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Abstract
Producing specifications by dynamic (runtime) analysis of program
executions is potentially unsound, because the analyzed executions
may not fully characterize all possible executions of the program.
In practice, how accurate are the results of a dynamic analysis?
This paper describes the results of an investigation into this ques-
tion, determining how much specifications generalized from pro-
gram runs must be changed in order to be verified by a static checker.
Surprisingly, small test suites captured nearly all program behavior
required by a specific type of static checking; the static checker
guaranteed that the implementations satisfy the generated specifi-
cations, and ensured the absence of runtime exceptions. Measured
against this verification task, the generated specifications scored
over 90% on precision, a measure of soundness, and on recall, a
measure of completeness.

This is a positive result for testing, because it suggests that dy-
namic analyses can capture all semantic information of interest
for certain applications. The experimental results demonstrate that
a specific technique, dynamic invariant detection, is effective at
generating consistent, sufficient specifications for use by a static
checker. Finally, the research shows that combining static and dy-
namic analyses over program specifications has benefits for users
of each technique, guaranteeing soundness of the dynamic analysis
and lessening the annotation burden for users of the static analysis.

1. Introduction
This paper investigates combining dynamic and static analyses

for the task of recovering formal program specifications. The pa-
per evaluates the accuracy of a dynamic analysis by measuring the
static verifiability of its result. The accuracy of a dynamic analy-
sis is of interest because its accuracy affects its utility. Recovering
specifications is a valuable goal because specifications are useful
in testing, debugging, verification, maintenance, and optimization,
among other tasks, but are frequently absent from programs, de-
priving software engineers of their benefits.

Dynamic (runtime) analysis obtains information from program
executions; examples include profiling and testing. Rather than
modeling the state of the program, dynamic analysis uses actual

values computed during program executions. Dynamic analysis
can be efficient and precise, but the results may not generalize
to future program executions. This potential unsoundness makes
dynamic analysis inappropriate for certain uses, and it may make
users reluctant to depend on the results even in other contexts be-
cause of uncertainty as to their reliability.

By contrast, static analysis operates by examining program source
code and reasoning about possible executions. It builds a model
of the state of the program, such as possible values for variables.
Static analysis can be conservative and sound, and it is theoreti-
cally complete [CC77]. However, it can be inefficient, can produce
weak results, and (as in the case of theorem-proving or program
verification) can require explicit goals or annotations. Selecting a
goal and annotating programs for input to a static checker can be
difficult and tedious.

Combining these techniques overcomes the weaknesses of each:
dynamically detected invariants can annotate a program or pro-
vide goals for static verification (easing tedious annotation), and
static verification can confirm properties proposed by a dynamic
tool (mitigating its unsoundness). Using the combined system is
much better than relying on only one of the tools, or performing
error-prone hand analysis.

We evaluate the effectiveness of the combined analysis by mea-
suring how much dynamically generated specifications must be
changed in order to be verified by a static checker. The static
checker both guarantees that the implementation satisfies the gen-
erated specification and ensures the absence of runtime exceptions.
(No checker can assess how well the specifications reflect program-
mer intent.) Measured against this verification requirement, the
generated specifications scored over 90% on precision, a measure
of soundness, and on recall, a measure of completeness.

Our results demonstrate that non-trivial and useful aspects of
program semantics are present in test executions, as measured by
verifiability of generated specifications. Our results also demon-
strate that the technique of dynamic invariant detection is effective
in capturing this information, and that the results are effective for
the task of verifying absence of runtime errors. Furthermore, even
imperfect specifications can be of use. For instance, current sys-
tems have trouble postulating verification goals. Users may find
starting from partial or nearly-true specifications easier for various
tasks, including program verification, than starting from no specifi-
cations at all.

1.1 Approach
We used formal program specifications to investigate the rela-

tionship between dynamically and statically available information
about a program, and the accuracy of the former. Our approach is
to extract specifications from program runs [Ern00, ECGN01] and
determine whether they are sufficient for machine verifiability of
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Figure 1: Generation and checking of program specifications re-
sults in a specification together with a proof of its consistency with
the code. Our generator is the Daikon invariant detector, and our
checker is the ESC/Java static checker.

the absence of runtime errors.
A (formal) specification is a precise description of a program’s

behavior. (Appendix A discusses alternate definitions.) Specifica-
tions often state properties of data structures, such as object invari-
ants, or relate variable values in the pre-state (before a procedure
call) to their post-state values (after a procedure call).

A specification for a procedure that records its maximum argu-
ment in variablemaxmight include

if arg > maxthenmax′ = arg elsemax′ = max

wheremaxrepresents the value at the time the procedure is invoked
andmax′ represents the value of the variable when the procedure
returns. A typical specification contains many clauses, some of
them simple mathematical statements and others involving post-
state values or implications. The clauses are conjoined to produce
the full specification. These specification clauses are often called
invariants. There is no single best specification for a program; dif-
ferent specifications include more or fewer clauses and assist in
different tasks. Likewise, there is no single correct specification for
a program; correctness must be measured relative to some standard,
such as the designer’s intent, or task, such as program verification.

Our generated specifications consist of program invariants. These
specifications are partial: they describe and constrain behavior but
do not provide a full input–output mapping. The specifications are
also unsound: as described in Section 2.1, the properties are likely,
but not guaranteed, to hold. Finally, the specifications describe the
program’s actual behavior, which may vary from the programmer’s
intended behavior.

These aspects of the generated specification suggest certain uses
while limiting others. Our research shows that the specification is
useful in verifying the lack of runtime exceptions. In contrast, us-
ing it as a template for automatic test case generation might add
little value, since the specification already reflects the program’s
behavior over a test suite. If the program is correct or nearly so,
the generated specification is near to the intended behavior, and
can be corrected to reflect the programmer’s intent. Likewise, the
generated specification can be corrected to be verifiable by a static
checker, guaranteeing the absence of certain errors and adding con-
fidence to future maintenance tasks.

Users need not mimic our evaluation strategy by statically veri-
fying generated specifications: even uncorrected specifications can
be useful. Generated specifications are useful for program refac-
toring [KEGN01], theorem proving [NWE02], test suite genera-
tion [Har02], and anomaly and bug detection [ECGN01, RKS02,
HL02, Dod02]. In many of these tasks, the accuracy of the gener-
ated specification (the degree to which it matches the code) affects
the effort involved in performing the task. This paper evaluates
the accuracy of the specifications, with respect to verification by
ESC/Java.

To evaluate the accuracy of the generated specifications, we have
integrated a dynamic invariant detector, Daikon [Ern00, ECGN01],
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Figure 2: An overview of dynamic detection of invariants as imple-
mented by the Daikon invariant detector.

with a static verifier, ESC/Java [DLNS98, LNS00], resulting in a
system that produces machine verifiable specifications (see Fig-
ure 1). Our system operates in three steps [NE01]. First, it runs
Daikon, which outputs a list of likely invariants obtained from run-
ning the target program over a test suite. (We use the term “test
suite” for any inputs over which executions are analyzed; those in-
puts need not satisfy any particular properties regarding code cov-
erage or fault detection.) Second, it inserts the likely invariants
into the target program as annotations. Third, it runs ESC/Java on
the annotated target program to report which of the likely invari-
ants can be statically verified and which cannot. All three steps are
completely automatic, but users may improve results by editing and
re-running test suites, or by adding or removing specific program
annotations by hand.

The remainder of this paper is organized as follows. Section 2
provides background on the dynamic specification generator and
the static verifier used by our system. Section 3 presents method-
ology for several experiments, and Section 4 presents their results.
Section 5 notes challenges that arose while building and running
our system. Section 6 discusses lessons learned from the experi-
ments. Finally, Section 7 relates our research to previous work, and
Section 8 concludes.

2. Background
This section briefly describes dynamic detection of program in-

variants, as performed by the Daikon tool, and static checking of
program annotations, as performed by the ESC/Java tool. Full de-
tails about the techniques and tools appear elsewhere.

2.1 Daikon: Specification generation
Dynamic invariant detection [Ern00, ECGN01] discovers likely

invariants from program executions by instrumenting the target pro-
gram to trace the variables of interest, running the instrumented
program over a test suite, and inferring invariants over the instru-
mented values (Figure 2). The inference step tests a set of possible
invariants against the values captured from the instrumented vari-
ables; those invariants that are tested to a sufficient degree without
falsification are reported to the programmer. As with other dynamic
approaches such as testing and profiling, the accuracy of the in-
ferred invariants depends in part on the quality and completeness
of the test cases. The Daikon invariant detector is language in-
dependent, and currently includes instrumenters for C, Java, and
IOA [GLV97].

Daikon detects invariants at specific program points such as pro-
cedure entries and exits; each program point is treated indepen-
dently. The invariant detector is provided with a variable trace that
contains, for each execution of a program point, the values of all
variables in scope at that point. Each of a set of possible invariants
is tested against various combinations of one, two, or three traced
variables.

For scalar variablesx, y, andz, and computed constantsa, b,
andc, some examples of checked invariants are: equality with a
constant (x = a) or a small set of constants (x ∈ {a,b,c}), lying in



Program size Number of invariants Accuracy
Program LOC NCNB Meth. Verif. Unver. Miss. Prec. Recall Description
FixedSizeSet 76 28 6 16 0 0 1.00 1.00 set represented by a bitvector
DisjSets 75 29 4 32 0 0 1.00 1.00 disjoint sets supporting union, find
StackAr 114 50 8 25 0 0 1.00 1.00 stack represented by an array
QueueAr 116 56 7 42 0 13 1.00 0.76 queue represented by an array
Graph 180 99 17 15 0 2 1.00 0.88 generic graph data structure
GeoSegment 269 116 16 38 0 0 1.00 1.00 pair of points on the earth
RatNum 276 139 19 25 2 1 0.93 0.96 rational number
StreetNumberSet 303 201 13 22 7 1 0.76 0.96 collection of numeric ranges
Vector 536 202 28 100 2 2 0.98 0.98 java.util.Vector growable array
RatPoly 853 498 42 70 10 1 0.88 0.99 polynomial over rational numbers
MapQuick 2088 1031 113 145 3 35 0.98 0.81 driving directions query processor
Total 4886 2449 273 530 24 55 0.96 0.91

Figure 3: Summary of invariants detected by Daikon and verified by ESC/Java. “LOC” is the total lines of code. “NCNB” is the non-
comment, non-blank lines of code. “Meth” is the number of methods. “Verif” is the number of reported invariants that ESC/Java verified.
“Unver” is the number of reported invariants that ESC/Java failed to verify. “Miss” is the number of invariants not reported by Daikon but
required by ESC/Java for verification. “Prec” is the precision of the reported invariants, the ratio of verifiable to verifiable plus unverifiable
invariants. “Recall” is the recall of the reported invariants, the ratio of verifiable to verifiable plus missing.

a range (a ≤ x ≤ b), non-zero, modulus (x ≡ a (mod b)), linear
relationships (z = ax + by + c), ordering (x ≤ y), and functions
(y = fn(x)). Invariants involving a sequence variable (such as an
array or linked list) include minimum and maximum sequence val-
ues, lexicographical ordering, element ordering, invariants holding
for all elements in the sequence, or membership (x ∈ y). Given two
sequences, some example checked invariants are elementwise lin-
ear relationship, lexicographic comparison, and subsequence rela-
tionship. Finally, Daikon can detect implications such as “if p 6=null
then p.value > x” and disjunctions such as “p.value > limit or
p.left ∈ mytree”. In this paper, we ignore those invariants that are
inexpressible in ESC/Java’s input language; for example, many of
the sequence invariants are ignored.

For each variable or tuple of variables in scope at a given pro-
gram point, each potential invariant is tested. Each potential unary
invariant is checked for all variables, each potential binary invari-
ant is checked over all pairs of variables, and so forth. A potential
invariant is checked by examining each sample (i.e., tuple of val-
ues for the variables being tested) in turn. As soon as a sample not
satisfying the invariant is encountered, that invariant is known not
to hold and is not checked for any subsequent samples. Because
false invariants tend to be falsified quickly, the cost of detecting
invariants tends to be proportional to the number of invariants dis-
covered. All the invariants are inexpensive to test and do not require
full-fledged theorem-proving.

An invariant is reported only if there is adequate statistical ev-
idence for it. In particular, if there are an inadequate number of
observations, observed patterns may be mere coincidence. Conse-
quently, for each detected invariant, Daikon computes the probabil-
ity that such a property would appear by chance in a random set of
samples. The property is reported only if its probability is smaller
than a user-defined confidence parameter [ECGN00].

The Daikon invariant detector is available fromhttp://pag.
lcs.mit.edu/daikon/ .

2.2 ESC: Static checking
ESC [Det96, DLNS98, LN98], the Extended Static Checker, has

been implemented for Modula-3 and Java. It statically detects com-
mon errors that are usually not detected until run time, such as null
dereference errors, array bounds errors, and type cast errors.

ESC is intermediate in both power and ease of use between type-
checkers and theorem-provers, but it aims to be more like the for-
mer and is lightweight by comparison with the latter. Rather than

proving complete program correctness, ESC detects only certain
types of errors. Programmers must write program annotations,
many of which are similar in flavor toassert statements, but
they need not interact with the checker as it processes the anno-
tated program. ESC issues warnings about annotations that cannot
be verified and about potential run-time errors.

ESC performs modular checking: it checks different parts of a
program independently and can check partial programs or modules.
It assumes that specifications supplied for missing or unchecked
components are correct. ESC’s implementation uses a theorem-
prover internally. We will not discuss ESC’s checking strategy in
more detail because this research treats ESC as a black box. (It is
distributed in binary form.)

ESC/Java is a successor to ESC/Modula-3. ESC/Java’s anno-
tation language (see Section 5.5) is simpler, because it is slightly
weaker. This is in keeping with the philosophy of a tool that is easy
to use and useful to programmers rather than one that is extraordi-
narily powerful but so difficult to use that programmers shy away
from it.

ESC/Java is not sound; for instance, it does not model arithmetic
overflow or track aliasing, it assumes loops are executed 0 or 1
times, and it permits the user to supply (unverified) assumptions.
However, ESC/Java provides a good approximation to soundness:
it issues false warnings relatively infrequently, and successful veri-
fication increases confidence in a piece of code. (Essentially every
verification process over programs contains an unsound step, but it
is sometimes hidden in a step performed by a human being, such as
model creation.)

This paper uses ESC/Java not only as a lightweight technol-
ogy for detecting a restricted class of runtime errors, but also as
a tool for verifying representation invariants and method specifi-
cations. We chose to use ESC/Java because we are not aware of
other equally capable technology for statically checking properties
of runnable code. Whereas many other verifiers operate over non-
executable specifications or models, our research aims to compare
and combine dynamic and static techniques over the same code ar-
tifact.

Both versions of ESC are publicly available fromhttp://
research.compaq.com/SRC/esc/ .

3. Methodology
We analyzed the programs listed in Figure 3.DisjSets ,

StackAr , and QueueAr come from a data structures text-



Original Test Suite Augmented Test Suite
Size Size Coverage Time Size Coverage Time

Program NCNB NCNB Calls Stmt Branch Instr Daikon +NCNB Calls Stmt Branch Instr Daikon
FixedSizeSet 28 0 0 0.00 0.00 0 0 39 12k 1.00 1.00 2 10
DisjSets 29 27 745 0.67 0.70 1 6 15 12k 1.00 0.90 3 18
StackAr 50 11 72 0.60 0.56 0 3 39 1k 0.64 0.63 0 4
QueueAr 56 11 52 0.68 0.65 0 12 54 8k 0.71 0.71 1 11
Graph 99 Sys 3k 0.76 0.54 1 3 1 3k 0.76 0.54 1 3
GeoSegment 116 Sys 695k 0.89 0.75 138 455 0 695k 0.89 0.75 138 455
RatNum 139 Sys 58k 0.96 0.94 7 28 39 114k 0.96 0.94 14 56
StreetNumberSet 201 165 50k 0.95 0.93 7 29 151 197k 0.95 0.95 12 44
Vector 202 0 0 0.00 0.00 0 0 190 22k 0.90 0.90 7 37
RatPoly 498 382 88k 0.94 0.89 27 98 51 102k 0.96 0.92 38 139
MapQuick 1031 445 3.31M 0.66 0.61 660 1759 49 3.37M 0.67 0.71 673 1704

Figure 4: Characterization of test suites. “NCNB” is non-comment, non-blank lines of code in the program or its original, accompanying
test suite; in this column “Sys” indicates a system test: one that is not focused on the specified program, but tests a higher-level system that
contains the program (see Section 5.2). “+NCNB” is the number of lines added to yield the results described in Section 4. “Calls” is the
dynamic number of method calls received by the program under test (from the test suite or internally). “Stmt” and “Branch” indicate the
statement and branch coverage of the test suite. “Instr” is the runtime of the instrumented program. “Daikon” is the runtime of the Daikon
invariant detector. Times are wall-clock measurements, in seconds.

book [Wei99];Vector is part of the Java standard library; and the
remaining seven programs are solutions to assignments in a pro-
gramming course at MIT.

As described in Section 1.1, our system runs Daikon and inserts
its output into the target program as ESC/Java annotations.

We measured how different the reported invariants are from a
set of annotations that enables ESC/Java to verify that no run-time
errors occur (while ESC/Java also verifies the annotations them-
selves). There are potentially many sets of ESC/Java-verifiable an-
notations for a given program. In order to perform an evaluation,
we must choose one of them as a goal.

There is no one “correct” or “best” specification for a program:
different specifications support different tasks. For instance, one
set of ESC/Java annotations might ensure that no run-time errors
occur, while another set might ensure that a representation invariant
is maintained, and yet another set might guarantee correctness with
respect to externally imposed requirements.

We chose as our goal task verifying the absence of run-time er-
rors. Among the sets of invariants that enable ESC/Java to prove
that condition, we selected as our goal set the one that required the
smallest number of changes to the Daikon output. The distance to
this goal set is a measure of the minimal (and the expected) effort
needed to verify the program with ESC/Java, starting from a set of
invariants detected by Daikon. Our choice is a measure of how dif-
ferent the reported invariants are from a set that is both consistent
and sufficient for ESC/Java’s checking — an objective measure of
the program semantics captured by Daikon from the executions.

Given the set of invariants reported by Daikon and the changes
necessary for verification, we counted the number of reported and
verified invariants (the “Verif” column of Figure 3), reported but
unverifiable invariants (the “Unver” column), and unreported, but
necessary, invariants (the “Miss” column). We computed precision
and recall, standard measures from information retrieval [Sal68,
vR79], based on these three numbers. Precision, a measure of
soundness, is defined as Verif

Verif+Unver. Recall, a measure of complete-

ness, is defined as Verif
Verif+Miss. For example, if Daikon reported 6

invariants (4 verifiable and 2 other unverifiable), while the verified
set contained 5 invariants (the 4 reported by Daikon plus 1 added
by hand), the precision would be 0.67 and the recall would be 0.80.

We determined by hand how many of Daikon’s invariants were
redundant because they were logically implied by other invariants.
Users would not need to remove the redundant invariants in order

to use the tool, but we removed all of these invariants from con-
sideration (and they appear in none of our measurements), for two
reasons. First, Daikon attempts to avoid reporting redundant in-
variants, but its tests are not perfect; these results indicate what an
improved tool could achieve. More importantly, almost all redun-
dant invariants were verifiable, so including redundant invariants
would have inflated our results.

3.1 Test suites
Figure 4 shows relative sizes of the test suites and programs used

in this experiment. Test suites for the smaller programs were larger
in comparison to the code size, but no test suite was unreasonably
sized.

All of the programs exceptVector andFixedSizeSet came
with test suites, from the textbook or that were used for grading. We
wrote our own test suites forVector andFixedSizeSet . The
textbook test suites are more properly characterized as examples of
calling code; they contained just a few calls per method and did not
exercise the program’s full functionality. We extended the deficient
test suites, an easy task (see Section 5.2) and one that would be less
necessary for programs with realistic test suites.

We generated all but one test suite or augmentation in less than
30 minutes.MapQuick ’s augmentation took 3 hours due to a 1
hour round-trip time to evaluate changes. We found that examining
Daikon’s output greatly eased this task.

4. Experiments
This section gives quantitative and qualitative experimental re-

sults. The results demonstrate that the dynamically inferred speci-
fications are often precise and complete enough to be machine ver-
ifiable.

Section 4.1 summarizes our experiments, while Sections 4.2
through 4.4 discuss three example programs in detail to charac-
terize the generated specifications and provide an intuition about
the output of our system. Section 5 summarizes the problems the
system may encounter.

4.1 Summary
We performed eleven experiments, as shown in Figure 3. As de-

scribed in Section 3, Daikon’s output is inserted into the target pro-
gram as annotations, which are edited (if necessary) until the result
verifies. When the program verifies, the implementation meets the



generated and edited specification, and runtime errors are guaran-
teed to be absent.

In programs of up to 1031 non-comment non-blank lines of code,
the overall precision (a measure of soundness) and recall (a mea-
sure of completeness) were 0.96 and 0.91, respectively. Later sec-
tions describe specific problems that lead to unverifiable or missing
invariants, but we summarize the imperfections here.

Most unverifiable invariants correctly described the program, but
could not be proved due to limitations of ESC/Java. Some limita-
tions were by design, while others appeared to be bugs in ESC/Java.

Most missing invariants were beyond the scope of Daikon. Ver-
ification required certain complicated predicates or element type
annotations for non-List collections, which Daikon does not cur-
rently provide.

4.2 StackAr: array-based stack
StackAr is an array-based stack implementation [Wei99]. The

source contains 50 non-comment lines of code in 8 methods, along
with comments that describe the behavior of the class but do not
mention its representation invariant.

When run on an unannotated version ofStackAr , ESC/Java
issues warnings about many potential runtime errors, such as null
dereferences and array bounds errors. Our system generated spec-
ifications for all operations of the class, and with the addition of
the detected invariants, ESC/Java issues no warnings, successfully
checks that theStackAr class avoids runtime errors, and verifies
that the implementation meets the generated specification.

The Daikon invariant detector reported 25 invariants, including
the representation invariant, method preconditions, modification
targets, and postconditions. (In addition, our system heuristically
added 2 annotations involving aliasing of the array.)

Figure 5 shows part of the automatically-annotated source code
for StackAr . The first six annotations describe the representation
invariant: the array is non-null and contains elements of arbitrary
run-time type, the array index is legal, and only unused array ele-
ments are null. The next three annotations specify the constructor.
Daikon also detects that after construction, all elements of the array
are null, but this property is implied by the representation invari-
ant and the fact thattopOfStack is−1, so Daikon does not re-
port the property. The last five invariants specify thetopAndPop
method. Only elements abovetopOfStack are modified, and
topOfStack never increases. IftopOfStack was originally
non-negative, it is decremented and a non-null result is returned.

4.3 RatPoly: polynomial over rational numbers
A second example further illustrates our results, and provides

examples of verification problems.
RatPoly is an implementation of rational-coefficient polyno-

mials that support basic algebraic operations. The source contains
498 non-comment lines of code, in 3 classes and 42 methods. Infor-
mal comments state the representation invariant and method speci-
fications.

Our system produced a nearly-verifiable annotation set. Addi-
tionally, the annotation set reflected some properties of the pro-
grammer’s specification, which was given by informal comments.
Figure 3 shows that Daikon reported 80 invariants over the pro-
gram; 10 of those did not verify, and 1 more had to be added.

The 10 unverifiable invariants were all true, but other missing
invariants prevented them from being verified. For instance, the
RatPoly implementation maintains an object invariant that no
zero-value coefficients are ever explicitly stored, so Daikon reported
that aget method never returns zero. However, ESC/Java anno-
tations may not reference elements of Java collection classes; thus,

public class StackAr {
//@ invariant theArray != null
//@ invariant \typeof(theArray) == \type(Object[])
//@ invariant topOfStack >= -1
//@ invariant topOfStack <= theArray.length-1
/*@ invariant (\forall int i; (0 <= i &&

i <= topOfStack) ==> (theArray[i] != null)) */
/*@ invariant (\forall int i; (topOfStack+1 <= i &&

i <= theArray.length-1) ==> (theArray[i] == null)) */

private Object [ ] theArray;
private int topOfStack;

//@ requires capacity >= 0
//@ ensures capacity == theArray.length
//@ ensures topOfStack == -1
public StackAr( int capacity ) {

theArray = new Object[ capacity ];
topOfStack = -1;

}

//@ modifies topOfStack, theArray[*]
/*@ ensures (\forall int i; (0 <= i && i <= topOfStack)

==> (theArray[i] == \old(theArray[i]))) */
//@ ensures topOfStack <= \old(topOfStack)
/*@ ensures (\old(topOfStack) >= 0) ==>

(topOfStack == \old(topOfStack) - 1) */
/*@ ensures (\old(topOfStack) >= 0) ==>

(\result == \old(theArray[topOfStack])) */
//@ ensures (\old(topOfStack) >= 0) == (\result != null)
public Object topAndPop( ) {

if( isEmpty( ) )
return null;

Object topItem = top( );
theArray[ topOfStack-- ] = null;
return topItem;

}

...
}

Figure 5: The object invariants and two method specifications of
the annotatedStackAr.java file [Wei99]. The ESC/Java anno-
tations (comments starting with “@”) are produced automatically
by Daikon, are automatically inserted into the source code by our
system, and are automatically verified by ESC/Java. For clarity,
the figure wraps some lines; it also omits four auxiliary annotations
that are irrelevant to the specification but are required by ESC/Java
and are inserted by our system.

the object invariant is not expressible and theget method failed
to verify. Similarly, themul operation exits immediately if one
of the polynomials is undefined, but the determination of this con-
dition also required annotations accessing Java collections. Thus,
ESC/Java could not prove that helper methods used bymul never
operated on undefined coefficients, as reported by Daikon.

When using the provided test suite, three invariants were de-
tected by Daikon, but suppressed for lack of statistical justifica-
tion. Small test suite augmentations (Figure 4) more extensively
exercised the code and caused those invariants to be printed. (Al-
ternately, a command-line switch to Daikon sets its justification
threshold.) With the test suite augmentations, only one invariant
had to be edited by hand (thus counting as both unverified and
missing): an integer lower bound had to be weakened from 1 to
0 because ESC/Java’s incompleteness prevented proof of the (true,
but subtle) stricter bound.

4.4 MapQuick: driving directions
A final example further illustrates our results.
TheMapQuick application computes driving directions between

two addresses provided by the user, using real-world geographic
data. The source contains 1835 non-comment lines of code in 25



classes, but we did not compute specifications for 7 of the classes.
Of the omitted classes, three classes were used so frequently (while
loading databases) that recording traces for offline processing was
infeasible due to space limitations. One class (the entry point) was
only called a few times, so not enough data was available for infer-
ence. Two classes had too little variance of data for inference (only
a tiny database was loaded). Finally, one class had a complex in-
heritance hierarchy which prevented local reasoning (and thus hin-
dered modular static analysis). All problems but the last could have
been overcome by an invariant detector that runs online, allowing
larger data sets to be processed and a more varied database to be
loaded.

We verified the other 18 classes (113 methods, 1031 lines). The
verified classes include data types (such as a priority queue), al-
gorithms (such as Dijkstra’s shortest path), a user interface, and
various file utilities. Figure 3 shows that Daikon reported 148 in-
variants; 3 of those did not verify, and 35 had to be added.

The 3 unverifiable invariants were beyond the capabilities of ESC/
Java, or exposed bugs in the tools.

The largest cause of missing invariants was ESC/Java’s incom-
pleteness. Its modular analysis or incomplete knowledge of Java
semantics forced 9 annotations to be added, while 3 more were re-
quired because other object invariants were inexpressible.

Invariants were also missing because they were outside the scope
of Daikon. Daikon does not currently report invariants of non-
List Java collections, but 4 invariants about type and nullness
information of these collections were required for ESC/Java ver-
ification. Daikon also missed 5 invariants because it does not in-
strument interfaces, and 3 invariants over local variables, which are
also not instrumented. (We are currently enhancing Daikon to in-
spect interfaces and all collection classes.)

Finally, 5 missing annotations were needed to suppress ESC/Java
warnings about exceptions.MapQuick handles catastrophic fail-
ure (such as filesystem errors) by raising an unchecked exception.
The user must disable ESC’s verification of these exceptions, as
they can never be proven to be absent. This step requires user in-
tervention no matter the tool, since specifying which catastrophic
errors to ignore is an engineering decision.

The remaining 6 missing invariants arose from distinct causes
that cannot be generalized, and that do not individually add insight.

5. Remaining challenges
Fully automatic generation and checking of program specifica-

tions is not always possible. This section categorizes problems we
encountered in our experimental investigation. These limitations
fall into three general categories: problems with the target pro-
grams, problems with the test suites, and problems with the Daikon
and ESC/Java tools.

5.1 Target programs
One challenge to verification of invariants is the likelihood that

programs contain errors that falsify the desired invariant. (Although
it was never our goal, we have previously identified such errors in
textbooks, in programs used in testing research, and elsewhere.) In
this case, the desired invariant is not a true invariant of the program.

Program errors may prevent verification even if the error does
not falsify a necessary invariant. The test suite may not reveal the
error, so the correct specification will be generated. However, it
will fail to verify because the static checker will discover possible
executions that violate the invariant.

Our experiments revealed an error in theVector class from
JDK 1.1.8. ThetoString method throws an exception for vec-
tors with null elements. Our original (code coverage complete) test

suite did not reveal this fault, but Daikon reported that the vector
elements were always non-null on entry totoString , leading to
discovery of the error. The error is corrected in JDK 1.3. (We were
not aware of the error at the time of our experiments.)

As another example of a likely error that we detected, one of the
object invariants forStackAr states that unused elements of the
stack are null. Thepop operations maintain this invariant (which
approximately doubles the size of their code), but themakeEmpty
operation does not. We noticed this when the expected object in-
variant was not inferred, and we corrected the error in our version
of StackAr .

5.2 Test suites
Another challenge to generation is deficient or missing test suites.

In general, realistic test suites tend to produce verifiable specifi-
cations, while poor verification results indicate specific failures in
testing.

If the executions induced by a test suite are not characteristic of
a program’s general behavior, properties observed during testing
may not generalize. However, one of the key results of this re-
search is that even limited test suites can capture partial semantics
of a program. This is surprising, even on small programs, because
reliably inferring patterns from small datasets is difficult. Further-
more, larger programs are not necessarily any better, because some
components may be underexercised in the test suite. (For example,
a main routine may only be run once.)

System tests — tests that check end-to-end behavior of a sys-
tem — tended to produce good invariants immediately, confirm-
ing earlier experiences [ECGN01]. System tests exercise a system
containing the module being examined, rather than testing just the
module itself.

Unit tests — tests that check specific boundary values of proce-
dures in a single module in isolation — were less successful. This
may seem counter-intuitive, since unit tests often achieve code cov-
erage and generally attempt to cover boundary cases of the module.
However, in specifically targeting boundary cases, unit tests uti-
lize the module in ways statistically unlike the application itself,
throwing off the statistical techniques used in Daikon. Equally im-
portantly, unit tests tend to contain few calls, preventing statistical
inference.

When the initial test suites came from textbooks or were unit
tests that were used for grading, they often contained just three or
four calls per method. Some methods onStreetNumberSet
were not tested at all. We corrected these test suites, but did not
attempt to make them minimal. The corrections were not difficult.
When failed ESC/Java verification attempts indicate a test suite is
deficient, the unverifiable invariants specify the unintended prop-
erty, so a programmer has a suggestion for how to improve the tests.
For example, the original tests for thediv operation onRatPoly
exercised a wide range of positive coefficients, but all tests with
negative coefficients used a numerator of−1. Other examples in-
cluded certain stack operations that were never performed on a full
(or empty) stack and a queue implemented via an array that never
wrapped around. These properties were detected and reported as
unverifiable by our system, and extending the tests to cover addi-
tional values was effortless.

Test suites are an important part of any programming effort, so
time invested in their improvement is not wasted. In our experi-
ence, creating a test suite that induces accurate invariants is little
or no more difficult than creating a general test suite. In short,
poor verification results indicate specific failures in testing, and
reasonably-sized and realistic test suites are able to accurately cap-
ture semantics of a program.



5.3 Inherent limitations of any tool
Every tool contains abias: the grammar of properties that it can

detect or verify. Properties beyond that grammar are insurmount-
able obstacles to automatic verification, so there are specifications
beyond the capabilities of any particular tool.

For instance, in theRatNum class, Daikon found that theneg-
ate method preserves the denominator and negates the numerator.
However, verifying that property would require detecting and veri-
fying that thegcd operation called by the constructor has no effect
because the numerator and denominator of the argument are rela-
tively prime. Daikon does not include such invariants because they
are of insufficiently general applicability, nor can ESC/Java verify
such a property. (Users can add new invariants for Daikon to detect
by writing a Java class that satisfies an interface with four methods.)

As another example, neither Daikon nor ESC/Java operates with
invariants over strings. As a result, our combined system did not de-
tect or verify that object invariants hold at the exit from a construc-
tor or other method that interprets a string argument, even though
the system showed that other methods maintain the invariant.

As a final example, theQueueAr class guarantees that unused
storage is set to null. The representation invariants that maintain
this property were missing from Daikon’s output, because they
were conditioned on a predicate more complicated than Daikon
currently attempts:

(\forall int i;
(0 <= i && i < theArray.length) ==>

(theArray[i] == null) <==>
((currentSize == 0) ||

((currentSize > 0) &&
(((front <= back) &&

(i < front || i > back)) ||
((front > back) &&

(i > back && i < front))))))

This omission prevented verification of many method postcondi-
tions.

5.4 Daikon
Aside from the problems inherent in any analysis tool, the tools

used in this evaluation exhibited additional problems that prevented
immediate verification. Daikon had three deficiencies.

First, Daikon does not examine the contents of non-List java
collections such as maps or sets. This prevents it from reporting
type or nullness properties of the elements, but those properties are
often needed by ESC/Java for verification.

Second, Daikon operates offline by examining traces written to
disk by an instrumented version of the program under test. If many
methods are instrumented, or if the program is long-running, stor-
age and processing requirements can exceed available capacity.

Finally, Daikon uses Ajax [O’C01] to determine comparability
of variables in Java programs. If two variables are incomparable, no
invariants relating them should be generated or tested. Ajax fails on
some large programs; all variables are considered comparable, and
spurious invariants are generated and printed constraining unrelated
quantities.

All three problems are currently being addressed in re-engineer-
ing efforts.

5.5 ESC/Java
ESC/Java’s input language is a variant of the Java Modeling Lan-

guage JML [LBR99, LBR00], an interface specification language
that specifies the behavior of Java modules. We use “ESCJML” for
the JML variant accepted as input by ESC/Java.

ESCJML cannot express certain properties that Daikon reports.
ESCJML annotations cannot include method calls, even ones that

are side-effect-free. Daikon uses these for obtainingVector el-
ements and as predicates in implications. Unlike Daikon, ESC-
JML cannot express closure operations, such as all the elements in
a linked list.

ESCJML requires that object invariants hold at entry to and exit
from all methods, so it warned that the object invariants Daikon re-
ported were violated by private helper methods. We worked around
this problem by inlining one such method from theQueueAr pro-
gram.

The full JML language permits method calls in assertions, in-
cludes\reach() for expressing reachability via transitive clo-
sure, and specifies that object invariants hold only at entry to and
exit from public methods.

Some of this functionality might be missing from ESC/Java be-
cause it is designed not for proving general program properties
but as a lightweight method for verifying absence of runtime er-
rors. However, our investigations revealed examples where such
verification required each of these missing capabilities. In some
cases, ESC/Java users may be able to restructure their code to work
around these problems. In others, users can insert unchecked prag-
mas that cause ESC/Java to assume particular properties without
proof, permitting it to complete verification despite its limitations.

6. Discussion
The most surprising result of our research is that specifications

generated from program executions are reasonably accurate: they
form a set that is nearly self-consistent and self-sufficient, as mea-
sured by verifiability by an automatic specification checking tool.
This result was not at all obviousa priori. One might expect that
dynamically detected invariants would suffer from serious unsound-
ness by expressing artifacts of the test suite and would fail to cap-
ture enough of the formal semantics of the program.

This positive result implies that dynamic invariant detection is
effective, at least in our domain of investigation. A second, broader
conclusion is that executions over relatively small test suites cap-
ture a significant amount of information about program semantics.
This detected information is verifiable by a static analysis. Al-
though we do not yet have a theoretical model to explain this, nor
can we predict for a given test suite how much of a program’s se-
mantic space it will explore, we have presented a datapoint from
a set of experiments to explicate the phenomenon and suggest that
it may generalize. One reason the results should generalize is that
both Daikon and ESC/Java operate modularly, one class at a time.
Generating or verifying specifications for a single class of a large
system is no harder than doing so for a system consisting of a single
class.

We speculate that three factors may contribute to our success.
First, our specification generation technique does not attempt to re-
port all properties that happen to be true during a test run. Rather,
it produces partial specifications that intentionally omit properties
that are unlikely to be of use or that are unlikely to be universally
true. It uses statistical, algorithmic, and heuristic tests to make this
judgment. Second, the information that ESC/Java needs for veri-
fication may be particularly easy to obtain via a dynamic analysis.
ESC/Java’s requirements are modest: it does not need full formal
specifications of all aspects of program behavior. However, its ver-
ification does require some specifications and input–output rela-
tions. Our system also verified additional detected properties that
were not strictly necessary for ESC’s checking, but provided addi-
tional information about program behavior. Third, our test suites
were of acceptable quality. Unit tests are inappropriate, for they
produce very poor invariants (see Section 5.2). However, Daikon’s
output makes it extremely easy to improve the test suites by indi-



cating their deficiencies. Furthermore, existing system tests were
adequate, and these are more likely to exist and often easier to pro-
duce.

While dynamic invariant detection has been successful in sev-
eral application domains, we believe that truly successful program
analysis requires both static and dynamic components. Some of the
properties that are difficult to obtain from a dynamic analysis are
apparent from an examination of the source code, and properties
that are beyond the state of the art in static analysis can be easily
checked at runtime. We plan to integrate more static analysis into
our system (and particularly into Daikon). For example, the dy-
namic analysis need not check properties discovered by the static
analysis, or the dynamic analysis can focus on code or properties
that stymie a static analysis.

The goal of producing program specifications is so important that
it is worthwhile to consider many approaches. Our research sug-
gests that a novel approach can complement existing ones: generate
the specification unsoundly, then check it, resulting in a specifica-
tion and a verification of its soundness (up to the limitations of the
verifier). We believe that unsound specifications can also be used to
advantage in other situations: this can expand the applicability and
utility of specifications and provide many of the benefits of sound
specifications, in more situations. Even if full input–output rela-
tions are hard to generate automatically, universally true properties
(especially implications) that characterize the relation are a step in
the right direction.

6.1 Benefits of integration
Static and dynamic analyses have complementary strengths and

weaknesses, so combining them has great promise: dynamic analy-
sis can propose program properties to be verified by static analysis.
Integrating dynamic invariant detection with static verification has
benefits for both tools.

Use of a static verifier to augment dynamic invariant detection
overcomes a potential objection about possibly unsound output,
classifies the output (as proven true or potentially incorrect) to per-
mit programmers to use it more effectively, permits verified invari-
ants to be used in contexts (such as input to certain programs) that
demand sound input, and may improve the performance or output
of dynamic invariant detection. As a result, more programmers can
take advantage of dynamically detected invariants in a variety of
contexts. This may eventually lead — as the limitations noted in
Section 5 are overcome — to fewer bugs (by introducing fewer and
detecting more), better documentation, less time wasted on pro-
gram understanding, better test suites, more effective validation of
program changes, and more efficient programs.

Use of dynamically detected invariants can bootstrap static veri-
fication by providing initial program annotations, goals, and inter-
mediate assertions. Few programmers enjoy or are good at annotat-
ing programs, which is a time-consuming, tedious, and error-prone
task. This automation may speed the adoption of static analysis
tools by lessening the user burden, even if some work still remains
for the user. (A user study we performed supports this hypothe-
sis [Nim02].) Dynamically detected invariants can also check and
refine existing specifications and indicate properties programmers
might otherwise have overlooked. These improvements could lead
to prevention and to earlier detection of errors, aiding in the pro-
duction of more robust, reliable, and correct computer systems.

7. Related work
This is the first research we are aware of that has dynamically

generated, then statically verified, program specifications, or has
used such information to investigate the amount of information

about program semantics available in test runs. The two compo-
nent techniques are well-known, however.

Dynamic analysis has been used for a variety of program-
ming tasks; for instance, inductive logic programming (ILP)
[Qui90, Coh94] produces a set of Horn clauses (first-order if-then
rules) and can be run over program traces [BG93], though with
limited success. Programming by example [CHK+93] is simi-
lar but requires close human guidance, and version spaces can
compactly represent sets of hypotheses [LDW00]. Value profil-
ing [CFE97, SS98] can efficiently detect certain simple proper-
ties at runtime. Event traces can generate finite state machines
that explicate system behavior [BG97, CW98]. Program spectra
[AFMS96, RBDL97, HRWY98, Bal99] also capture aspects of sys-
tem runtime behavior. None of these other techniques has been as
successful as Daikon for generating specifications for programs,
though many have been valuable in other domains.

Many static inference techniques also exist, including abstract
interpretation (often implemented by symbolic execution or data-
flow analysis), model checking, and theorem proving. (Space lim-
itations prohibit a complete review here.) A sound, conservative
static analysis reports properties that are true for any program run,
and theoretically can detect all sound invariants if run to conver-
gence [CC77]. Static analyses omit properties that are true but
uncomputable and properties of the program context. To control
time and space complexity (especially the cost of modeling pro-
gram states) and ensure termination, they make approximations that
introduce inaccuracies, weakening their results. For instance, accu-
rate and efficient alias analysis is still infeasible, though for specific
applications, contexts, or assumptions, efficient pointer analyses
can be sufficiently accurate [Das00].

The LOOP project verified an object invariant in Java’sVector
class [JvH+98, HJv01]. The technique involved automatic transla-
tion of Java to PVS [ORS92, ORSvH95], user-specified goals, and
user interaction with PVS.

Many other tools besides ESC/Java statically check specifica-
tions [Pfe92, EGHT94, Det96, NCOD97]. Examples of static ver-
ifiers that are connected with real programming languages include
LCLint [EGHT94], ACL2 [KM97], LOOP [JvH+98], Java Path-
Finder [HP00], and Bandera [CDH+00]. These other systems have
different strengths and weaknesses than ESC/Java, but few have the
polish of its integration with a real programming language.

We are currently integrating Daikon with IOA [GLV97], a formal
language for describing computational processes that are modeled
using I/O automata [LT89]. The IOA toolset (http://theory.
lcs.mit.edu/tds/ioa.html ) permits IOA programs to be run
and also provides an interface to the Larch Prover [GG90], an in-
teractive theorem-proving system for multisorted first-order logic.
Daikon proposes goals, lemmas, and intermediate assertions for
the theorem prover. Representation invariants can assist in proofs
of properties that hold in all reachable states or representations,
but not in all possible states or representations. It can be tedious
and error-prone for people to specify enough representation invari-
ants to be proved, and current systems have trouble postulating
them; some researchers consider that task harder than perform-
ing the proof [Weg74, BLS96, BBM97]. In preliminary experi-
ments [NWE02], users found Daikon of substantial help in proving
Peterson’s 2-process mutual exclusion algorithm (leading to a new
proof that would not have otherwise been obtained), a cache coher-
ence protocol, and Lamport’s Paxos algorithm.

7.1 Houdini
The research most closely related to our integrated system is

Houdini [FL01, FJL01], an annotation assistant for ESC/Java. (A



similar system was proposed by Rintanen [Rin00].) Houdini is mo-
tivated by the observation that users are reluctant to annotate their
programs with invariants; it attempts to lessen the burden by pro-
viding an initial set. Houdini takes a candidate annotation set as
input and computes the greatest subset of it that is valid for a par-
ticular program. It repeatedly invokes the checker and removes
refuted annotations, until no more annotations are refuted. The
candidate invariants are all possible arithmetic comparisons among
fields (and “interesting constants” such as−1, 0, 1, array lengths,
andnull ); many elements of this initial set are mutually contra-
dictory.

Houdini has been used to find bugs in several programs. Over
30% of its guessed annotations are verified, and it tends to reduce
the number of ESC/Java warnings by a factor of 2–5.

Daikon’s candidate invariants are richer than those of Houdini;
Daikon outputs implications and disjunctions, and its base invari-
ants are also richer, including more complicated arithmetic and se-
quence operations. If even one required invariant is missing, then
Houdini eliminates all other invariants that depend on it. Hou-
dini makes no attempt to eliminate implied (redundant) invariants,
as Daikon does (reducing its output size by an order of magni-
tude [ECGN00]), so it is difficult to interpret numbers of invari-
ants produced by Houdini. Houdini’s user interface permits users
to ask why a candidate invariant was refuted; this capability is or-
thogonal to proposal of candidates. Finally, Houdini is not publicly
available, so we cannot perform a direct comparison.

Combining the two approaches could be very useful. For in-
stance, Daikon’s output could form the input to Houdini, permit-
ting Houdini to spend less time eliminating false invariants. (A
prototype “dynamic refuter” — essentially a dynamic invariant de-
tector — has been built [FL01], but no details or results about it
are provided.) Houdini has a different intent than Daikon: Hou-
dini does not try to produce a complete specification or annotations
that are good for people, but only to make up for missing annota-
tions and permit programs to be less cluttered; in that respect, it is
similar to type inference. However, Daikon’s output could perhaps
be used in place of Houdini. Invariants that are true but depend
on missing invariants or are not verifiable by ESC/Java would not
be eliminated, so users might be closer to a completely annotated
program, though they might need to eliminate some invariants by
hand.

8. Conclusion
We have proposed and experimentally assessed a novel approach

to producing specifications: generate them unsoundly from pro-
gram executions, then verify them. To our knowledge, ours is the
first system to dynamically detect and then statically verify pro-
gram specifications.

Our experiments indicate that even limited test suites accurately
characterize general execution properties: they can generate speci-
fications that are consistent and sufficient for automatic verification
with little or no change. This surprising result suggests that run-
time properties may not be as unreliable as general opinion holds,
given an effective method for extracting them. We do not yet have
a principled description of the static characteristics of a test suite
that result in a high-quality generated specification, but even sim-
ple system tests seem to be sufficient.

Our experiments also demonstrate the effectiveness of dynamic
invariant detection. In our tests, the Daikon implementation gener-
ated specifications with high (over 90%) precision and recall, when
measured against the task of static verification by ESC/Java. This
validates the approach of producing invariants from program exe-
cutions.

The results justify the use of unsound techniques in appropriate
ways in program development and suggest that these may be ex-
tended to program specifications, which have traditionally required
complete correctness and pre-implementation creation. Integrat-
ing static and dynamic techniques in our system produces benefits
in each direction, because of their complementary strengths and
weaknesses.
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A. Specifications
Specifications are used in many different stages of development,

from requirements engineering to maintenance. Furthermore, spec-
ifications take a variety of forms, from a verbal description of cus-
tomer requirements to a set of test cases or an executable prototype.
In fact, there is no consensus regarding the definition of “specifica-
tion” [Lam88, GJM91].

Our research usesformal specifications. We define a (formal, be-
havioral) specification as a precise mathematical abstraction of pro-
gram behavior [LG01, Som96, Pre92]. This definition is standard,
but ouruseof specifications is novel. Our specifications are gener-
ated automatically, after an executable implementation exists. Typ-
ically, software engineers are directed to write specifications before
implementation, then to use them as implementation guides — or
simply to obtain the benefit of having analyzed requirements at an
early design stage [Som96].

Despite the benefits of having a specification before implementa-
tion, in practice few programmers write (formal or informal) spec-
ifications before coding. Nonetheless, it is useful to produce such
documentation after the fact [PC86]. Obtaining a specification at
any point during the development cycle is better than never having

a specification at all.Post hocspecifications are also used in other
fields of engineering. As one example, speed binning is a process
whereby, after fabrication, microprocessors are tested to determine
how fast they can run [Sem94]. Chips from a single batch may be
sold with a variety of specified clock speeds.

Some authors define a specification as ana priori description of
intended or desired behavior that is used in prescribed ways [Lam88,
GJM91]. For our purposes, it is not useful to categorize whether a
particular logical formula is a specification based on who wrote it,
when, and in what mental state. (The latter is unknowable in any
event.) Readers who prefer the alternative definition may replace
the term “specification” by “description of program behavior” (and
“invariant” by “program property”) in the text of this paper.

We believe that there is great promise in extending specifications
beyond their traditional genesis as pre-implementation expressions
of requirements. One of the contributions of our research is the
insight that this is both possible and desirable, along with evidence
to back up this claim.


