Machine Learning and Safety in

Automotive Software
Rick Salay

READ MORE: Uber halts autonomous vehicle program in Toronto, U.S. after

TAan~nla &

U.S. opens probe into fatal Tesla crash in California
as shares plunge

Tesla tumbled 8.2 per cent after news of the investigation

Thomson Reuters - Posted: Mar 28, 2018 10:38 AM ET | Last Updated: March 28

CBC Business News
Tesla investigation

\N
)

L . C ’ : fatal collision
4 ‘ ’ .

© 2018 Rick Salay

Agenda - two strategies for safety assurance of ADS and ML
1. Hazard-based automotive safety standard (ISO 26262)
» Will focus on key ML obstacles to V&V
— lack of specification
— lack of interpretability
» Wil discuss research directions to address these
2. Measurement uncertainty-reduction based (specifically for
perception)
 ldentifying factors contributing to uncertainty and methods to address
them

© 2018 Rick Salay

Focus on Perception and Supervised Learning

ADS

Sensing World model Actuation

»| Perception > FHUETAIE) ¢
control

Two ways to implement software: Programming vs. Training (ML)

N

Specifications

Programming

O @S
WO —
ZO0SB

Examples

I
L

Training

»

© 2018 Rick Salay

Safety through a hazard-based automotive safety standard (ISO 26262)

Hazard analysis and risk
assessment (HARA)

Specification of safety goals

Safety Lifecycle (ISO 26262)
(software focus)

!

Specification of functional

safety requirements
Specification of technical
safety requirements

/\

Specification of hardware
safety requirements

Specification of software |
safety requirements

Testing Verification of software
safety requirements
»
Design"‘phase
verification
% | g
0. . . Testing . . g
Q) Architectural design |« Integration and testing <
e w
g » £
‘ﬁn Desi_%!"r\pl'.lase / ;;,‘,‘
X
Unit design and | Testing Unit testin Where ML iS used
implementation ™ € /
© 2018 Rick Salay

Unit design & implementation

Select model type

\ 4

Collect dataset

Select model
hyper-parameters

Unit testing

ML lifecycle
for supervised
learning

lterate to optimize
error rate

A

Train model
(training dataset)

Iterate to optimize hyper-
parameters
for over-fitting

Test model
(testing dataset)

Evaluate
generalization

A

© 2018 Rick Salay

ISO 26262 Approach to Software Safety

Recommends a particular level of rigor in developing safety critical software
- different levels for ASIL A-D
- consists of 83 software development techniques (34 at unit level)

Assumption: following the recommendations reduces residual risk of hazard
due to SW failure to an acceptable level

© 2018 Rick Salay

Best Practices

Table 8 — Design principles for software unit design and implementation

Methods AsIL

A B c D
1a | One entry and one exit point in subprograms and functions® ++ ++ ++ ++
1b | No dynamic objects or variables, or else online test during their creation2b + ++ ++ ++
1¢ | Initialization of variables ++ ++ ++ ++
1d | No multiple use of variable names@ + ++ ++ ++
1e | Avoid global variables or else justify their usage® + + ++ ++
1f Limited use of pointers? o + + ++
1g | No implicit type conversionsa® + ++ ++ ++
1h | No hidden data flow or control flow<c + ++ ++ ++
1i | No unconditional jumpsabe ++ ++ ++ ++
1j No recursions + + ++ ++

a

b

[os

Methods 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notations used in model-based development.

Methods 1g and 1i are not applicable in assembler programming.

Methods 1h and 1i reduce the potential for modelling data flow and control flow through jumps or global variables.

© 2018 Rick Salay

10

Table 9 — Methods for the verification of software unit design and implementation

Methods ASIL

A B c D
1a |Walk-through?® ++ + o o
1b | Inspection? + ++ + ++
1¢ | Semi-formal verification + + ++ ++
1d | Formal verification o o] + +
1e | Control flow analysisP© + + ++ ++
1f | Data flow analysisPc + + ++ +
1g | Static code analysis + ++ ++ ++
1h | Semantic code analysis® + + + +

© 2018 Rick Salay

11

Table 11 — Methods for deriving test cases for software unit testing

Methods ASIL
A B c D
1a | Analysis of requirements ++ ++ i+ +
1b | Generation and analysis of equivalence classes® 4 ++ ++ ++
1¢c | Analysis of boundary values® + ++ ++ =+
1d | Error guessing® + + + +

a

b

C

Equivalence classes can be identified based on the division of inputs and outputs, such that a representative test value can be
selected for each class.

This method applies to interfaces, values approaching and crossing the baundaries and out of range values.

Error guessing tests can be based on data collected through a “lessons leamned” process and expert judgment.

© 2018 Rick Salay

12

Fault Tolerance

Table 5 — Mechanisms for error handling at the software architectural level

[

ASIL
Methods

A B o D
1a | Static recovery mechanism? + + + +
1b | Graceful degradation® + + ++ ++
1¢c | Independent parallel redundancy*® o] 0 + ++
1d | Correcting codes for data + + + +
a Static recovery mechanisms can include the use of recovery blocks, backward recovery, forward recovery and recovery through
repetition.
b

Graceful degradation at the software level refers to prioritizing functions to minimize the adverse effects of potential failures on

functional safety.

Independent parallel redundancy can be realized as dissimilar software in each parallel path.

© 2018 Rick Salay

13

Techniques

Best Practices Prevent faults

EQ\ VEmezUen Find and repair faults
(and build confidence)

Testing
Fault Tolerance Live with faults

Assumes programmed software!

© 2018 Rick Salay

/

14

Techniques

Q: How well do ISO 26262 software

recommendations apply to ML components?

Based on: Salay, Rick, and Krzysztof Czarnecki. "Using machine learning safely in automotive software:
An assessment and adaption of software process requirements in iso 26262." arXiv preprint
arXiv:1808.01614 (2018).

© 2018 Rick Salay 15

Software technique classification

N/A — technique is not applicable to ML
Adapt — technigue can be applied to ML with some adaptation

W Use — technique can be used with ML as-is

/ Methods
A B c D
1a WaIk-flroughz‘I ++ + o o
1b |Inspgction? + ++ ++ ++
1c Serfi-formal verification + + ++ ++
1d Fclmal verification o o + +
1e | Control flow analysist© + + ++ ++
1f | Data flow analysisP© + + ++ ++
1g | Static code analysis + ++ . ++
1h | Semantic code analysis? + + + + /

© 2018 Rick Salay 16

Techniques

Best Practices Prevent faults

Verification

: Find and repair faults
Fault Tolerance Live with faults

© 2018 Rick Salay

17

Best Practices

Consist of coding guidelines, notation styles, principles

Table 8 — Design principles for software unit design and implementation Table 1 — Topics to be covered by modelling and coding guidelines

Asl
Methods ‘ Topics it

Al e | Als|c|o

1a |One entry and one exit point in subprograms and functions? 1a |Enforcement of low complexitya - -+ . .

1b | No dynamic objects or variables, or else online test during their creati 1 b of language subsets® ++ ++ - -+

1¢ | Initialization of variables strong typing® 4 + -+ 4
1d | No multiple use of variable names?2 1 Five implementation techniques o + -+ -+ D
1 ﬁ' Blished design principles N N N - —

1e | Avoid global variables or else justify their usage?

1f Limited use of pointers? 1b Informal notatio i pmbiguous graphical representation + ++ ++ ++ +
1 s if I - |19 |Use of style guides + -+ -+ ++

1g | No implicit type conversions?” C emi-formal no - - ++
1h | Use of naming conventions ++ ++ ++ ++

+

1h | No hidden data flow or control flowe 1d

1i | No unconditional jumps?dc

An appropriate compromise of this tapic with other methods in this part of ISO 26262 may be required

he objectives of method 1b are

1j | No recursions Exclusion of ambiguously defined language constructs which may be interpreted differently by different modellers,

3 Methods 1a, 1b, 1d, 1e, 1f, 1g and 1i may not be applicable for graphical modelling notations Used in rogrammers, code generators or compilers.
. 1b. 1d. 1e, 1. — Exclusion of language constructs which from experience easily lead to mistakes, for example assignments in conditions or
identical naming of local and global variables.
— Exclusion of language constructs which could result in unhandled run-time errors.

© _ Methods 1h and 1i reduce the potential for modelling data flow and control flow through jumps or global variables. lc¢ The objective of method 1c is to impose principles of sirong typing where these are not inherent in the language.

b Methods 1g and 1i are not applicable in assembler programming.

Strongly biased toward (imperative) programming languages!

© 2018 Rick Salay

What about ML-specific best practices?

ML has low maturity compared to traditional programming

Best practices are emerging
E.g. standardized methods for deep neural networks

© 2018 Rick Salay

Techniques

Best Practices
Verification
Testing

Fault Tolerance

Prevent faults

Find and repair faults

Live with faults

© 2018 Rick Salay

20

“V” Model of Software Development
Specification of software < Software Verification of software
safety requirements testing safety requirements
Desigmphase \ / &
verific tion (%3
Oc& Software architectural Software Software integration and 3
‘55 design testing testing .go’
ge) Desigh phase 7
g verﬁ‘ic‘gtion \ / =
> A
® . .
) Softvyare unit des_lgn and goftware Software unit testing
implementation testing

© 2018 Rick Salay

21

Techniques that are adaptable to ML

Table 9 — Meth?d

Adapt: Static analysis of trained models is feasible

/ e.g., NN property checking via SMT
1a |Walk-through? / ++ + o o
1b |Inspection? / + ++ ++ ++
1c | Semi-formal ve/ﬁcation + + ++ ++
1d |Formal verific/tion o o + +
1e | Control ﬂovyanalysisb': + ++ ++
1f | Data flow ‘nalysisbc + + ++ ++
|1_g Static code analysis + ++ 4+ ++
1h | Semantic code analysis? + + + +

© 2018 Rick Salay

23

Techniques directly applicable to ML

Table 10/ZM

components

Use: Black box testing can be done on ML

/ﬁethods

A B Cc D
1a |Requirements-based test? / ++ ++ T+ ++
1b |Interface test ++ ++ ++ ++
1c | Fault injection test? —+
1d | Resource usage test® ++
1e |Back-to-back comparison test between model and code, if applicable? ++ ++

© 2018 Rick Salay

24

Complete Specification Assumption

“V” model assumes that complete specifications exist and are

sufficiently detailed

— |
. Programmlng: |
Specifications
OGBS ; o No spegification,
DO - Training m only training dataset
SEOSB » Dataset always
Examples incomplete

/

© 2018 Rick Salay 25

Interpretability Assumption

Many verification and testing techniques require that the implementation be

human understandable (interpretable)

o Written by
Programming §
E d humans

Specifications
Cn@s .

- o X T i
WO — el m Not interpretable
0SB !

Examples /

© 2018 Rick Salay 26

Impact of specification and interpretability on verification and

testing techniques (unit level)
Mean (Std dev) across ASILs

Perfect score is 1.0

Verification Testing

Summary

« Specification Is important for verification and testing
* Interpretability is critical for verification

Not interpretable (0..01) (0.01)

© 2018 Rick Salay

28

Complete Specification Assumption

Is the complete specification assumption reasonable?
Not for advanced functionality: ADAS, ADS

Hard to specify: » Hard to specify:

Perception tasks > Y. " "N Planning tasks

=9 W in an open
e.g., What are complete K7 ah = environment
necessary and sufficient = B .
conditions to identify a
pedestrian?

© 2018 Rick Salay

29

Complete Specification Assumption

Is the complete specification assumption reasonable?
Not for advanced functionality: ADAS, ADS!

No specification => hard to direct a programmer

Conclusion: Machine Learning is preferred approach!

No specification => nothing to verify against!

© 2018 Rick Salay

30

Complete Specification Assumption : How to address?

Some specifications with ML components still possible: two kinds

Partial behavioural specifications Complete data specifications
(PBS) (DS)
Domain coverage requirements
Assumptions e.g., pedestrian equivalence
e.g. illumination > 15000 lux classes

Necessary/Sufficient conditions

e.g., pedestrian < 9 feet tall Risk profiling of inputs
Invariants, equivariants e.g. severity of misclassifying

e.g., classification is invariant to rotation different subclasses of objects

© 2018 Rick Salay

31

Where to Use Specifications

Select model type

\ 4

Collect dataset

Select model
hyper-parameters

A

Train model
(training dataset)

Unit design & implementation

Unit test

lterate to optimize

Test model

error rate

(testing dataset)

Iterate to optimize hyper-

Evaluate
generalization

parameters
for over-fitting

A

© 2018 Rick Salay

32

Where to Use Specifications

Unit design & implementation

Select model type

\ 4

Collect dataset

Select model
hyper-parameters

A

Train model
(training dataset)

Unit test

Select model type that implicitly satisfies
PBS

* e.g., CNN’s satisfying required

equwarlants
* Cohen T, M. Welling, 2016. “Group equivariant
convolutional networks.” In International Conference on
Machine Learning (pp. 2990-2999).

IZation

genera
y

parameters ‘

for over-fitting

© 2018 Rick Salay 33

Where to Use Specifications

Collect dataset

Select model
hyper-parameters

A

Train model
(training dataset)

lterate to optimize

E.g., Sivaraman, S., M. M. Trivedi. 2014. “Active learning for on-road vehicle
detection: A comparative study”. Machine vision and applications: 1-13.

est mode
(testing dataset)

error rate

Iterate to optimize hyper-

Evaluate
generalization

parameters
for over-fitting

A

© 2018 Rick Salay

34

Where to Use Specifications

Unit design & implementation Unit test

* Ensure dataset satisfies specs
« DS (e.g., all ped poses represented)
 PBS (e.g., all ped <= 9ft)
« Use PBS to augment dataset so that specs
OClICMiLEICI I NG are learned by model

Select model type

\ 4

* e.g., generate non-ped > 9ft
* e.g., use GANSs to generate invariant

Select model

vl examples
hyper-pa rameters Ite LiuM.Y,, T. Breuel, J. Kautz, 2017. “Unsupervised
Image-to-Image Translation Networks”. arXiv preprint
A arXiv:1703.00848
Train model

(training dataset)

© 2018 Rick Salay 35

Where to Use Specifications

Unit design & implementation Unit test

Select model type

v Incorporate PBS into loss function to
enalize models that violate them and guide
Collect dataset pena g
learning.
Select model €.g. _ |
Xu J., Z. Zhang, T. Friedman, Y. Liang, G.V. Broeck, 2017. “A
hyper-pa rameters 2l Semantic Loss Function for Deep Learning with Symbolic
Knowledge”. arXiv preprint arXiv:1711.11157.
Train model Vedaldi A., M. Blaschko, A. Zisserman, 2011. “Learning equivariant
- structured output SVM regressors.” In Computer Vision (ICCV),
(trammg dataset) IEEE International Conference on 2011 (pp. 959-966). IEEE.

© 2018 Rick Salay

36

Where to Use Specifications

Unit design & implementation

Select model type

Unit test

 Use test coverage metrics

designed forML NS
* E.g., Sun, Y., X. Huang, and D. Kroening. ize

Test model
(testing dataset)

"Testing Deep Neural Networks." arXiv preprint
arXiv:1803.04792 (2018).

« Use explanation techniques to

diagnose why tests pass or fail > hyper-

Evaluate
generalization
A

* Koopman, P. and M. Wagner. "Toward a
Framework for Highly Automated Vehicle
Safety Validation," SAE World Congress, g

2018. SAE-2018-01-1071.

© 2018 Rick Salay

37

Where to Use Specifications

Unit design & implementation Unit test

Select model type

\ 4

o) Fic-k-1am Verify trained model wrt PBS
- multiple techniques

Select model A Y S | Evaluate
hyper-parameters | Iterate to optirnize hyper- generalization
‘ paramzaters)
Train model for ove/-fitting

(training dataset)

© 2018 Rick Salay

38

Where to Use Specifications

Verification Techniques for ML

Requires interpretability — use interpretability enhancing
techniques discussed below

Methods

A B c D
1a |Walk-through? ++ + o o
1b |Inspection? + ++ ++ ++
1¢ | Semi-formal verification + + ++ ++
1d | Formal verification o o + +
1e | Control flow analysist© + + ++ ++
1f | Data flow analysisP© + + ++ ++
1g | Static code analysis + ++ . ++
1h | Semantic code analysis? + + + +

© 2018 Rick Salay

39

Where to Use Specifications

Verification Techniques for ML

Combine formal and non-formal techniques
e.g. falsification

» Dreossi, T., A. Donzé, and S.A. Seshia. "Compositional falsification of cyber-physical systems
with machine learning components.” In NASA Formal Methods Symposium, pp. 357-372.
Springer, Cham, 2017.

Methods

A B c D
1a |Walk-through? ++ + o o
1b |Inspection? + ++ ++ ++
1d o | o | + | +
1e | Control flow analysist© + ++ ++
1f | Data flow analysisP© + + ++ ++
1g | Static code analysis + ++ . ++
1h | Semantic code alnailysis“| + + + +

© 2018 Rick Salay

40

Where to Use Specifications

Verification Techniques for ML

Proof that model satisfies PBS

* Seshia, S.A., D. Sadigh, and S.S. Sastry. "Towards verified artificial intelligence." arXiv
preprint arXiv:1606.08514 (2016).

Proof of minimum adversarial attack radius

Methods

A B c D
1a |Walk-through? ++ + o o
1b |Inspection? + ++ ++ ++
1¢ | Semi-formal verification + + ++ ++
1d | Formal verification o o + +
1e | Control flow analysist© + ++ ++
1f | Data flow analysisP© + + ++ ++
1g | Static code analysis + ++ . ++
1h | Semantic code analysis? + + + +

© 2018 Rick Salay

Where to Use Specifications

Verification Techniques for ML

These are code-specific techniques.

Methods

A B c D
1a |Walk-through? ++ + o o
1b |Inspection? + ++ ++ ++
1¢ | Semi-formal verification + + ++ ++
1d | Formal verification o o + +
1e | Control flow analysist© + + ++ ++
1f | Data flow analysisP® + + ++ ++
1g | Static code analysis + ++ . ++
1h | Semantic code analysis? + + + +

© 2018 Rick Salay

42

Where to Use Specifications

Verification Techniques for ML

PBS property checking

E.g., Katz, G., C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. 2017. “Re-luplex: An
Efficient SMT Solver for Verifying Deep Neural Networks". arXiv preprint arXiv:1702.01135

Abstract Interpretation

E.g., Gehr, T., M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.
"Al2; Safety and robustness certification of neural networks with abstract interpretation.” In
Security and Privacy (SP), 2018 IEEE Symposium on. 2018.

1a |Walk-through? ++ + o o
1b |Inspection? + ++ ++ ++
1¢ | Semi-formal verification + + ++ ++
1d | Formal verification o o + +
1e | Control flow analysist© + ++ ++
1f | Data flow analysisP© + + ++ ++
P [U
1h | Semantic code analysis? + + + +

© 2018 Rick Salay

43

Where to Use Specifications

Verification Techniques for ML

Translate the model to another semantically equivalent
representation for which analysis tools exist

« E.g., Weiss, G., Y. Goldberg, and E. Yahav. "Extracting Automata from Recurrent Neural
Networks Using Queries and Counterexamples." arXiv preprint arXiv:1711.09576 (2017).

Methods
A B c D
1a |Walk-through? ++ + o o
1b |Inspection? + ++ ++ ++
1¢ | Semi-formal verification + + ++ ++
1d | Formal verification o o + +
1e | Control flow analysist© + ++ ++
1f | Data flow analysisP© + + ++ ++
1g | Static code analysis + ++ . ++
1h | Semantic code analysis? + + + + /

© 2018 Rick Salay 44

Interpretability Assumption

More powerful ML model => Less

Interpretable
Naive Decision Bayesian Random Support Deep
Bayes Tree Network Decision Vector Neural
ForeSt hidden 1 Mhadghllne hdleetwork

input layer

© 2018 Rick Salay

45

Interpretability Assumption : How to address?

Require use of interpretable models

or, provide justification why not (safety case)
and use interpretability increasing techniques

Model Visualization Dependency Analysis

Rule Extraction Natural Language

DARPA XAl

Saliency Maps

© 2018 Rick Salay

46

Interpretability Increasing Technigues

Global visualization: t-SNE*
through dimensionality

reduction Y MNIST in 2D
; .: :
t-SNE i i
(t-distributed Y I B
Stochastic " 6
Neighbor
Embedding)

* Maaten, L. van der, and G. Hinton. "Visualizing data using t-SNE." Journal of
machine learning research no. 9, Nov (2008): 2579-2605. /

© 2018 Rick Salay 47

Q—ONM™X U fry >
O~ >N\D ~D g
O~ >N A~ <
V=N FTF o~
Q~NOTWS thee o
Q—cxMI PO NN T
C=NAOT b o
Q= MmITWVS Cw J
O —CFm T NS oo g
O~ T WO - X
Q[T VY N0
Q—-— (oINS oo oy
Q= mm>'\-O Mo
D— (M J D] Do
O —% I 09 -
D— 1T owNDOT
O=—=cdeNTnS g O~
O~ mMmIPNw N s
O~ TPO NG &

MNIST *
data set

* http://yann.lecun.com/exdb/mnist/

48

© 2018 Rick Salay

Interpretability Increasing Technigues

Global visualization: Activation Maximization

data: MNIST
Layer 1 Layer 2

* Erhan, Dumitru, Yoshua Bengio, Aaron Courville, and Pascal Vincent. "Visualizing
higher-layer features of a deep network." University of Montreal 1341, no. 3 (2009): 1.

© 2018 Rick Salay

49

Interpretability Increasing Technigues

Global feature importance

data: MNIST

0 5 10 15 20 _25
https://www.kaggle.com/c/digit-recognizer/discussion/70350

© 2018 Rick Salay

Interpretability In

creasing Techniques

Local explanation: Occlusion map

data: MNIST

Image

Image

cnitical parts super-imposed

critical parts super-imposed

© 2018 Rick Salay 51

Techniques

Summary
« Key assumptions are not met by ML: complete specification and

Interpretability
« However, research is active in these areas to address the
shortfall

© 2018 Rick Salay

Techniques

Best Practices Prevent faults

: Find and repair faults
Testing

Fault Tolerance Live with faults

© 2018 Rick Salay

54

Fault Tolerance

Can use as-is for ML

Fault tolerance strategies are architecture-level and can be

component implementation agnostic

But error detection/handling should use programming!

© 2018 Rick Salay

55

Some ML-oriented Fault Tolerance Methods

Ensemble methods
Use multiple classifiers and aggregate their results

Safety envelope
Use ML components only within safe contexts — e.g. to choose among a set of safe actions

Simplex architecture
Monitor when ML component is unreliable and switch to a reliable (but usually conservative)
non-ML component — requires “uncertainty” check on ML component

Runtime verification + Fail Safety
Monitor PBS satisfaction and go to fail safe behaviour if PBS is violated at run-time

© 2018 Rick Salay 56

Summary
Q: How well do ISO 26262 SW recommendations fit ML?

Best Practices | Prevent faults N/A — but ML best practices will
emerge (unclear of impact)

Verification : o
Find and Adapt/Use — if specification and

- : repair faults interpretability problems are
addressed (research is active)
Fault Live with Use — Fault tolerance techniques
Tolerance faults can be used directly /

© 2018 Rick Salay 57

What about planning & control?

ADS

Sensing

>

Perception

World model

>

Planning &
control

Actuation

Main type of ML in actuation/control: Reinforcement Learning (RL)

 learn an optimal control policy by training with simulation + reward
function

» exploration/exploitation trade-off
* leaning could be on-line as well
Some unique safety issues:
* e.g., reward function does not incorporate (safety) risk

* e.g., model learns to “game” the reward function

« See: Amodei, D., C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D.
Mane. 2016. “Concrete problems in Al safety". arXiv preprint arXiv:1606.06565 .

© 2018 Rick Salay 59

Safety through (Measurement) Uncertainty-Reduction

Managing Perceptual Uncertainty in ML

ADS
Sensing World model anni Actuation
»| Perception > Planning & »
control
OoDD Guaranteed Guaranteed
assumptions perception planning &
performance control

Actuator + ODD performance
Assumptions

The following slides are based on Krzysztof Czarnecki and Rick Salay.

Towards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving.
In WAISE, Vasteras, Sweden, 2018

https://uwaterloo.ca/wise-lab/publications/towards-framework-manage-perceptual-uncertainty-safe

Guide to the Expression of Uncertainty in
Measurement (GUM)

* True accuracy unknowable 150]1EC
— Accuracy in ML wrt. test set only GUIDE 98-3

* Must estimate uncertainty

Uncertainty of measurement —

Part 3

Guide to the expression of
uncertainty in measuramant
(GUM:19935)

Sample Scenario-Dependent
Perception-Performance
Safety-Requirement Spec

Detection range

Stopping|
buffer °

Stopping sight distance

Detect pedestrians on the roadway

within range of 10 m and with maximum perception-reaction delay of 0.5 s
with missed detection probability of 10 or less

with localization uncertainty of + 0.5 m or better

within ODD conditions

Perception Triangle (Instance-Level)

Real-world situation

Sensory
channel

True state
(unknowable)

Pedestrian
. speed =0 Perception
Pedestrian activity = Camera
spgef:l =0 standing image,
activity = 4 radar
standing #: Pedestrian Perception data
speed = 0.1 i
algorithm
Accuracy activity = &
walking

Set of credible states
(uncertain)

64

Perceptual Triangle

Real-world situati

True state
(unknowable)

Pedestrian
speed =0

Pedestrian

speed =0 activity'z
activity =
standin Pedestrian
speed = 0.1
Accuracy activity =
walking

Set of credible states
(uncertain)

on

Perception
algorithm

Instance-level

Sensory
channel

Camera
image,
radar
data

Real-world situations

Sensory
channel

Semantics

Perception
concept % Sensory
Data data

interpretation

Domain-level (generic)

65

Perceptual Triangle When Using Supervised ML

Development Operation
Development Operational
situations and situations and

scenarios scenarios

Partial
semantics
(examples)

Sensory
channel

Sensory Resulting y
channel perception y

Training Y. Inference
& testing J
Concept & Sensory concept % Sensory
ata data A nferred data
labeling state

-Trained -
Mode 17 <
class selection,

training & testing

Factors Influencing Uncertainty

Development

Development
situations and
scenarios

Partial

' Sensory
semantics channel
(examples)

Training
& testing
Sensory
Concept
P ata data
labeling
Model

class selection,
training & testing

Operation

Operational
situations and
scenarios

Resulting V4
perception Vs

Sensory
channel

Y. Inference

~

" Inferred

U
g

Sensory
Concept ﬁ
P data

*
*
*
.
.
.
.
.
.
“"
.
Y
.
set®

67

F1: Conceptual Uncertainty

Development

Development
situations and
scenarios

Partial

' Sensory
semantics channel
(examples)

@ Training
& testing
Sensory
Concept
P ata data
labeling
Model

class selection,
training & testing

Operation

Operational
situations and
scenarios

Resulting V4
perception /2

Sensory
channel

Y. Inference

~

" Inferred

U
g

Sensory
Concept %
P data

*
*
*
.
.
.
.
.
.
“"
.
Y
.
set®

68

F1: Conceptual Uncertainty
Pedestrian or Cyclist?

T

69

F1: Conceptual Uncertainty

* Assessed by expert review or labeling disagreement

* Reduced by developing standard ontologies
— E.g., WISE Drive Ontology

Environmental JX- oy
20z O e ﬁ

conditions N o

Road users Animals
W

. R o e i W 17
oo K — 0SS ‘/‘ @

i
S S /A\ 233 ?un —||I:

https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving

F2: Development Scenario Coverage

Development

Development
situations and

scenarios
Partial @ Sensory
semantics channel
(examples)
@ Training
& testing
Sensory
Concept
P ata data
labeling
Model

class selection,
training & testing

Operation

Operational
situations and
scenarios

Resulting V4
perception /2

Sensory
channel

Y. Inference

~

' Inferred

Sensory
Concept %
P data

*
*
*
.
.
.
.
.
.
“"
.
Y
.
set®

71

F2: Development Scenario Coverage

72

F2: Development Scenario Coverage

» Assessed with respect to ontologies and field validation targets
* Must include positive/negative and near-hit/near-miss examples

Environmental :6«_ o
conditions e hAA

2.

sssssss Animals

kcﬁommﬂh o -
k. -—/f@@b)ml@

Traffic

hbsl
ructured)

Road
structure

S A

2Aa®
ove

[1]1} —I r

* Challenge: how much data is enough?

Synthetic data sets

Angus et al. Unlimited Road-scene Synthetic Annotation (URSA) Dataset, ITCS'18

https://uwaterloo.ca/wise-lab/ursa

74

https://uwaterloo.ca/wise-lab/ursa

Active Learning

Data selection criteria
1. Uncertainty

N

Coverage & diversity
Collection & labeling cost

> W

Risk profile

F3: Scene Uncertainty

Development

Development
situations and
scenarios

Partial @ @ Sensory

semantics channel
(examples)
@ Training
& testing
Sensory
C t
oncep ata data
labeling
Model

class selection,
training & testing

Operation

Operational
situations and
scenarios

Resulting V4
perception /2

Sensory
channel

Y. Inference

~

" Inferred

U
g

Canept % Sensory
data

*
*
*
.
.
.
.
.
.
“"
.
Y
.
set®

76

F3: Scene Uncertainty

77

F3: Scene Uncertainty

* Su rrogate measures

— range, scale, occlusion level, atmospheric visibility, illumination,
clutter and crowding level

* May compare test set accuracy and output confidence with
these measures

* Also part of development data set coverage

F4: Sensor Properties

Development

Development
situations and
scenarios

Partial @ @ Sensory

semantics channel
(examples)
@ Training
& testing
Sensory
C t
oncep ata data
labeling
Model

class selection,
training & testing

Operation

Operational
situations and
scenarios

Resulting V4
perception /2

Sensory
channel

Y. Inference

~

" Inferred

U
g

Canept % Sensory
data

*
*
*
.
.
.
.
.
.
“"
.
Y
.
set®

79

F4: Sensor Properties

=
Daylight White Balance

i

Shade White Balance

80

F4: Sensor Properties

* Mature engineering discipline
— Determining sensor properties to capture sufficient information
— Mode, range, resolution, sensitivity, placement, etc.

* However, interaction between ML algorithms and sensor
properties must be assessed

— E.g., how effective is ML is ignoring sensor noise or artifacts?

F5: Label Uncertainty

Development

Development
situations and
scenarios

Partial @ @ Sensory

semantics channel
(examples)
@ Training
& testing
Sensory
C t
oncep ata data
labeling
Model

class selection,
training & testing

Operation

Operational
situations and
scenarios

Resulting V4
perception Vs

Sensory
channel

Y. Inference

~

" Inferred

U
g

Canept % Sensory
data

*
*
*
.
.
.
.
.
.
“"
.
Y
.
set®

82

F5: Label Uncertainty

—rr

Class: cyclist vs. pedestrian

3D bounding box placement is challenging

83

F5: Label Uncertainty

* Assessed by expert review and labeler disagreement

— Existing research on determining number of labelers in crowd
sourcing

— E.g., may need as many as 6 independent votes

 Reduction measures
— Conceptual clarity (F1)

— Quality control
 Clear instructions, training, verification, etc.
* Bread and butter of labeling companies

F6: Model Uncertainty

Development

Development
situations and
scenarios

Partial @ @ Sensory

semantics channel
(examples)
@ Training
& testing
Sensory
C t
oncep ata data
labeling
Model

class selection,
training & testing

Operation

Operational
situations and
scenarios

Resulting V4
perception /2

Sensory
channel

Y. Inference

~

" Inferred

U
g

Sensory
Concept %
P data

*
*
*
.
.
.
.
.
.
“"
.
Y
.
set®

85

F6: Model Uncertainty

Nl 2
LI |
OO0000

What model was learned in training?
What decisions will it make in operation?

86

F6: Model Uncertainty

1. Explanation methods help validate features
2. Robustness measures help assess risk of misclassification
3. Bayesian deep learning can help assess model uncertainty

Deep Learning and Explanations

Passenger car

The explanation
shows

that a tree
contributed

to the classification
decision

(method: LIME)

The top 15 features (superpixels) used to classify corresponding input image
as a car by an Inception network trained on ImageNet

(see LIME at https://github.com/marcotcr/lime)

88

Evtimov et al.

Adversarial Stickers

Misclassified as speed signs

G

IR

89

Robustness Measures

Ostrich shoe shop vacuum | -~
~ e
l’ /’ ’ - - - -
n vy 7 A = Minimum distortion
X0 Xq Xa' .
| Certified robustness
adversarial o~ ‘
example “ _ within the grey region

\ -
siversartel \ Decision boundary 3
example \/ P ~\~ _ - .
X, kg P ~ N —
- Decision boundary 2 N
Decision boundary 1 L, space

CLEVER approach by IBM 90

Aleatoric and Epistemic Uncertainty

(a) Input Image (b) Ground Truth (c) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Yarin Gal, et al., https://arxiv.org/abs/1703.04977

91

Dropout

O
NANY,

.;'Q\u‘-r"?.
X
L e

@
Y 0 %

.;‘ —310.0' v /
DAL ORALKS
IXIRD ‘\ OV
/‘wsn X400

A

.\eﬁ {"‘4—.
ANV
& /0 /.

(b) After applying dropout.

Standard Neural Net

" i,
<
N

92

Methods for Confidence Estimation

Model uncertainty using MC
Dropout

Data uncertainty using
heteroschedastic regression

Confidence calibration

Ground truth

Phan, Salay, Czarnecki, Abdelzad, Denouden, Venekar. Predicted mean box
Calibrating Uncertainties in Object Localization Task. 0 _
NIPS workshop. 2018, https://arxiv.org/abs/1811.11210 95% confidence band o

F7: Operational Domain Uncertainty

Development Operation
Development Operational
situations and Domain Shift@ situations and

scenarios scenarios

Partia'l @ @ Sensory Resulting ¢ Sensory
semantics channel perception ¢ channel
(examples)

/
®) Training » Inference
& testing 3

Sensor
ata data * Inferred data
labeling state

-Trained -
Mode 17 <
class selection,

training & testing 94

F7: Operational Domain Uncertainty

Fly splatters on LIDAR

New type of car shap Camera miscalibration

95

F7: Operational Domain Uncertainty

» Assess situation novelty at operation time

— E.g., autoencoders, partial specs

* Assess impact of level of sensor miscalibration on perceptual
uncertainty

* Monitor sensor parameters and ODD

Sample Incorrect Detections

Car
0.30, 0:000

97

Thank you

Questions?

