

introduced during the DL development process. In addition, we

also proposed a model-level mutation testing technique and de-

signed a set of mutation operators that directly inject faults into

DL models. Furthermore, we proposed the mutation testing

metrics to measure the quality of test data. We implemented

the proposed mutation testing framework DeepMutation and

demonstrated its usefulness on two popular datasets, MNIST

and CIFAR-10, with three DL models.

Mutation testing is a well-established technique for the test

data quality evaluation in traditional software and has also

been widely applied to many application domains. We believe

that mutation testing is a promising technique that could

facilitate DL developers to generate higher quality test data.

The high-quality test data would provide more comprehensive

feedback and guidance for further in-depth understanding

and constructing DL systems. This paper performs an initial

exploratory attempt to demonstrate the usefulness of mutation

testing for deep learning systems. In future work, we will

perform a more comprehensive study to propose advanced

mutation operators to cover more diverse aspects of DL

systems and investigate the relations of the mutation operators,

as well as how well such mutation operators introduce faults

comparable to human faults. Furthermore, we will also inves-

tigate novel mutation testing guided automated testing, attack

and defense, as well as repair techniques for DL systems.
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