
DeepRoad: GAN-Based Metamorphic Testing and Input
Validation Framework for Autonomous Driving Systems

Mengshi Zhang*

University of Texas at Austin
USA

mengshi.zhang@utexas.edu

Yuqun Zhang†

Shenzhen Key Laboratory of
Computational Intelligence,

Department of Computer Science and
Engineering, Southern University of

Science and Technology
China

zhangyq@sustc.edu.cn

Lingming Zhang
University of Texas at Dallas

USA
lingming.zhang@utdallas.edu

Cong Liu
University of Texas at Dallas

USA
cong@utdallas.edu

Sarfraz Khurshid
University of Texas at Austin

USA
khurshid@utexas.edu

ABSTRACT
While Deep Neural Networks (DNNs) have established the fun-
damentals of image-based autonomous driving systems, they may
exhibit erroneous behaviors and cause fatal accidents. To address the
safety issues in autonomous driving systems, a recent set of testing
techniques have been designed to automatically generate artificial
driving scenes to enrich test suite, e.g., generating new input images
transformed from the original ones. However, these techniques are
insufficient due to two limitations: first, many such synthetic images
often lack diversity of driving scenes, and hence compromise the re-
sulting efficacy and reliability. Second, for machine-learning-based
systems, a mismatch between training and application domain can
dramatically degrade system accuracy, such that it is necessary to
validate inputs for improving system robustness.

In this paper, we propose DeepRoad, an unsupervised DNN-based
framework for automatically testing the consistency of DNN-based
autonomous driving systems and online validation. First, DeepRoad
automatically synthesizes large amounts of diverse driving scenes
without using image transformation rules (e.g. scale, shear and ro-
tation). In particular, DeepRoad is able to produce driving scenes
with various weather conditions (including those with rather extreme
conditions) by applying Generative Adversarial Networks (GANs)
along with the corresponding real-world weather scenes. Second,
DeepRoad utilizes metamorphic testing techniques to check the

*This work was partially accomplished during visit to Southern University of Science
and Technology
†Yuqun Zhang is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238187

consistency of such systems using synthetic images. Third, Deep-
Road validates input images for DNN-based systems by measuring
the distance of the input and training images using their VGGNet
features. We implement DeepRoad to test three well-recognized
DNN-based autonomous driving systems in Udacity self-driving car
challenge. The experimental results demonstrate that DeepRoad can
detect thousands of inconsistent behaviors for these systems, and
effectively validate input images to potentially enhance the system
robustness as well.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging;

KEYWORDS
Software testing, Test generation, Input validation, Deep Neural
Networks

ACM Reference Format:
Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz
Khurshid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input
Validation Framework for Autonomous Driving Systems. In Proceedings of
the 2018 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18), September 3–7, 2018, Montpellier, France. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3238147.3238187

1 INTRODUCTION
The train came out of the long tunnel into the snow
country. The earth lay white under the night sky. The
train pulled up at a signal stop.

—Yasunari Kawabata, Snow Country

The above quotation is from the first paragraph of fiction “Snow
Country”, which describes the scene when the protagonist Shima-
mura enters the snow country. Back to that time, train was the major
vehicle for long-distance travels, while people have more choices
today. Now, suppose Shimamura takes a Tesla in Autopliot mode [2],

https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3238147.3238187

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

after coming out of the tunnel, there raises a question: can the au-
topilot system operate safely on the snow-covered road, or the story
just ends with a tragedy?

Autonomous driving is expected to transform auto industry. Typi-
cally, autonomous driving refers to utilizing sensors (cameras, Radar,
Lidar, GPS, etc) [38] to automatically control vehicles without hu-
man intervention. The recent advances in Deep Neural Networks
(DNNs) enable autonomous driving systems to adapt their driving be-
haviors according to dynamic environments [2, 14]. In particular, an
end-to-end supervised learning framework is made possible to train
a DNN for predicting driving behaviors (e.g., steering angles) by in-
puting driving images, using ⟨driving image, driving behavior⟩ pairs
as training data. For instance, DAVE-2 [14], released by NVIDIA in
2016, can accurately predict steering angles based on only images
captured by a single front-centered camera of autonomous cars.

Recent testing techniques [31, 38] demonstrate that the autonomous
driving systems are error-prone to synthetic images of driving scenes.
DeepXplore [31] applies differential testing technique to system-
atically generate images which disclose the inconsistent behaviors
of multiple DNN systems. Specifically, it formulates the image
generation problem as a joint optimization problem, which uses
gradient-based search techniques to find images for maximizing
neuron coverage and the number of inconsistent behaviors of such
systems. DeepTest [38] designs systematic ways to automatically
generate test cases, seeking to mimic real-world driving scenes. Its
main methodology is to transform labeled images of driving scenes
by applying simple affine transformations and various effect filters
such as blurring/fog/rain to the original images, and check if the
autonomous driving systems perform consistently among the orig-
inal and transformed scenes. With large amounts of original and
transformed driving scenes, DeepTest can detect various erroneous
driving behaviors for some well-performed open-source autonomous
driving models, in a cheap and quick manner.

However, we observe that the methodologies applied in DeepX-
plore and DeepTest to generate test cases may not accurately reflect
the real-world driving scenes, which can rarely contain colored patch
or black holes and sidelines; the blurring/fog/rain effects made by
simple simulation also appear to be unrealistic, which compromises
their efficacy and reliability. For instance, Figure 1 shows the syn-
thetic images which are quoted from the papers of DeepXplore
and DeepTest. Note that the colored arrows are attached to present
the predicted steering angles. From Figure 1a, 1b and 1c, it can
be observed that the images of driving scenes include several arti-
facts (patch, holes and sidelines), which significantly hurt the image
quality. Moreover, for Figure 1d, it appears to be synthesized by
simply dimming the original image and mixing it with the scrambled
“smoke" effect and it violates the facts that the density of fog varies
along depth Similarly, in Figure 1e, DeepTest simply simulates rain
by adding a group of lines over the original image. This rain effect
transformation is even more distorted because usually when it rains,
the camera or front windshield tends to be wet and the image is
highly possible to be blurred. These facts show that it is difficult to
determine whether the erroneous driving behaviors are caused by
the flaws of the DNN-based models, or the inadequacy of the testing
technique itself. Furthermore, these transformations (e.g. translation,
shear and rotation) can only generate similar images, while they
cannot sophisticatedly synthesize images with different styles and

thus limit the diversity of test cases. For instance, the snowy road
condition demands different complicated transformations for render-
ing the texture of road and roadside objects (such as trees), and it
cannot be generated by simple transformation rules.

For traditional software, input validation (IV) is an important step
before executing programs. For instance, in web applications, IV
checks and filters illegal or malicious inputs to prevent application-
level attacks such as buffer overflow and code-injection attack [25].
However, to the best of our knowledge, current DNN-based systems
lack to validate inputs (e.g., images of driving scenes) and thus tends
to cause system vulnerability. Specifically, invalid inputs such as
outlier images of driving scenes can highly degrade the prediction
accuracy and dramatically increase the risks of DNN-based systems.
For example, suppose a DNN-based autonomous driving system
is trained on a dataset which only includes images of sunny driv-
ing scenes. For out-of-domain inputs (e.g. rainy images of driving
scenes) that the system is not trained with, it is highly possible that
the system outputs wrong control signals which lead to danger for
drivers and passengers.

To address above issues, in this paper, we propose an unsupervised
learning framework, namely DeepRoad, to systematically analyze
DNN-based autonomous driving systems. DeepRoad is composed
of a metamorphic testing module, DeepRoadMT and an input vali-
dation module, DeepRoadIV . DeepRoadMT employs a Generative
Adversarial Network (GAN)-based technique [18, 27] to synthesize
driving scenes with various weather conditions, and develops a meta-
morphic testing module for DNN-based autonomous driving systems.
Specifically, the metamorphic relations are defined such that no mat-
ter how the driving scenes are synthesized to cope with different
weather conditions, the driving behaviors are expected to be consis-
tent with those under the corresponding original driving scenes. At
this point, DeepRoadMT enables us to test the accuracy and relia-
bility of DNN-based autonomous driving systems under different
scenarios, including heavy snow and hard rain, which can greatly
complement the existing approaches (e.g., DeepXplore, DeepTest).
For instance, Figure 2 presents the snowy and rainy scenes gener-
ated by DeepRoadMT (from sunny scenes), which can hardly be
distinguished from genuine ones and cannot be generated using
simple transformation rules. DeepRoadIV is designed to validate
inputs for DNN-based autonomous driving systems based on image
similarity. Firstly, DeepRoadIV applies a pre-trained DNN model–
VGGNet to extract high-level features (i.e. contents and styles) of
both training and test input images. Then, the Principle Component
Analysis (PCA) technique is applied on these features for dimension
reduction. Finally, DeepRoadIV validates inputs by comparing the
average distance between training and input images with a preset
threshold.

To evaluate the effectiveness of DeepRoad, we first synthesize
driving scenes under heavy snow and hard rain. In particular, based
on GAN, we collect images with two extreme weather conditions
from YouTube videos to transform real-world driving scenes, and de-
liver them with the corresponding weather conditions. Subsequently,
these synthetic scenes are used to test three open-source DNN-based
autonomous driving systems from Udacity community [7]. The ex-
perimental results reveal that DeepRoadMT can effectively detect
thousands of inconsistent behaviors of different levels for these sys-
tems. Furthermore, we use DeepRoadIV to validate the input images

DeepRoad ASE ’18, September 3–7, 2018, Montpellier, France

(a) Patch (b) Holes (c) Translation (d) Fog (e) Rain

Figure 1: Driving scenes synthesized by DeepXplore (a)(b) and DeepTest (c)(d)(e)

(a) Snow (b) Rain

Figure 2: Snowy and rainy scenes synthesized by DeepRoad

sampled from different driving scenes. The results demonstrate that
in the embedding space, the cluster of the rainy and snowy image
points are separately distributed to the cluster of training images,
however, the training cluster is mixed with the majority of the sunny
image points. It indicates that given a proper threshold, DeepRoadIV
can effectively validate input, which potentially improve the system
robustness.

The key contributions of this paper are as follows.

• We propose the first GAN-based metamorphic testing ap-
proach to generate driving scenes with various weather con-
ditions for detecting inconsistent behaviors of autonomous
driving systems.
• We propose a novel approach to validate inputs for DNN-

based autonomous driving system. We present that the dis-
tance between the high-level features of training and input
images can be used for validating inputs.
• We implement the proposed approaches in DeepRoad, which

can generate images of diverse driving scenes (e.g. rain and
snow) and measure the similarity between multiple image
sets in embedding space. We use DeepRoad to test well-
recognized DNN-based autonomous driving models and suc-
cessfully detect thousands of inconsistent driving behaviors.
Additionally, DeepRoad can accurately distinguish images
with extreme weather conditions to the training images, which
is effective to validate input for autonomous driving systems.

2 BACKGROUND
2.1 Deep Neural Networks for Autonomous

Driving
Autonomous driving systems have been rapidly evolving in recent
years [14, 32]. For example, many major auto manufacturers (in-
cluding Tesla, GM, Volvo, Ford, BMW, Honda, and Daimler) and IT
companies (including Waymo/Google, Uber, and Baidu) are working

on building and testing various autonomous driving systems. Typi-
cally, autonomous driving systems capture data from environment
via multiple sensors (e.g. camera, Radar, Lidar, GPU, IMU, etc.)
as input, and use Deep Neural Networks (DNNs) to process data
and output control signals (e.g. steering and braking decisions). In
NVIDIA’s work [14], their autonomous driving system, DAVE-2
can fluently control cars only based on the images captured by a
single front camera. In this work, we mainly focus on DNN-based
autonomous driving systems with camera inputs and steering angle
outputs.

2.2 DNN Architectures
To date, Convolutional Neural Network (CNN) [23] and Recurrent
Neural Network (RNN) [33] are the most widely used DNNs for
autonomous driving systems. Typically, CNNs are good at analyzing
visual imagery and RNNs can effectively process sequential data.
In this work, the evaluated models are built on CNN and RNN
modules. We briefly introduce the basic concepts and components
of each architecture as follows, where more details about DNNs are
provided in [24].

2.2.1 Convolutional Neural Networks. Convolutional Neural
Networks are similar to regular neural networks, which include a
large amount of neurons and pass information in a feed-forward way.
However, since the input data are images, several properties can be
applied to optimize the regular neural networks, where convolutional
layer is a key component in CNNs. Instead of being fully connected,
a neuron in a layer only connects to some neurons in the previous
layer, and the computational process can be presented as a convo-
lution with kernels. Figure 3a shows an example of CNN-based
autonomous driving system that consists of an input layer (images)
and an output layer (steering angles), as well as multiple hidden lay-
ers. Convolution hidden layers allow weight sharing across multiple
connections and can greatly save the training efforts.

2.2.2 Recurrent Neural Networks. Regular neural networks and
CNNs are designed to process independent data, such as using CNN
to classify images. However, for sequential data like videos, the
neural networks should not only capture information of each single
frame, but are also expected to model the connections between them.
Unlike regular NNs and CNNs, RNN is a kind of neural network
with feedback connections. As shown in the left part of Figure 3b,
RNNs use loops to forward the previous states to input, which model
the connection of input data. The right part of Figure 3b shows the
workflow of the unfolded RNN for predicting steering angles based
on a sequence of images. At each step, RNN takes the current input

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

(a) CNN architecture

(b) RNN architecture

Figure 3: Autonomous driving systems built on CNN and RNN

image and previous hidden states as input and predicts the steering
angle.

2.3 Challenge of Testing for DNN-based
Autonomous Driving Systems

DNN-based autonomous driving systems are essentially software
systems, which are error-prone and can lead to tragedies. For exam-
ple, on January, 2018, a Tesla Model S plowed into a fire truck at 65
mph while using Autopilot [9]. And on Mar, 2018, an autonomous
Uber failed to slow down and killed a pedestrian during road test
at night [10]. To ensure the quality of software systems, many soft-
ware testing techniques have been proposed in the literature [11, 29],
where typically, a set of specific test cases are generated to test if the
software programs perform as expected. The process of determin-
ing whether the software program performs as expected upon the
given test inputs is known as the test oracle problem [11]. Despite
the abundance of traditional software testing techniques, they can-
not be directly applied for DNN-based systems since the logics of
DNN-based softwares are learned from data with minimal human
interference (like a blackbox) while the logics of traditional software
programs are manually created.

3 APPROACH
3.1 Metamorphic Testing for DNN-based

Autonomous Driving Systems
3.1.1 Metamorphic DNN Testing. Metamorphic Testing [35]
(MT) has been widely used to automatically generate tests to detect
software faults. The strength of MT lies in its capability to auto-
matically solve the test oracle problem via Metamorphic Relations
(MRs). In particular, let p be a program mathematical representation
that maps program inputs to program outputs (e.g., pJiK = o). As-
suming fI and fO are two specific functions for transforming the
input and output domain respectively, and they satisfy the following
MR formulation:

∀i, pJfI (i)K = fO (pJiK) (1)

, where i denotes the input of program p.

With such MRs, we can test a specific implementation p̂ of p
by checking whether p̂JfI (i)K = fO (p̂JiK) for various input i. Ac-
cordingly, MT is defined as testing a program implementation via
cross-checking inputs and outputs with MRs. For instance, given
a program implementing function sine, MT can be used to delin-
eate test oracles and create various new tests. For any existing in-
put i to test function sine, various facts can serve as MRs, e.g.,
sin(−i) = − sin(i) and sin(i + 2π) = sin(i). These facts can be for-
mulated as 1) fI (x) = fO (x) = −x , 2) fI (x) = x+2π and fO (x) = x .
With such MRs, we can transform the existing test inputs accord-
ing to fI to generate additional tests, and check the output based
on fO . For instance, suppose the default test case of function sine
is AssertTrue(sin(0.5·Pi), 1.0). Based on above MRs,
we can generate two extra tests: AssertTrue(sin(-0.5·Pi),
-1.0) and AssertTrue(sin(2.5·Pi), 1.0).

In this work, we further apply MT to test DNN-based autonomous
driving systems. Formally, denoteDNN as a DNN-based autonomous
driving system that continuously maps each image into predicted
steering angle signal (e.g., turning left for 15◦). One MR can be
defined as given the original image stream I, various image trans-
formations T can simply change the road scenes (detailed shown
in Section 3.1.2) without impacting the predictions for each image
i ∈ I (e.g., the predicted direction should be approximately the same
on the same road under different weather conditions). This MR to
test DNN with additional transformed inputs can be formalized as
follows:

∀i ∈ I ∧ ∀τ ∈ T, DNN Jτ (i)K = DNN JiK (2)

3.1.2 DNN-based Road Scene Transformation. The recent
work DeepTest [38] also applied MT to test DNN-based autonomous
driving systems. However, it only performs basic image transforma-
tions, such as adding simple blurring/fog/rain effect filters, and thus
has the following limitations: (1) DeepTest may generate images
which violate common scenes (discussed in Section 1). (2) DeepTest
cannot simulate complex road scene transformations (e.g., snowy
scenes).

To complement DeepTest by automatically generating various
real-world road scenes, in this work, we leverage UNIT [27], a recent
published DNN-based method to perform unsupervised image-to-
image transformation based on Generative Adversarial Networks
(GANs) [18] and Variational Autoencoders (VAEs) [22]. One insight
of UNIT is that suppose two images contain the same contents but
lie in different domains, they should have the same representations
in a shared-latent space. Accordingly, given a new image from one
domain (e.g., the original driving scene), UNIT can automatically
generate its corresponding version in the other domain (e.g., rainy
driving scene).

Figure 4 [27] presents the structure of UNIT, S1 and S2 denote
two different domains (e.g., sunny and rainy driving scenes), E1 and
E2 denote two autoencoders which project the images from S1 and
S2 to a shared-latent space Z . Suppose x1 and x2 are paired images
which share the same content. Ideally, E1 and E2 would encode
them to the same latent vector z, and it can be translated back to S1
and S2 by two domain specific generators G1 and G2, respectively.
D1 and D2 are two discriminators which detect whether the image
belongs to S1 and S2 respectively. Specifically, they are expected
to differentiate whether the input image is sampled from target

DeepRoad ASE ’18, September 3–7, 2018, Montpellier, France

domain (e.g. real image) or produced by a well-trained generator
(e.g. synthetic image). Based on the autoencoders and generators,
UNIT can be used to transform images between two domains. For
instance, image x1 can be transformed to S2 by G2 (E1 (x1)).

x1

z

x2

S1 S2

Z

E1 E2

G1 G2

D1 D2

Figure 4: Structure of UNIT

In UNIT, all Di , Ei and Gi are incarnated as neural networks, and
the learning objective of UNIT can be decomposed to optimize the
following costs:
• VAE loss: minimizing the loss of image reconstruction for

each ⟨Ei ,Gi ⟩.
• GAN loss: achieving the equilibrium point in the minimax

game for each ⟨Gi ,Di ⟩, where Di aims at discriminating the
images to find out whether they are sampled from the domain
Si or produced by Gi that aims at fooling Di .
• Cycle-consistency loss: minimizing the loss of cycle- recon-

struction for each ⟨Ei ,G j ,Ej ,Gi ⟩, where x1 is expected to
equal to G1 (E2 (G2 (E1 (x1)))) and x2 is expected to equal to
G2 (E1 (G1 (E2 (x2)))).

The total loss can be summarized as follows:

min
E1,E2,G1,G2

max
D1,D2

LCC1 (E1,G2,E2,G1)

+LCC2 (E2,G1,E1,G2)

+LVAE1 (E1,G1) + LVAE2 (E2,G2)

+LGAN1 (D1,G1) + LGAN2 (D2,G2)

, and this loss function can be optimized using Stochastic Gradient
Descent algorithm.

Figure 5: Framework of DeepRoadMT

3.1.3 Framework of DeepRoadMT . Figure 5 shows the overall
design of our metamorphic testing framework for DNN-based au-
tonomous driving systems–DeepRoadMT . In Figure 5, DeepRoadMT
first takes unpaired training images from two target domains (e.g.,
datasets of the driving scene under sunny and snowy weather respec-
tively), and utilizes UNIT to project two domains to the same latent
space by optimizing the loss functions presented in Section 3.1.2.
When the training process finished, DeepRoadMT uses the well-
trained model to transform the whole dataset of sunny driving
scenes to snowy weather. Specifically, given any image under sunny
weather i, DeepRoadMT encodes it to vector zi by E1, and synthe-
sizes its corresponding version under snowy weather τ (i) using G2.
DeepRoadMT feeds each pair of real and synthetic driving scene
images to the autonomous driving systems under test, i.e., DNN ,
and compare their prediction results DNN Jτ (i)K and DNN JiK to
detect any inconsistent behaviors. Normally, the transformed driving
scenes are expected not to significantly impact the predicted steering
angles, and any inconsistency may indicate correctness or robustness
issues of the systems under test [31, 38].

3.2 Input Validation for DNN-based Autonomous
Driving Systems

Driving scenes synthesized by DeepTest and DeepXplore can be
used as test cases to test DNN-based autonomous driving systems in
an offline manner. Though these test cases are useful to expose the
system vulnerability and advise developers to complement training
data from real world to improve the system robustness, it is not
sufficient for online testing. For instance, a DNN-based autonomous
driving system can be well trained and perfectly function in sunny
environments, yet it might perform incorrectly at night or on a
snow-covered road, because the lane marks it detected for guiding
cars disappear in such driving scenes. This example suggests that
if the system can validate input images online, and actively advise
drivers to control the car when it cannot handle the invalid inputs,
the autonomous driving systems can become safer and more robust.
In the following, we first define the criteria of input validation for
DNNs (especially image-oriented models), and present our input
validation framework for DNN-based autonomous driving systems.

3.2.1 Input validation of DNNs. The goal of input validation
(IV) is to ensure that only properly formed data can be accepted by
systems, and malformed data should be rejected before execution.
The reason is that an invalid input may trigger malfunction of down-
stream components, which makes the system insecure. Generally,
the valid input of a program can be explicitly defined such as the
input string should not be null/empty or the value of a certain input
variable should be greater than 0. However, it is not trivial to properly
define input validity of a DNN-based program. For example, we can
define an IV criteria as the input data should be any RGB image with
size 640*480, or any input data should exist in the training dataset
to guarantee the correctness. However, none of them are proper since
the first criteria is too weak to improve system robustness, and the
second is so strong that makes the system lack generalisability.

We define the IV criteria of DNN-based program based on the
Probably Approximately Correct (PAC) Learning theory. Accord-
ing to the PAC Learning theory [13], a machine learning model Λ
is expected to learn the distribution D from the training dataset,

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

and predict the correct label with high probability. 1 This can be
formulated as follows:

E (Λ;D) = Prx∼D (Λ(x) , y) (3)

Pr (E ≤ ϵ) ≥ 1 − σ (4)
In Formula 3, E denotes that the probability of Λ makes incorrect
prediction (Λ(x) , y) on input data x sampled from D , and in
Formula 4, ϵ and σ are two parameters between 0 and 1, such that it
is highly possible (greater that 1 − σ) E is small (less than ϵ), which
means Λ is effective on D . Based on the above equations, we first
define an abstract IV criteria of DNN-based systems is that the input
data should be sampled from D . As discussed before, suppose the
input data is not sampled from D , the IV criteria is violated and the
prediction accuracy is not guaranteed. Therefore, it is necessary to
validate inputs to improve the robustness of DNN-based systems.

Intuitively, the IV criteria should be instantiated as:

Prx∼D (x = i) > θ (5)

, which means the probability of input i being sampled from D
should be greater than the predefined threshold θ . Otherwise, the sys-
tem refuses to predict on i. However, this definition is not tractable
for image data, because image data is highly dimensional and their
distribution (e.g. Gaussian Mixture model) is difficult to be explic-
itly represented. To address this issue, we project image data to
a low-dimensional space and use the distance between inputs and
training data to replace Prx∼D (x = i). In particular, according to
the Manifold Learning theory [13], the images generated by D can
be embedded into a non-linear low-dimension manifold MD . Sup-
pose the input data i is sampled from D , its projection ip should be
included by MD . Furthermore, we propose an extra constraint for
the non-linear embedding that suppose the input data are generated
by a different distribution D ′, their projections are expected to be
included by another manifold MD′ , which is linearly separable to
MD . Based on the constraint, we can compute the minimal distance
of ip and the projections of training data to validate if ip belongs to
MD . The IV criteria is redefined as follows:

min
j
∥h(i) − h(j)∥2 < θ ′ (6)

, where ∥ · ∥2 denotes L2 norm, h(·) denotes the required non-liner
projection and θ ′ denotes predefined threshold for input validation.
If the input satisfies Equation 6, it will be processed by DNNs for
prediction, otherwise, it will be rejected.

3.2.2 Framework of DeepRoadIV . We propose DeepRoadIV ,
an input validation framework for autonomous driving systems.
DeepRoadIV separate the projection h(·) to two parts: non-linear
transformation and dimension reduction. For the first part, DeepRoadIV
applies VGGNet [37], a widely used DNN [17, 20] to extract high-
level features from each image. To be specific, the input image is
encoded in each layer of VGGNet by kernels. Suppose layer i in-
cludes Ni distinct kernels, it generates Ni feature maps each of size
(wi ,hi), where wi and hi are the width and height of the feature
maps respectively. These feature maps can be stored as a feature
matrix F i with size (Ni ,Mi), where each row of Fi is the vector
flattened from the corresponding feature map and Mi is wi · hi .

1For simplicity, here we only discuss DNNs for classification, the same approach can
be applied to explain DNNs for other tasks such as regression.

DeepRoadIV also generates style information which are introduced
in [16]. These style information aims at capturing the texture of im-
ages and it is defined by feature correlation, which can be computed
by the Gram matrix

Gi = Fi · F
T
i (7)

Suppose we choose layer i and j to extract the feature and style
matrix Fi and G j respectively, the representation vector of the given
image is v⃗ = [v⃗F , v⃗G], where v⃗F , v⃗G are flattened vector of Fi and
G j receptively. Further, we apply Principle Component Analysis
(PCA) technique to reduce feature dimension of input and training
data as follows:

Y = X · P (8)

X denotes the input matrix with size (n,m), where n is the total
number of input and training data and m is the length of feature
vector v⃗. P denotes the projection matrix with size (m,k), where k
is the target dimension less than m, and P can be computed using
X [13].

Figure 6: Framework of DeepRoadIV

Figure 6 shows the overall design of our input validation frame-
work, DeepRoadIV . DeepRoadIV first takes the training and online
driving images as input, and uses VGGNet to extract their con-
tent and style features. As shown in Figure 6, DeepRoadIV inputs a
snowy image to VGGNet, and chooses the convolutional layer conv
4_2 and conv 5_3 to extract content and style features respec-
tively. To be specific, the colored grids F 4_2 and F 5_3 denote
the content features extracted from VGGNet, and the style feature
G 5_3 is computed by Equation 7. Note that these colored grids
are just used to visualize results, and their dimensions do not match
the real outputs. Then, matrix F 4_2 and G 5_3 are flattened and
concatenated to feature vector v. DeepRoadIV processes all image
data using the same approach and the feature vectors compose ma-
trix X. In the second step, DeepRoadIV applies PCA to reduce the
feature dimension. In Figure 6, we set the target dimension to 2. The
processed data Y are presented on a 2-D plane, where the blue and
red nodes denote the training and online driving images respectively.
Finally, DeepRoadIV computes the minimal distance between train-
ing data and each online image, and refuses to predict for the images
whose distances are greater than a certain threshold.

DeepRoad ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: Details of image sets

Dataset Frame Duration Weather Cond.
Udacity Training 33805 N.A. Sunshine
Udacity Test Ep1 15212 N.A. Sunshine
Udacity Test Ep2 5614 N.A. Sunshine

Youtube Ep1 1000 28:55 Heavy snow
Youtube Ep2 1000 1:09:03 Hard rain

4 EXPERIMENTS
4.1 Data
We use a real-world dataset released by Udacity [8] as a baseline
to check the inconsistency of autonomous driving systems. From
the dataset, we select two episodes of high-way driving video where
obvious changes of lighting and road conditions can be observed
among frames. To train UNIT model, we also collect images of ex-
treme scenarios from YouTube. In the experiments, we select heavy
snow and hard rain, two extreme weather conditions to transform
real-world driving scenes. To make the variance of collected images
relatively large, we only search for videos which is longer than 20
mins. In the scenario of hard rain, the video records wipers swiping
windshield, which would potentially degrade the quality of synthetic
images. Hence, in data preprocessing phase, we manually check and
filter those images. Note that all images used in the experiments are
cropped and resized to 320*240, and we have performed down-
sampling for YouTube videos to skip consecutive frames with close
contents. The detailed information is present in Table 1.

4.2 Models
We evaluate our metamorphic testing framework DeepRoadMT on
three DNN-based autonomous driving models which are released by
Udacity [8]: Autumn [4], Chauffeur [5], and Rwightman [6].
We choose these three models as their pre-trained models are public
and can be evaluated directly on the synthetic datasets. To be spe-
cific, the model details of Rwightman are not publicly available,
however, similar to black-box testing, our approach aims at detecting
the inconsistencies of the model. Hence, Rwightman is still used
for evaluations.
Autumn. Autumn is composed of a data preprocessing module and
a CNN. Specifically, Autumn first computes the optical flow of raw
images and inputs them to a CNN to predict steering angles. The
architecture of Autumn is: three 5x5 conv layers with stride 2 pluses
two 3x3 conv layers and followed by five fully-connected layers with
dropout. The model is implemented by OpenCV, Tensorflow and
Keras.
Chauffeur. Chauffeur consists of one CNN and one RNN with
LSTM module. The workflow is that CNN first extracts the fea-
tures of input images and then utilizes RNN to predict the steering
angle from previous 100 consecutive images. This model is also
implemented by Tensorflow and Keras.

4.3 Metric
Metric of model inconsistency. In this work, an autonomous driv-
ing system is defined to act consistent if its steering angle predic-
tion falls within certain error bounds after modifying the weather

condition of driving images. We define the number of inconsistent
behaviors of autonomous driving systems as follows:

IB (DNN , I) =
∑
i ∈I

f (|DNN JiK − DNN Jτ (i)K) | > ϵ)

,where DNN denotes the autonomous driving model and I is the
real-world driving dataset. i denotes the ith image in I. τ denotes the
image generator/transformer which can change the weather condi-
tion of the input image. f is an indicator function which outputs 1 or
0 if and only if the input is True or False and ϵ is the error bound.
Metric of input validation. As introduced in Section 3.2.2, the in-
put validity of DNN-based autonomous driving systems is defined
by the minimal distance of input and training images in the embed-
ding space. This metric can reflect the similarity between the input
and training data, however, it has the following limitations: first,
generally, the training dataset is large (e.g. 10k images). Suppose we
use the above metric to validate a single input image, the numerous
training data points will dominate PCA and the results are biased.
Second, using the minimal distance for input validation is not stable.
For example, suppose the distance of input i and training data j is
minimal and it is less than the threshold. However, j is far from
other training data and actually i is not similar to the majority of
the training dataset. We address these limitations in the following
ways: first, to balance the input data and training data, we collect
M images from online driving scenes as input data, and randomly
select M images from training dataset as training data. Second, to
estimate the distance more stable, we average the Top-N minimal
distances of each image to represent their similarities. The metric of
input validity is defined as follow:

mIV (i, St) = f (
1
N

∑
k ∈{N }

min
j ∈St

k (∥h(i) − h(j)∥2) < θ)

, where N is a parameter less than M , i denotes the image of the
input dataset with size M . St denotes the set of M randomly selected
training images, mink (·) denotes the k-th minimal value among
input array. Function f is an indicator function and θ is the threshold
of input validation.

4.4 Results
4.4.1 Results of DeepRoadMT . We first present several YouTube
screenshots as ground truth in Figure 7 to help readers check the qual-
ity of synthetic images. In Figure 8, we list real and GAN-generated
images pairs, where the two rows present the transformation of
Udacity dataset to snowy and rainy scenes, respectively, and the
odd and even columns present original and GAN-generated images,
respectively. Qualitatively, the GAN-generated images are visually
similar to the images collected from YouTube videos and they also
can keep the major semantic information (such as the shape of tree
and road) of the original images. Interestingly, in the first snowy im-
age in Figure 8, the sky is relatively dark and GAN can successfully
render the snow texture and the light in front of the car. In the second
column, the sharpness of rainy images are relatively low and this is
consistent to the real scene showed in Figure 7. Our results are con-
sistent with the original UNIT work [27], and further demonstrate
the effectiveness of UNIT for image transformation.

We further present examples for the detected inconsistent be-
haviors of autonomous driving models in Figure 9. In the figure,

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

(a) Heavy snow (b) Hard rain

Figure 7: Images collected from YouTube

Figure 8: Real and GAN-generated images.

(a) Autumn (b) Chauffeur (c) Rwightman

Figure 9: Inconsistency of steering angle prediction on real and synthetic images.

each row shows the scenes of snow and rain, respectively. In each
sub-figure, the blue caption indicates the model name, while the
red and green captions indicate the predicted steering angles on the
real and synthetic images, respectively. The curves visualize the
predictions which help check the differences. From the figure we
can observe that model Autumn (the first two columns) has the
highest inconsistency number on both scenes; in contrast, model
Rwightman (the last two columns) is the most stable model under
different scenes. This figure shows that DeepRoadMT is able to find
inconsistent behaviors under different road scenes for real-world
autonomous driving models. For example, a model like Autumn or
Chauffeur [3] (they are both ranked higher than Rwightman in
the Udacity challenge) may work perfectly in a sunny day but can
crash into the curbside (or even worse, the oncoming cars) in a rainy
or snowy day (shown in Figure 9).

Table 2 presents the detailed number of detected inconsistent
behaviors under different weather conditions and error bounds for

each studied autonomous driving model on the Udacity dataset. For
example, when using the error bound of 10° and the rainy scenes,
DeepRoadMT detects 5279, 710, and 656 inconsistent behaviors for
Autumn, Chauffeur, and Rwightman, respectively. From the
table we can observe that the inconsistency number of Autumn is
the highest under both weather conditions. We think one potential
reason is that Autumn is purely based on CNN, and does not uti-
lize history information (e.g., via RNN), and thus may not always
perform well in all road scenes. On the other hand, Rwightman
performs the most consistently than the other two models under all
error bounds. This result presents a very interesting phenomenon
– DeepRoadMT can not only detect thousands of inconsistent be-
haviors of the studied autonomous driving systems, but can also
measure different autonomous systems in terms of their robustness.
For example, with the original Udacity dataset, it is hard to find the
limitations of autonomous driving systems like Autumn.

DeepRoad ASE ’18, September 3–7, 2018, Montpellier, France

(a) Sunny (b) Rainy (c) Snowy (d) Distribution of Distances

Figure 10: Results of DeepRoadIV : Image embeddings and Distance distributions.

Table 2: Number of inconsistency behavior of three models un-
der different weather conditions

Scene Model Num. of Inconsist. Behav.
10° 20° 30° 40°

Snowy
Autumn 11635 11602 11388 10239

Chauffeur 4839 2105 1093 653
Rwightman 334 115 45 14

Rainy
Autumn 5279 5279 5279 5279

Chauffeur 710 175 94 71
Rwightman 656 92 23 0

4.4.2 Results of DeepRoadIV . We use sunny, rainy and snowy
driving scenes to test DeepRoadIV . The expectation of this exper-
iment is, in the embedding space, the sunny images are close to
the training images, and the rainy and snowy images are linearly
separable to them. Specifically, sunny images are collected from the
original test dataset, and the rainy and snowy images are extracted
from YouTube videos. Note that to ensure the authenticity of in-
put images, we only choose real-world instead of synthetic images.
Moreover, we choose convolutional layer conv 3_2 and conv
4_1 of VGGNet to extract the content and style features from the
input images, and we set the PCA dimension to 3 for visualizing
experimental results. To reduce the computational complexity, we
resize all the images to 120*90 and set the sampling number M
of each dataset to 600. Furthermore, we use the average of Top-
100 minimal distances of each data point to reduce the variance of
similarity estimation for each input image.

Figure 10 visualizes the results of DeepRoadIV on sunny, rainy
and snowy driving scenes. To be specific, the first three figures of
Figure 10 present the results of sunny, rainy and snowy images,
respectively. And the orange and blue points present the sampled
training and corresponding input images. We first analyze the results
of the image embedding. From Figure 10a, we observe that the
majority of the input images are mixed with the training samples,
and a few inputs are far from the cluster. From Figure 10b and 10c,
there are gaps between the input and training points and the clusters
are linearly separable. These results indicate that the distributions
of sunny and training images are close but the rainy and snowy
images are not. On the other hand, the cluster of rainy and snowy
images are relatively compact but the sunny images are scattered.
The reason may be the texture of rainy and snowy images are unified
and the content is relatively poor, so that the distances between
images are small. However, the light condition and content of sunny
images are more diverse, hence the distances are large. Moreover,

from Figure 10d, we find the distances of sunny images mainly lie
between 0 and 3, and almost all of the distances of rainy and snowy
images are larger than 2. Suppose the threshold of input validation is
2.5, DeepRoadIV can detect 100% of rainy, 85% of snowy images
and 21% outliers among sunny images as invalid inputs, which
effectively improve the system robustness. Furthermore, we study
if the non-linear transformation of input images is necessary for
input validation. Figure 11 visualizes the results of DeepRoadIV
without feature extraction. From Figure 11, we observe that all
blue clusters are surrounded by the orange points, which show that
input images are not linearly separable to the training images in
the embedding space. It implies in this case, the distance is not a
proper metric for input validation, and non-linear transformation (i.e.
feature extraction using VGGNet) is indeed needed.

5 THREATS TO VALIDITY
There are several threats to the validity of the proposed approach
and its result, which include the followings.

In this work, the main threat to internal validity is potential defects
in the implementation of our techniques. To reduce these threats,
in implementing DeepRoadMT , we used the original implementa-
tion of UNIT to ensure DeepRoadMT ’s performance. Furthermore,
in implementing of DeepRoadIV , we downloaded the pre-trained
VGGNet weights from PyTorch website2 instead of training it on
ImageNet.

The threats to external validity mainly lie in image quality, dataset
and autonomous driving models. First, we lack a good standard to
evaluate image quality (i.e. realisticity). In this paper, we present
GAN-generated images to let readers check their quality. This ap-
proach is quite straightforward but less objective. Salimans et.al [34]
proposed Inception Score to evaluate the quality of synthetic im-
ages. To be specific, Inception Score uses an Inception-v3 Network
pre-trained on ImageNet to compute a statistic of the network’s out-
puts as the quality of generated images. However, Barratt et.al [12]
demonstrate that Inception Score fails to provide useful guidance
when comparing generative models (e.g. GANs). Furthermore, the
generation process of GANs is not controllable that some seman-
tic content (e.g. trees or cars) may be missing in synthetic images,
and this may threaten the validity of Metamorphic Testing. Second,
the Udacity dataset is relative small and the autonomous driving
models are quite simple. Suppose the dataset is sufficiently large, a
more complicated and robust model is able to be trained, and the
inconsistent behaviors would be dramatically reduced. Moreover, an

2https://download.pytorch.org/models/vgg19-dcbb9e9d.pth

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

(a) Sunny (b) Rainy (c) Snowy

Figure 11: Results of DeepRoadIV (without non-linear transformation): Image embeddings and Distance distributions.

autonomous driving system is complicated, and its input and output
are diverse. In this work, we only focus on testing the accuracy of
the steering angle instead of speeding adjustments.

6 RELATED WORK
Metamorphic testing. Metamorphic testing is a classical software
testing method that identifies software bugs [15, 36, 44]. Its key
idea is to detect violations of domain-specific metamorphic rela-
tions defined across outputs from multiple runs of the program with
different inputs. Metamorphic testing has been applied for testing
machine learning classifiers [30, 40, 41]. In this paper, DeepRoad
develops a specific GAN-based metamorphic testing module for
DNN-based autonomous driving systems, where the metamorphic
relations are defined such that regardless of how the driving scenes
are synthesized to cope with weather conditions, the driving behav-
iors are expected to be consistent with those under the corresponding
original driving scenes.
Input Validation. Input Validation aims at ensuring that only prop-
erly formed data can be accepted by an information system, and
preventing malformed data leading systems errors. Input Validation
has be applied to enhance the robustness of web application [1, 25].
In this paper, DeepRoad develops a distance-based input validation
framework for DNN-based autonomous driving systems, where the
key idea is that a valid input image is similar to a part of the images
in the training dataset, and the similarity can be measured by the dis-
tance in a non-linear low-dimension space. To enhance the systems’
security, the images will be rejected if their distance is greater than a
given threshold.
Testing and verification of DNN-based autonomous driving sys-
tems. Different from traditional testing practices for DNN mod-
els [28, 39], a recent set of approaches (such as DeepXplore [31]
and DeepTest [38]) utilize differential and metamorphic testing al-
gorithms for identifying inputs that trigger inconsistencies among
different DNN models, or among the original and transformed driv-
ing scenes. Although such approaches have successfully found vari-
ous autonomous driving system issues, there still lack approaches
that can test DNN-based autonomous driving system with diverse
and realistic synthesized driving scenes. Moreover, DeepSafe [19]
focuses on automatically identifying safe regions of the input space,
within which the network is robust against adversarial perturbations.
GAN-based Image Translation. GAN-based domain adaption has
been recently shown to be effective in unsupervised image-to-image
translation [21, 27, 43, 45]. CycleGan [45], DiscoGAN [21] and Du-
alGan [43] propose the similar idea that image-to-image translation

should satisfy the cycle consistency, where an image from Domain A
should be identical when it is translated to Domain B and translated
back to A. The experiments show that this extra constraint can make
the translated images more realistic. UNIT [27] further assumes that
the representations of two domains may be projected to the same
vector space (shared latent space), and is constructed based on VAEs
and GANs. Specifically, they also apply cycle consistency to the
GAN model to regularize the translation.

Moreover, GAN-based domain adaption is also applied for virtual-
to-real and real-to-virtual driving scene adaption [26, 42]. DU-
drive [42] proposes an unsupervised real to virtual domain unifi-
cation framework for end-to-end driving. Their key insight is the
raw image may contain nuisance details which are not related to the
prediction of steering angles, and a corresponding virtual scene can
ignore these details and also address the domain shift problem. Grad-
GAN [26] is designed to automatically transfer the scene annotation
in virtual-world to facilitate real-world visual tasks. In that work, a
semantic-aware discriminator is proposed for validating the fidelity
of rendered image w.r.t each semantic region.

7 CONCLUSION
In this paper, we propose DeepRoad, an unsupervised learning frame-
work to synthesize realistic driving scenes to test inconsistent behav-
iors of DNN-based autonomous driving systems, and validate online
input images to improve the system robustness. The experimental
results on three real-world Udacity autonomous driving models indi-
cate that DeepRoad can successfully detect thousands of inconsistent
behaviors. Furthermore, our results also show that DeepRoad can
effectively validate input images to potentially enhance the system
robustness.

8 ACKNOWLEDGEMENT
This work was supported by the Ministry of Science and Technol-
ogy of China (Grant No. 2017YFC0804002), Shenzhen Peacock
Plan (Grant No. KQTD201611 2514355531), and Science and Tech-
nology Innovation Committee Foundation of Shenzhen (Grant No.
ZDSYS201703031748284 and No. JCYJ20170817110848086). It
was also supported by NSF grants CNS 1527727, CCF-1566589,
CNS CAREER 1750263, and CCF-1704790. The authors thank
Shiwei Yan for the support of evaluations, and thank Chenguang
Liu, Meng Li, Yibo Lin and anonymous reviewers for the valuable
comments.

DeepRoad ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] 2013. Open Web Application Security Project: Data Validation. https://www.

owasp.org/index.php/Data_Validation. Accessed: Jun. 2018.
[2] 2014. Tesla Autopilot System. https://www.tesla.com/autopilot. Accessed: Jun.

2018.
[3] 2016. Final leaderboard of Udacity Challenge 2. https://github.com/udacity/

self-driving-car/tree/master/challenges/challenge-2. Accessed: Jun. 2018.
[4] 2016. Steering angle model: Autumn. https://github.com/udacity/self-driving-car/

tree/master/steering-models/evaluation. Accessed: Jun. 2018.
[5] 2016. Steering angle model: Chauffeur. https://github.com/udacity/

self-driving-car/tree/master/steering-models/community-models/chauffeur. Ac-
cessed: Jun. 2018.

[6] 2016. Steering angle model: Rwightman. https://github.com/udacity/
self-driving-car/tree/master/steering-models/evaluation. Accessed: Jun. 2018.

[7] 2016. Udacity pre-trained Models. https://github.com/udacity/self-driving-car/
tree/master/steering-models/evaluation. Accessed: Jun. 2018.

[8] 2016. Udacity self driving car. https://github.com/udacity/self-driving-car. Ac-
cessed: Jun. 2018.

[9] 2018. Tesla Model S crash. https://www.wired.com/story/
tesla-autopilot-why-crash-radar. Accessed: Jun. 2018.

[10] 2018. Uber’s Self-Driving Cars Were Struggling Before Arizona Crash. https://
www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html.
Accessed: Jun. 2018.

[11] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press.

[12] Shane Barratt and Rishi Sharma. 2018. A Note on the Inception Score. arXiv
preprint arXiv:1801.01973 (2018).

[13] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning.
Springer. http://research.microsoft.com/en-us/um/people/cmbishop/prml/

[14] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[15] Tsong Y Chen, Shing C Cheung, and Siu Ming Yiu. 1998. Metamorphic testing: a
new approach for generating next test cases. Technical Report. Technical Report
HKUST-CS98-01, Department of Computer Science, Hong Kong University of
Science and Technology, Hong Kong.

[16] Leon Gatys, Alexander S Ecker, and Matthias Bethge. 2015. Texture synthesis us-
ing convolutional neural networks. In Advances in Neural Information Processing
Systems. 262–270.

[17] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In Computer Vision and Pattern Recognition
(CVPR), 2016 IEEE Conference on. IEEE, 2414–2423.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[19] Divya Gopinath, Guy Katz, Corina S Pasareanu, and Clark Barrett. 2017. Deepsafe:
A data-driven approach for checking adversarial robustness in neural networks.
arXiv preprint arXiv:1710.00486 (2017).

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-
time style transfer and super-resolution. In European Conference on Computer
Vision. Springer, 694–711.

[21] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. 2017.
Learning to discover cross-domain relations with generative adversarial networks.
arXiv preprint arXiv:1703.05192 (2017).

[22] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[25] Nuo Li, Tao Xie, Maozhong Jin, and Chao Liu. 2010. Perturbation-based user-
input-validation testing of web applications. Journal of Systems and Software 83,
11 (2010), 2263–2274.

[26] Peilun Li, Xiaodan Liang, Daoyuan Jia, and Eric P Xing. 2018. Semantic-
aware Grad-GAN for Virtual-to-Real Urban Scene Adaption. arXiv preprint
arXiv:1801.01726 (2018).

[27] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised image-to-image
translation networks. In Advances in Neural Information Processing Systems. 700–
708.

[28] Alexis C Madrigal. 2017. Inside waymo’s secret world for training self-driving
cars. The Atlantic (2017).

[29] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[30] Christian Murphy, Gail E Kaiser, Lifeng Hu, and Leon Wu. 2008. Properties of
Machine Learning Applications for Use in Metamorphic Testing. In SEKE, Vol. 8.
867–872.

[31] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[32] Dean A. Pomerleau. 1989. Advances in Neural Information Processing Systems 1.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, Chapter ALVINN:
An Autonomous Land Vehicle in a Neural Network, 305–313.

[33] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term
memory recurrent neural network architectures for large scale acoustic model-
ing. In Fifteenth annual conference of the international speech communication
association.

[34] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. In Advances in Neural
Information Processing Systems. 2234–2242.

[35] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes. 2016. A Survey on
Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9 (Sept
2016), 805–824.

[36] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805–824.

[37] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[38] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Auto-
mated Testing of Deep-Neural-Network-driven Autonomous Cars. In Proceedings
of the 40th International Conference on Software Engineering, Gothenburg, Swe-
den, May 27 - June 3, 2018 (ICSE 2018).

[39] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

[40] Xiaoyuan Xie, Joshua Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. 2009. Application of metamorphic testing to supervised
classifiers. In Quality Software, 2009. QSIC’09. 9th International Conference on.
IEEE, 135–144.

[41] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. 2011. Testing and validating machine learning classifiers by
metamorphic testing. Journal of Systems and Software 84, 4 (2011), 544–558.

[42] Luona Yang, Xiaodan Liang, and Eric Xing. 2018. Unsupervised Real-to-
Virtual Domain Unification for End-to-End Highway Driving. arXiv preprint
arXiv:1801.03458 (2018).

[43] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. 2017. Dualgan: Unsupervised
dual learning for image-to-image translation. arXiv preprint (2017).

[44] Zhi Quan Zhou, DH Huang, TH Tse, Zongyuan Yang, Haitao Huang, and TY
Chen. 2004. Metamorphic testing and its applications. In Proceedings of the 8th
International Symposium on Future Software Technology (ISFST 2004). 346–351.

[45] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial networks. arXiv
preprint arXiv:1703.10593 (2017).

https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Data_Validation
https://www.tesla.com/autopilot
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car
https://www.wired.com/story/tesla-autopilot-why-crash-radar
https://www.wired.com/story/tesla-autopilot-why-crash-radar
https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html
https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html
http://research.microsoft.com/en-us/um/people/cmbishop/prml/

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks for Autonomous Driving
	2.2 DNN Architectures
	2.3 Challenge of Testing for DNN-based Autonomous Driving Systems

	3 Approach
	3.1 Metamorphic Testing for DNN-based Autonomous Driving Systems
	3.2 Input Validation for DNN-based Autonomous Driving Systems

	4 Experiments
	4.1 Data
	4.2 Models
	4.3 Metric
	4.4 Results

	5 Threats to Validity
	6 Related work
	7 Conclusion
	8 Acknowledgement
	References

