
Machine Learning and Safety in

Automotive Software
Rick Salay

February 4, 2019

© 2018 Rick Salay 2

Agenda – two strategies for safety assurance of ADS and ML

1. Hazard-based automotive safety standard (ISO 26262)

• Will focus on key ML obstacles to V&V

– lack of specification

– lack of interpretability

• Will discuss research directions to address these

2. Measurement uncertainty-reduction based (specifically for

perception)

• Identifying factors contributing to uncertainty and methods to address

them

© 2018 Rick Salay 3

Safety Argument Decomposition

4

Perception
Planning &

control

ADS

Sensing ActuationWorld model

Focus on Perception and Supervised Learning

Two ways to implement software: Programming vs. Training (ML)

Programming

Specifications

Training

Examples

© 2018 Rick Salay 5

Safety through a hazard-based automotive safety standard (ISO 26262)

© 2018 Rick Salay 6

Safety Lifecycle (ISO 26262)

(software focus)

© 2018 Rick Salay 7

Where ML is used

© 2018 Rick Salay 8

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit testing

ML lifecycle

for supervised

learning

ISO 26262 Approach to Software Safety

Assumption: following the recommendations reduces residual risk of hazard

due to SW failure to an acceptable level

Recommends a particular level of rigor in developing safety critical software
- different levels for ASIL A-D

- consists of 83 software development techniques (34 at unit level)

© 2018 Rick Salay 9

Best Practices

© 2018 Rick Salay 10

Verification

© 2018 Rick Salay 11

Testing

© 2018 Rick Salay 12

Fault Tolerance

© 2018 Rick Salay 13

Best Practices Prevent faults

Verification Find and repair faults

(and build confidence)Testing

Fault Tolerance Live with faults

Techniques

Unit

Level

© 2018 Rick Salay 14

Assumes programmed software!

Best Practices Prevent faults

Verification Find and repair faults

(and build confidence)Testing

Fault Tolerance Live with faults

Q: How well do ISO 26262 software

recommendations apply to ML components?

Techniques

© 2018 Rick Salay 15

Based on: Salay, Rick, and Krzysztof Czarnecki. "Using machine learning safely in automotive software:

An assessment and adaption of software process requirements in iso 26262." arXiv preprint

arXiv:1808.01614 (2018).

Software technique classification

N/A – technique is not applicable to ML

Adapt – technique can be applied to ML with some adaptation

Use – technique can be used with ML as-is

© 2018 Rick Salay 16

Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults

© 2018 Rick Salay 17

Best Practices

Strongly biased toward (imperative) programming languages!

Consist of coding guidelines, notation styles, principles

Mostly

N/A

© 2018 Rick Salay 18

What about ML-specific best practices?

Best practices are emerging

E.g. standardized methods for deep neural networks

ML has low maturity compared to traditional programming

© 2018 Rick Salay 19

Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults

© 2018 Rick Salay 20

“V” Model of Software Development

Specification of software

safety requirements

Software architectural

design

Software unit design and

implementation

Verification of software

safety requirements

Software integration and

testing

Software unit testing

Design phase
verification

Design phase
verification

Software

testing

Software

testing

Software

testing

© 2018 Rick Salay 21

Techniques that are adaptable to ML

Adapt: Static analysis of trained models is feasible

e.g., NN property checking via SMT

© 2018 Rick Salay 23

Techniques directly applicable to ML

Use: Black box testing can be done on ML

components

© 2018 Rick Salay 24

Training

Programming

Specifications

Examples

“V” model assumes that complete specifications exist and are

sufficiently detailed

No specification,

only training dataset

• Dataset always

incomplete

Complete Specification Assumption

© 2018 Rick Salay 25

Training

Programming

Specifications

Examples

Many verification and testing techniques require that the implementation be

human understandable (interpretable)

Written by

humans

Not interpretable

Interpretability Assumption

© 2018 Rick Salay 26

Impact of specification and interpretability on verification and

testing techniques (unit level)

Verification Testing

No specification

Interpretable
0.50
(0.0)

0.52
(0.03)

Specification

Not interpretable
0.26
(0.01)

0.97
(0.01)

Mean (Std dev) across ASILs

Perfect score is 1.0

Summary

• Specification is important for verification and testing

• Interpretability is critical for verification

© 2018 Rick Salay 28

Complete Specification Assumption

Is the complete specification assumption reasonable?

Not for advanced functionality: ADAS, ADS

Hard to specify:

Perception tasks

e.g., What are complete

necessary and sufficient

conditions to identify a

pedestrian?

Hard to specify:

Planning tasks

in an open

environment

© 2018 Rick Salay 29

Is the complete specification assumption reasonable?

Not for advanced functionality: ADAS, ADS!

No specification => hard to direct a programmer

Conclusion: Machine Learning is preferred approach!

No specification => nothing to verify against!

Complete Specification Assumption

© 2018 Rick Salay 30

Some specifications with ML components still possible: two kinds

Partial behavioural specifications

(PBS)

Assumptions

e.g. illumination > 15000 lux

Necessary/Sufficient conditions

e.g., pedestrian < 9 feet tall

Invariants, equivariants

e.g., classification is invariant to rotation

Complete Specification Assumption : How to address?

© 2018 Rick Salay 31

Complete data specifications

(DS)
Domain coverage requirements

e.g., pedestrian equivalence

classes

Risk profiling of inputs
e.g. severity of misclassifying

different subclasses of objects

© 2018 Rick Salay 32

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit test

Where to Use Specifications

© 2018 Rick Salay 33

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit test

Select model type that implicitly satisfies

PBS

• e.g., CNN’s satisfying required

equivariants
• Cohen T, M. Welling, 2016. “Group equivariant

convolutional networks.” In International Conference on

Machine Learning (pp. 2990-2999).

Where to Use Specifications

© 2018 Rick Salay 34

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit test
Use active learning to accelerate optimization by

selecting the most informative data
E.g., Sivaraman, S., M. M. Trivedi. 2014. “Active learning for on-road vehicle

detection: A comparative study”. Machine vision and applications: 1-13.

Where to Use Specifications

© 2018 Rick Salay 35

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit test

• Ensure dataset satisfies specs

• DS (e.g., all ped poses represented)

• PBS (e.g., all ped <= 9ft)

• Use PBS to augment dataset so that specs

are learned by model

• e.g., generate non-ped > 9ft

• e.g., use GANs to generate invariant

examples
• Liu M.Y., T. Breuel, J. Kautz, 2017. “Unsupervised

Image-to-Image Translation Networks”. arXiv preprint

arXiv:1703.00848

Where to Use Specifications

© 2018 Rick Salay 36

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit test

Incorporate PBS into loss function to

penalize models that violate them and guide

learning.

e.g.,
Xu J., Z. Zhang, T. Friedman, Y. Liang, G.V. Broeck, 2017. “A

Semantic Loss Function for Deep Learning with Symbolic

Knowledge”. arXiv preprint arXiv:1711.11157.

Vedaldi A., M. Blaschko, A. Zisserman, 2011. “Learning equivariant

structured output SVM regressors.” In Computer Vision (ICCV),

IEEE International Conference on 2011 (pp. 959-966). IEEE.

Where to Use Specifications

© 2018 Rick Salay 37

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit test

• Use test coverage metrics

designed for ML
• E.g., Sun, Y., X. Huang, and D. Kroening.

"Testing Deep Neural Networks." arXiv preprint

arXiv:1803.04792 (2018).

• Use explanation techniques to

diagnose why tests pass or fail
• Koopman, P. and M. Wagner. "Toward a

Framework for Highly Automated Vehicle

Safety Validation," SAE World Congress,

2018. SAE-2018-01-1071.

Where to Use Specifications

© 2018 Rick Salay 38

Select model type

Collect dataset

Select model
hyper-parameters

Train model
(training dataset)

Evaluate
generalization

Test model
(testing dataset)

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize
error rate

Unit design & implementation Unit test

Verify trained model wrt PBS

- multiple techniques

Where to Use Specifications

Verification Techniques for ML

© 2018 Rick Salay 39

Requires interpretability – use interpretability enhancing

techniques discussed below

Where to Use Specifications

Verification Techniques for ML

© 2018 Rick Salay 40

Combine formal and non-formal techniques

e.g. falsification
• Dreossi, T., A. Donzé, and S.A. Seshia. "Compositional falsification of cyber-physical systems

with machine learning components." In NASA Formal Methods Symposium, pp. 357-372.

Springer, Cham, 2017.

Where to Use Specifications

Verification Techniques for ML

© 2018 Rick Salay 41

Proof that model satisfies PBS
• Seshia, S.A., D. Sadigh, and S.S. Sastry. "Towards verified artificial intelligence." arXiv

preprint arXiv:1606.08514 (2016).

Proof of minimum adversarial attack radius

Where to Use Specifications

Verification Techniques for ML

© 2018 Rick Salay 42

These are code-specific techniques.

Where to Use Specifications

Verification Techniques for ML

© 2018 Rick Salay 43

PBS property checking
• E.g., Katz, G., C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. 2017. “Re-luplex: An

Efficient SMT Solver for Verifying Deep Neural Networks". arXiv preprint arXiv:1702.01135

Abstract Interpretation
• E.g., Gehr, T., M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.

"AI2: Safety and robustness certification of neural networks with abstract interpretation." In

Security and Privacy (SP), 2018 IEEE Symposium on. 2018.

Where to Use Specifications

Verification Techniques for ML

© 2018 Rick Salay 44

Translate the model to another semantically equivalent

representation for which analysis tools exist
• E.g., Weiss, G., Y. Goldberg, and E. Yahav. "Extracting Automata from Recurrent Neural

Networks Using Queries and Counterexamples." arXiv preprint arXiv:1711.09576 (2017).

Where to Use Specifications

More powerful ML model => Less

interpretable
accuracy/interpretability tradeoffNaïve

Bayes

Support

Vector

Machine

Random

Decision

Forest

Deep

Neural

Network

Interpretability Assumption

© 2018 Rick Salay

Decision

Tree
Bayesian

Network

45

Require use of interpretable models
or, provide justification why not (safety case)

and use interpretability increasing techniques

Natural Language Rule Extraction

Interpretability Assumption : How to address?

© 2018 Rick Salay 46

Model Visualization Dependency Analysis

Saliency Maps DARPA XAI

Global visualization: t-SNE*

through dimensionality

reduction MNIST in 2D

t-SNE

(t-distributed

Stochastic

Neighbor

Embedding)

© 2018 Rick Salay 47

* Maaten, L. van der, and G. Hinton. "Visualizing data using t-SNE." Journal of

machine learning research no. 9, Nov (2008): 2579-2605.

Interpretability Increasing Techniques

MNIST *

data set

* http://yann.lecun.com/exdb/mnist/

© 2018 Rick Salay 48

Global visualization: Activation Maximization

© 2018 Rick Salay 49

data: MNIST

Layer 1 Layer 2 Layer 3

* Erhan, Dumitru, Yoshua Bengio, Aaron Courville, and Pascal Vincent. "Visualizing

higher-layer features of a deep network." University of Montreal 1341, no. 3 (2009): 1.

Interpretability Increasing Techniques

Global feature importance

© 2018 Rick Salay 50

data: MNIST

https://www.kaggle.com/c/digit-recognizer/discussion/70350

Interpretability Increasing Techniques

Local explanation: Occlusion map

© 2018 Rick Salay 51

data: MNIST

Interpretability Increasing Techniques

Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults

© 2018 Rick Salay 53

Summary

• Key assumptions are not met by ML: complete specification and

interpretability

• However, research is active in these areas to address the

shortfall

Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults

© 2018 Rick Salay 54

Fault Tolerance

Can use as-is for ML

Fault tolerance strategies are architecture-level and can be

component implementation agnostic

But error detection/handling should use programming!

© 2018 Rick Salay 55

Some ML-oriented Fault Tolerance Methods

© 2018 Rick Salay 56

Ensemble methods
Use multiple classifiers and aggregate their results

Safety envelope
Use ML components only within safe contexts – e.g. to choose among a set of safe actions

Simplex architecture
Monitor when ML component is unreliable and switch to a reliable (but usually conservative)

non-ML component – requires “uncertainty” check on ML component

Runtime verification + Fail Safety
Monitor PBS satisfaction and go to fail safe behaviour if PBS is violated at run-time

Summary

Best Practices Prevent faults

Verification
Find and

repair faultsTesting

Fault

Tolerance

Live with

faults

Q: How well do ISO 26262 SW recommendations fit ML?

N/A – but ML best practices will

emerge (unclear of impact)

Adapt/Use – if specification and

interpretability problems are

addressed (research is active)

Use – Fault tolerance techniques

can be used directly

© 2018 Rick Salay 57

What about planning & control?

58

Perception
Planning &

control

ADS

Sensing ActuationWorld model

Main type of ML in actuation/control: Reinforcement Learning (RL)

• learn an optimal control policy by training with simulation + reward

function

• exploration/exploitation trade-off

• leaning could be on-line as well

Some unique safety issues:

• e.g., reward function does not incorporate (safety) risk

• e.g., model learns to “game” the reward function

• See: Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D.

Mane. 2016. “Concrete problems in AI safety". arXiv preprint arXiv:1606.06565 .

© 2018 Rick Salay 59

Safety through (Measurement) Uncertainty-Reduction

© 2018 Rick Salay 60

Managing Perceptual Uncertainty in ML

61

Perception
Planning &

control
Guaranteed
perception
performance

ODD
assumptions

Guaranteed
planning &
control
performance

ADS

Sensing ActuationWorld model

Actuator + ODD
Assumptions

The following slides are based on Krzysztof Czarnecki and Rick Salay.
Towards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving.
In WAISE, Västerås, Sweden, 2018
https://uwaterloo.ca/wise-lab/publications/towards-framework-manage-perceptual-uncertainty-safe

Guide to the Expression of Uncertainty in
Measurement (GUM)

• True accuracy unknowable

– Accuracy in ML wrt. test set only

• Must estimate uncertainty

62

Sample Scenario-Dependent
Perception-Performance
Safety-Requirement Spec

63

Detect pedestrians on the roadway
within range of 10 m and with maximum perception-reaction delay of 0.5 s
with missed detection probability of 10-9 or less
with localization uncertainty of ± 0.5 m or better
within ODD conditions

Detection range

Stopping sight distance
Stopping

buffer

Perception Triangle (Instance-Level)

64

Perception

Real-world situation

Sensory
channel

Camera
image,
radar
dataPerception

algorithm

Pedestrian
speed = 0.1
activity =

walking

Pedestrian
speed = 0
activity =

standing

…

Set of credible states
(uncertain)

Accuracy

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)

Perceptual Triangle

65

Real-world situations

Concept

Semantics

Sensory
data

Sensory
channel

Data
interpretation

Perception

Sensory
channel

Perception

Real-world situation

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)

Perception
algorithm

Camera
image,
radar
data

Pedestrian
speed = 0.1
activity =

walking

Pedestrian
speed = 0
activity =

standing

…

Set of credible states
(uncertain)

Accuracy

Instance-level Domain-level (generic)

Perceptual Triangle When Using Supervised ML

66

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Training
& testing

Trained
Model

Model
class selection,
training & testing

Development

Inference

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Operation

Factors Influencing Uncertainty

67

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1: Conceptual Uncertainty

68

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1

F1: Conceptual Uncertainty
Pedestrian or Cyclist?

69

F1: Conceptual Uncertainty

• Assessed by expert review or labeling disagreement

• Reduced by developing standard ontologies

– E.g., WISE Drive Ontology

70https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving

F2: Development Scenario Coverage

71

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1

F2

F2: Development Scenario Coverage

72

F2: Development Scenario Coverage

• Assessed with respect to ontologies and field validation targets
• Must include positive/negative and near-hit/near-miss examples

• Challenge: how much data is enough?

73

Synthetic data sets

74

Angus et al. Unlimited Road-scene Synthetic Annotation (URSA) Dataset, ITCS’18

https://uwaterloo.ca/wise-lab/ursa

https://uwaterloo.ca/wise-lab/ursa

Active Learning

Data selection criteria

1. Uncertainty

2. Coverage & diversity

3. Collection & labeling cost

4. Risk profile

75

F2

F3: Scene Uncertainty

76

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1

F3

F3: Scene Uncertainty

77

F3: Scene Uncertainty

• Surrogate measures

– range, scale, occlusion level, atmospheric visibility, illumination,
clutter and crowding level

• May compare test set accuracy and output confidence with
these measures

• Also part of development data set coverage

78

F3F2

F4: Sensor Properties

79

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1
F4

F4: Sensor Properties

80

F4: Sensor Properties

• Mature engineering discipline

– Determining sensor properties to capture sufficient information

– Mode, range, resolution, sensitivity, placement, etc.

• However, interaction between ML algorithms and sensor
properties must be assessed

– E.g., how effective is ML is ignoring sensor noise or artifacts?

81

F3F2

F5: Label Uncertainty

82

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1
F4

F5

F5: Label Uncertainty

83

Class: cyclist vs. pedestrian Bounding box placement uncertainty

3D bounding box placement is challenging

F5: Label Uncertainty

• Assessed by expert review and labeler disagreement
– Existing research on determining number of labelers in crowd

sourcing

– E.g., may need as many as 6 independent votes

• Reduction measures
– Conceptual clarity (F1)

– Quality control
• Clear instructions, training, verification, etc.

• Bread and butter of labeling companies

84

F3F2

F6: Model Uncertainty

85

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1
F4

F5

F6

F6: Model Uncertainty

86

What model was learned in training?
What decisions will it make in operation?

F6: Model Uncertainty

1. Explanation methods help validate features

2. Robustness measures help assess risk of misclassification

3. Bayesian deep learning can help assess model uncertainty

87

Deep Learning and Explanations

88

Passenger car

The top 15 features (superpixels) used to classify corresponding input image
as a car by an Inception network trained on ImageNet

The explanation
shows
that a tree
contributed
to the classification
decision
(method: LIME)

(see LIME at https://github.com/marcotcr/lime)

Adversarial Stickers

89Evtimov et al.

Misclassified as speed signs

Robustness Measures

90CLEVER approach by IBM

Aleatoric and Epistemic Uncertainty

91Yarin Gal, et al., https://arxiv.org/abs/1703.04977

Dropout

92

Methods for Confidence Estimation

1. Model uncertainty using MC
Dropout

2. Data uncertainty using
heteroschedastic regression

3. Confidence calibration

93

Phan, Salay, Czarnecki, Abdelzad, Denouden, Venekar.
Calibrating Uncertainties in Object Localization Task.
NIPS workshop. 2018, https://arxiv.org/abs/1811.11210 95% confidence band

Predicted mean box

Ground truth

F7: Operational Domain Uncertainty

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

F4Training
& testing

Inference

Trained
Model

Model
class selection,
training & testing F6

F5

Domain shift

Development Operation

F2 F3

F1

94

F7

F2

F4

F3

F7: Operational Domain Uncertainty

95
Camera miscalibration

Fly splatters on LIDAR

New type of car shape

New pedestrian pose

F2 F3

F4

F4

F7: Operational Domain Uncertainty

• Assess situation novelty at operation time

– E.g., autoencoders, partial specs

• Assess impact of level of sensor miscalibration on perceptual
uncertainty

• Monitor sensor parameters and ODD

96

Sample Incorrect Detections

97

score
IoU

missed

Thank you

Questions?

