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Agenda – two strategies for safety assurance of ADS and ML

1. Hazard-based automotive safety standard (ISO 26262) 

• Will focus on key ML obstacles to V&V 

– lack of specification

– lack of interpretability

• Will discuss research directions to address these

2. Measurement uncertainty-reduction based (specifically for 

perception)

• Identifying factors contributing to uncertainty and methods to address 

them
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Safety Argument Decomposition

4

Perception
Planning & 

control

ADS

Sensing ActuationWorld model

Focus on Perception and Supervised Learning



Two ways to implement software: Programming vs. Training (ML)

Programming

Specifications

Training

Examples
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Safety through a hazard-based automotive safety standard (ISO 26262)
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Safety Lifecycle (ISO 26262)

(software focus)
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Where ML is used
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Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit testing

ML lifecycle 

for supervised 

learning



ISO 26262 Approach to Software Safety

Assumption: following the recommendations reduces residual risk of hazard 

due to SW failure to an acceptable level 

Recommends a particular level of rigor in developing safety critical software 
- different levels for ASIL A-D 

- consists of 83 software development techniques (34 at unit level)
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Best Practices
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Verification
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Testing
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Fault Tolerance

© 2018 Rick Salay 13



Best Practices Prevent faults

Verification Find and repair faults

(and build confidence)Testing

Fault Tolerance Live with faults

Techniques

Unit 

Level
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Assumes programmed software!



Best Practices Prevent faults

Verification Find and repair faults

(and build confidence)Testing

Fault Tolerance Live with faults

Q: How well do ISO 26262 software 

recommendations apply to ML components?

Techniques
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Based on: Salay, Rick, and Krzysztof Czarnecki. "Using machine learning safely in automotive software: 

An assessment and adaption of software process requirements in iso 26262." arXiv preprint 

arXiv:1808.01614 (2018).



Software technique classification

N/A – technique is not applicable to ML

Adapt – technique can be applied to ML with some adaptation

Use – technique can be used with ML as-is
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Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults
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Best Practices

Strongly biased toward (imperative) programming languages!

Consist of coding guidelines, notation styles, principles 

Mostly 

N/A
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What about ML-specific best practices?

Best practices are emerging

E.g. standardized methods for deep neural networks

ML has low maturity compared to traditional programming
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Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults
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“V” Model of Software Development

Specification of software 

safety requirements

Software architectural 

design

Software unit design and 

implementation

Verification of software 

safety requirements

Software integration and 

testing

Software unit testing

Design phase
verification

Design phase
verification

Software 

testing

Software 

testing

Software 

testing
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Techniques that are adaptable to ML

Adapt: Static analysis of trained models is feasible

e.g., NN property checking via SMT
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Techniques directly applicable to ML

Use: Black box testing can be done on ML 

components
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Training

Programming

Specifications

Examples

“V” model assumes that complete specifications exist and are

sufficiently detailed



No specification, 

only training dataset 

• Dataset always 

incomplete



Complete Specification Assumption
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Training

Programming

Specifications

Examples

Many verification and testing techniques require that the implementation be 

human understandable (interpretable)


Written by 

humans

Not interpretable

Interpretability Assumption
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Impact of specification and interpretability on verification and 

testing techniques (unit level)

Verification Testing

No specification

Interpretable
0.50 
(0.0)

0.52
(0.03)

Specification 

Not interpretable
0.26
(0.01)

0.97
(0.01)

Mean (Std dev) across ASILs

Perfect score is 1.0

Summary

• Specification is important for verification and testing

• Interpretability is critical for verification
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Complete Specification Assumption

Is the complete specification assumption reasonable?

Not for advanced functionality: ADAS, ADS

Hard to specify:

Perception tasks

e.g., What are complete 

necessary and sufficient 

conditions to identify a 

pedestrian?

Hard to specify:

Planning tasks 

in an open 

environment
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Is the complete specification assumption reasonable?

Not for advanced functionality: ADAS, ADS!

No specification => hard to direct a programmer

Conclusion: Machine Learning is preferred approach!

No specification => nothing to verify against!

Complete Specification Assumption
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Some specifications with ML components still possible: two kinds

Partial behavioural specifications 

(PBS)

Assumptions

e.g. illumination > 15000 lux

Necessary/Sufficient conditions

e.g., pedestrian < 9 feet tall

Invariants, equivariants

e.g., classification is invariant to rotation

Complete Specification Assumption : How to address?
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Complete data specifications

(DS)
Domain coverage requirements

e.g., pedestrian equivalence 

classes

Risk profiling of inputs
e.g. severity of misclassifying 

different subclasses of objects
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Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit test

Where to Use Specifications
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Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit test

Select model type that implicitly satisfies 

PBS

• e.g., CNN’s satisfying required 

equivariants
• Cohen T, M. Welling, 2016. “Group equivariant

convolutional networks.” In International Conference on 

Machine Learning (pp. 2990-2999).

Where to Use Specifications
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Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit test
Use active learning to accelerate optimization by 

selecting the most informative data
E.g., Sivaraman, S., M. M. Trivedi. 2014. “Active learning for on-road vehicle 

detection: A comparative study”. Machine vision and applications: 1-13.

Where to Use Specifications
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Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit test

• Ensure dataset satisfies specs 

• DS  (e.g., all ped poses represented) 

• PBS (e.g., all ped <= 9ft)

• Use PBS to augment dataset so that specs 

are learned by model

• e.g., generate non-ped > 9ft

• e.g., use GANs to generate invariant 

examples
• Liu M.Y., T. Breuel, J. Kautz, 2017. “Unsupervised 

Image-to-Image Translation Networks”. arXiv preprint

arXiv:1703.00848

Where to Use Specifications
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Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit test

Incorporate PBS into loss function to 

penalize models that violate them and guide 

learning.

e.g., 
Xu J., Z. Zhang, T. Friedman, Y. Liang, G.V. Broeck, 2017. “A 

Semantic Loss Function for Deep Learning with Symbolic 

Knowledge”. arXiv preprint arXiv:1711.11157.

Vedaldi A., M. Blaschko, A. Zisserman, 2011. “Learning equivariant

structured output SVM regressors.” In Computer Vision (ICCV),

IEEE International Conference on 2011 (pp. 959-966). IEEE.

Where to Use Specifications
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Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit test

• Use test coverage metrics 

designed for ML
• E.g., Sun, Y., X. Huang, and D. Kroening. 

"Testing Deep Neural Networks." arXiv preprint

arXiv:1803.04792 (2018).

• Use explanation techniques to 

diagnose why tests pass or fail
• Koopman, P. and M. Wagner. "Toward a 

Framework for Highly Automated Vehicle 

Safety Validation," SAE World Congress, 

2018. SAE-2018-01-1071.

Where to Use Specifications



© 2018 Rick Salay 38

Select model type 

Collect dataset

Select model 
hyper-parameters

Train model 
(training dataset)

Evaluate 
generalization

Test model
(testing dataset) 

Iterate to optimize hyper-
parameters

for over-fitting

Iterate to optimize 
error rate

Unit design & implementation Unit test

Verify trained model wrt PBS

- multiple techniques

Where to Use Specifications



Verification Techniques for ML
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Requires interpretability – use interpretability enhancing 

techniques discussed below

Where to Use Specifications



Verification Techniques for ML
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Combine formal and non-formal techniques

e.g. falsification
• Dreossi, T., A. Donzé, and S.A. Seshia. "Compositional falsification of cyber-physical systems 

with machine learning components." In NASA Formal Methods Symposium, pp. 357-372. 

Springer, Cham, 2017.

Where to Use Specifications



Verification Techniques for ML
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Proof that model satisfies PBS
• Seshia, S.A., D. Sadigh, and S.S. Sastry. "Towards verified artificial intelligence." arXiv

preprint arXiv:1606.08514 (2016).

Proof of minimum adversarial attack radius

Where to Use Specifications



Verification Techniques for ML
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These are code-specific techniques.

Where to Use Specifications



Verification Techniques for ML
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PBS property checking
• E.g., Katz, G., C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. 2017. “Re-luplex: An 

Efficient SMT Solver for Verifying Deep Neural Networks". arXiv preprint arXiv:1702.01135

Abstract Interpretation
• E.g., Gehr, T., M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. 

"AI2: Safety and robustness certification of neural networks with abstract interpretation." In 

Security and Privacy (SP), 2018 IEEE Symposium on. 2018.

Where to Use Specifications



Verification Techniques for ML
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Translate the model to another semantically equivalent 

representation for which analysis tools exist
• E.g., Weiss, G., Y. Goldberg, and E. Yahav. "Extracting Automata from Recurrent Neural 

Networks Using Queries and Counterexamples." arXiv preprint arXiv:1711.09576 (2017).

Where to Use Specifications



More powerful ML model => Less 

interpretable
accuracy/interpretability tradeoffNaïve 

Bayes

Support 

Vector 

Machine

Random 

Decision 

Forest

Deep 

Neural 

Network

Interpretability Assumption

© 2018 Rick Salay 

Decision 

Tree
Bayesian 

Network

45



Require use of interpretable models
or, provide justification why not (safety case)

and use interpretability increasing techniques

Natural Language Rule Extraction

Interpretability Assumption : How to address?
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Model Visualization Dependency Analysis

Saliency Maps DARPA XAI



Global visualization: t-SNE*

through dimensionality 

reduction                                                                                      MNIST in 2D

t-SNE

(t-distributed 

Stochastic 

Neighbor 

Embedding)
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* Maaten, L. van der, and G. Hinton. "Visualizing data using t-SNE." Journal of 

machine learning research no. 9, Nov (2008): 2579-2605.

Interpretability Increasing Techniques



MNIST *

data set

* http://yann.lecun.com/exdb/mnist/
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Global visualization: Activation Maximization

© 2018 Rick Salay 49

data: MNIST 

Layer 1                            Layer 2                          Layer 3

* Erhan, Dumitru, Yoshua Bengio, Aaron Courville, and Pascal Vincent. "Visualizing 

higher-layer features of a deep network." University of Montreal 1341, no. 3 (2009): 1.

Interpretability Increasing Techniques



Global feature importance
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data: MNIST

https://www.kaggle.com/c/digit-recognizer/discussion/70350

Interpretability Increasing Techniques



Local explanation: Occlusion map
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data: MNIST

Interpretability Increasing Techniques



Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults
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Summary

• Key assumptions are not met by ML: complete specification and 

interpretability

• However, research is active in these areas to address the 

shortfall



Techniques

Best Practices Prevent faults

Verification
Find and repair faults

Testing

Fault Tolerance Live with faults
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Fault Tolerance

Can use as-is for ML

Fault tolerance strategies are architecture-level and can be 

component implementation agnostic 

But error detection/handling should use programming!
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Some ML-oriented Fault Tolerance Methods
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Ensemble methods
Use multiple classifiers and aggregate their results

Safety envelope
Use ML components only within safe contexts – e.g. to choose among a set of safe actions

Simplex architecture
Monitor when ML component is unreliable and switch to a reliable (but usually conservative) 

non-ML component – requires “uncertainty” check on ML component

Runtime verification + Fail Safety
Monitor PBS satisfaction and go to fail safe behaviour if PBS is violated at run-time



Summary

Best Practices Prevent faults

Verification
Find and 

repair faultsTesting

Fault

Tolerance

Live with 

faults

Q: How well do ISO 26262 SW recommendations fit ML?

N/A – but ML best practices will 

emerge (unclear of impact)

Adapt/Use – if specification and 

interpretability problems are 

addressed (research is active)

Use – Fault tolerance techniques 

can be used directly 
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What about planning & control?

58

Perception
Planning & 

control

ADS

Sensing ActuationWorld model



Main type of ML in actuation/control: Reinforcement Learning (RL)

• learn an optimal control policy by training with simulation + reward 

function

• exploration/exploitation trade-off

• leaning could be on-line as well

Some unique safety issues:

• e.g., reward function does not incorporate (safety) risk

• e.g., model learns to “game” the reward function

• See: Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. 

Mane. 2016. “Concrete problems in AI safety". arXiv preprint arXiv:1606.06565 .
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Safety through (Measurement) Uncertainty-Reduction
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Managing Perceptual Uncertainty in ML

61

Perception
Planning & 

control
Guaranteed
perception
performance

ODD
assumptions

Guaranteed
planning &
control
performance

ADS

Sensing ActuationWorld model

Actuator + ODD
Assumptions

The following slides are based on Krzysztof Czarnecki and Rick Salay.
Towards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving.
In WAISE, Västerås, Sweden, 2018
https://uwaterloo.ca/wise-lab/publications/towards-framework-manage-perceptual-uncertainty-safe



Guide to the Expression of Uncertainty in 
Measurement (GUM)

• True accuracy unknowable

– Accuracy in ML wrt. test set only

• Must estimate uncertainty
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Sample Scenario-Dependent
Perception-Performance
Safety-Requirement Spec

63

Detect pedestrians on the roadway
within range of 10 m and with maximum perception-reaction delay of 0.5 s
with missed detection probability of 10-9 or less
with localization uncertainty of ± 0.5 m or better
within ODD conditions

Detection range

Stopping sight distance
Stopping

buffer



Perception Triangle (Instance-Level)

64

Perception

Real-world situation

Sensory
channel

Camera
image,
radar
dataPerception

algorithm

Pedestrian
speed = 0.1
activity =

walking

Pedestrian
speed = 0
activity =

standing

…

Set of credible states
(uncertain)

Accuracy

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)



Perceptual Triangle
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Real-world situations

Concept

Semantics

Sensory
data

Sensory
channel

Data
interpretation

Perception

Sensory
channel

Perception

Real-world situation

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)

Perception
algorithm

Camera
image,
radar
data

Pedestrian
speed = 0.1
activity =

walking

Pedestrian
speed = 0
activity =

standing

…

Set of credible states
(uncertain)

Accuracy

Instance-level Domain-level (generic)



Perceptual Triangle When Using Supervised ML
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Data
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Training
& testing 

Trained
Model
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training & testing
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Inference

Concept
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data
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Resulting
perception
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state

Operation



Factors Influencing Uncertainty
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Data
labeling
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data
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Inference

Trained
Model
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Development Operation



F1: Conceptual Uncertainty
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Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing 

Inference

Trained
Model

Model
class selection,
training & testing

Development Operation

F1



F1: Conceptual Uncertainty
Pedestrian or Cyclist?

69



F1: Conceptual Uncertainty

• Assessed by expert review or labeling disagreement

• Reduced by developing standard ontologies

– E.g., WISE Drive Ontology

70https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving



F2: Development Scenario Coverage
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Concept

Development
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Inference
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Development Operation

F1
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F2: Development Scenario Coverage
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F2: Development Scenario Coverage

• Assessed with respect to ontologies and field validation targets
• Must include positive/negative and near-hit/near-miss examples

• Challenge: how much data is enough?
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Synthetic data sets

74

Angus et al. Unlimited Road-scene Synthetic Annotation (URSA) Dataset, ITCS’18

https://uwaterloo.ca/wise-lab/ursa

https://uwaterloo.ca/wise-lab/ursa


Active Learning

Data selection criteria

1. Uncertainty

2. Coverage & diversity

3. Collection & labeling cost

4. Risk profile
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F2

F3: Scene Uncertainty

76

Concept
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F3: Scene Uncertainty
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F3: Scene Uncertainty

• Surrogate measures

– range, scale, occlusion level, atmospheric visibility, illumination, 
clutter and crowding level

• May compare test set accuracy and output confidence with 
these measures

• Also part of development data set coverage
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F3F2

F4: Sensor Properties
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Concept

Development
situations and
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Sensory
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F4: Sensor Properties
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F4: Sensor Properties

• Mature engineering discipline

– Determining sensor properties to capture sufficient information

– Mode, range, resolution, sensitivity, placement, etc.

• However, interaction between ML algorithms and sensor 
properties must be assessed

– E.g., how effective is ML is ignoring sensor noise or artifacts?
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F3F2

F5: Label Uncertainty
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F5: Label Uncertainty

83

Class: cyclist vs. pedestrian Bounding box placement uncertainty

3D bounding box placement is challenging



F5: Label Uncertainty

• Assessed by expert review and labeler disagreement
– Existing research on determining number of labelers in crowd 

sourcing

– E.g., may need as many as 6 independent votes

• Reduction measures
– Conceptual clarity (F1)

– Quality control
• Clear instructions, training, verification, etc.

• Bread and butter of labeling companies
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F3F2

F6: Model Uncertainty
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F6: Model Uncertainty

86

What model was learned in training?
What decisions will it make in operation? 



F6: Model Uncertainty

1. Explanation methods help validate features 

2. Robustness measures help assess risk of misclassification

3. Bayesian deep learning can help assess model uncertainty
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Deep Learning and Explanations

88

Passenger car

The top 15 features (superpixels) used to classify corresponding input image
as a car by an Inception network trained on ImageNet

The explanation 
shows
that a tree 
contributed
to the classification
decision
(method: LIME)

(see LIME at https://github.com/marcotcr/lime)



Adversarial Stickers

89Evtimov et al.

Misclassified as speed signs



Robustness Measures

90CLEVER approach by IBM



Aleatoric and Epistemic Uncertainty

91Yarin Gal, et al., https://arxiv.org/abs/1703.04977 



Dropout

92



Methods for Confidence Estimation

1. Model uncertainty using MC 
Dropout

2. Data uncertainty using 
heteroschedastic regression

3. Confidence calibration

93

Phan, Salay, Czarnecki, Abdelzad, Denouden, Venekar.
Calibrating Uncertainties in Object Localization Task.
NIPS workshop. 2018, https://arxiv.org/abs/1811.11210 95% confidence band

Predicted mean box

Ground truth



F7: Operational Domain Uncertainty

Concept

Development
situations and
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data
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channel
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Data
labeling
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channel

Resulting
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F4Training
& testing 

Inference
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Model
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class selection,
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F7
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F7: Operational Domain Uncertainty
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Camera miscalibration

Fly splatters on LIDAR

New type of car shape

New pedestrian pose

F2 F3

F4

F4



F7: Operational Domain Uncertainty

• Assess situation novelty at operation time

– E.g., autoencoders, partial specs

• Assess impact of level of sensor miscalibration on perceptual 
uncertainty

• Monitor sensor parameters and ODD

96



Sample Incorrect Detections

97

score
IoU

missed



Thank you 

Questions?


