Regression Testing

427

be too narrow, to avoid useless waste of resources, nor too wide, to avoid scattering
resources without obtaining useful data. Focusing on specific interactions is usually
more effective than attempting to assess usability of a whole program at once. For ex-
ample, the Chipmunk usability test team independently assesses interations for catalog
browsing, order definition and purchase, and repair service.

The larger the population sample, the more precise the results, but the cost of very
large samples is prohibitive; selecting a small but representative sample is therefore
critical. A good practice is to identify homogeneous classes of users and select a set
of representatives from each class. Classes of users depend on the kind of application
to be tested, and may be categorized by role, social characteristics, age, etc. A typical
compromise between cost and accuracy for a well designed test session is five users
from a unique class of homogeneous users, four users from each of two classes, or
three users for each of three or more classes. Questionnaires should be prepared for the
selected users to verify their membership in their respective classes. Some approaches
also assign a weight to each class, according to their importance to the business. For
example, Chipmunk can identify three main classes of users: individual, business, and
education customers. Each of the main classes is further divided. Individual customers
are distinguished by education level; business customers by role; and academic cus-
tomers by size of the institution. Altogether, six putatively homogenous classes are
obtained: Individual customers with and without at least a bachelor degree, managers
and staff of commercial customers, and customers at small and large education institu-
tions.

Users are asked to execute a planned set of actions that are identified as typical uses
of the tested feature. For example, the Chipmunk usability assessment team may may
ask users to configure a product, modify the configuration to take advantage of some
special offers, and place an order with overnight delivery.

Users should perform tasks independently, without help or influence from the test-
ing staff. User actions are recorded, and comments and impressions are collected with
a post-activity questionnaire. Activity monitoring can be very simple, e.g., recording
sequences of mouse clicks to perform each action. More sophisticated monitoring can
include recording mouse or eye movements. Timing should also be recorded and may
sometimes be used for driving the sessions, e.g., fixing a maximum time for the session
or for each set of actions.

An important aspect of usability is accessibility to all users, including those with
disabilities. Accessibility testing is legally required in some application domains, e.g.,
some governments impose specific accessibility rules for web applications of public
institutions. The set of Web Content Accessibility Guidelines (WCAG) defined by
the World Wide Web Consortium are becoming an important standard reference. The
WCAG guidelines are summarized in the sidebar on page 428.

22.5 Regression Testing
When building a new version of a system, e.g., by removing faults, changing or adding

functionality, porting the system to a new platform, or extending interoperability, we
may also change existing functionality in unintended ways. Sometimes even small

Courtesy Pre-print for U. Toronto 2007/1

428 System, Acceptance, and Regression Testing

Web Content Accessibility Guidelines (WCAG)“

1. Provide equivalent alternatives to auditory and visual content that convey essen-
tially the same function or purpose.

2. Ensure that text and graphics are understandable when viewed without color.

3. Mark up documents with the proper structural elements, controlling presentation
with style sheets rather than presentation elements and attributes.

4. Use markup that facilitates pronunciation or interpretation of abbreviated or for-
eign text.

5. Ensure that tables have necessary markup to be transformed by accessible
browsers and other user agents.

6. Ensure that pages are accessible even when newer technologies are not supported
or are turned off.

7. Ensure that moving, blinking, scrolling, or auto-updating objects or pages may
be paused or stopped.

8. Ensure that the user interface, including embedded user interface elements, fol-
lows principles of accessible design: device-independent access to functionality,
keyboard operability, self-voicing, etc.

9. Use features that enable activation of page elements via a variety of input de-
vices.

10. Use interim accessibility so that assisting technologies and older browsers will
operate correctly.

11. Where technologies outside of W3C specifications is used (e.g, Flash), provide
alternative versions to ensure accessibility to standard user agents and assistive
technologies (e.g., screen readers).

12. Provide context and orientation information to help users understand complex
pages or elements.

13. Provide clear and consistent navigation mechanisms to increase the likelihood
that a person will find what they are looking for at a site.

14. Ensure that documents are clear and simple, so they may be more easily under-
stood.

“Excerpted and adapted from Web Content Accessibility Guidelines 1.0, W3C Recommendation 5-May
1999; used by permission. The current version is distributed by W3C at http://www.w3.org/TR/
WAI-WEBCONTENT.

Courtesy Pre-print for U. Toronto 2007/1

Regression Testing

429

changes can produce unforeseen effects that lead to new failures. For example, a guard
added to an array to fix an overflow problem may cause a failure when the array is used
in other contexts, or porting the software to a new platform may expose a latent fault
in creating and modifying temporary files.

When a new version of software no longer correctly provides functionality that
should be preserved, we say that the new version regresses with respect to former
versions. The non-regression of new versions, i.e., the preservation of functionality, is
a basic quality requirement. Disciplined design and development techniques, including
precise specification and modularity that encapsulates independent design decisions,
improves the likelihood of achieving non-regression. Testing activities that focus on
regression problems are called (non) regression testing. Usually “non” is omitted and
we commonly say regression testing.

A simple approach to regression testing consists of re-executing all test cases de-
signed for previous versions. Even this simple retest all approach may present non-
trivial problems and costs: Former test cases may not be re-executable on the new
version without modification, and re-running all test cases may be too expensive and
unnecessary. A good quality test suite must be maintained across system versions.

Changes in the new software version may impact the format of inputs and outputs,
and test cases may not be executable without corresponding changes. Even simple
modifications of the data structures, e.g., the addition of a field or small change of
data types, may invalidate former test cases, or outputs comparable with the new ones.
Moreover, some test cases may be obsolete, i.e., they may test features of the software
that have been modified, substituted, or removed from the new version.

Scaffolding that interprets test case specifications, rather than fully concrete test
data, can reduce the impact of input and output format changes on regression testing,
as discussed in Chapter 17. Test case specifications and oracles that capture essential
correctness properties, abstracting from arbitrary details of behavior, likewise reduce
the likelihood that a large portion of a regression test suite will be invalidated by a
minor change.

High-quality test suites can be maintained across versions by identifying and re-
moving obsolete test cases, and revealing and suitably marking redundant test cases.
Redundant cases differ from obsolete, being executable, but not important with respect
to the considered testing criteria. For example, test cases that cover the same path are
mutually redundant with respect to structural criteria, while test cases that match the
same partition are mutually redundant with respect to functional criteria. Redundant
test cases may be introduced in the test suites due to concurrent work of different test
designers or to changes in the code. Redundant test cases do not reduce the overall
effectiveness of tests, but impact on the cost-benefits trade-off: they are unlikely to
reveal faults, but augment the costs of test execution and maintenance. Obsolete test
cases are removed because not useful any more, while redundant test cases are kept,
because that may become helpful in successive versions of the software.

Good test documentations is particularly important. As we will see in Chapter 24,
test specifications define the features to be tested, the corresponding test cases, the
inputs and expected outputs as well as the execution conditions for all cases, while
reporting documents indicate the results of the test executions, the open faults and
their relation to the test cases. This information is essential for tracking faults and for

Courtesy Pre-print for U. Toronto 2007/1

retest all

test
case!maintenance

430

System, Acceptance, and Regression Testing

identifying test cases to be re-executed after fault removal.

22.6 Regression Test Selection Techniques

Even when we can identify and eliminate obsolete test cases, the number of tests to
be re-executed may be large, especially for legacy software. Executing all test cases
for large software products may require many hours or days of execution, and may
depend on scarce resources such as an expensive hardware test harness. For example,
some mass market software systems must be tested for compatibility with hundreds
of different hardware configurations and thousands of drivers. Many test cases may
have been designed to exercise parts of the software that cannot be affected by the
changes in the version under test. Test cases designed to check the behavior of the file
management system of an operating system is unlikely to provide useful information
when re-executed after changes of the window manager. The cost of re-executing a
test suite can be reduced by selecting a subset of test cases to be re-executed, omitting
irrelevant test cases or prioritizing execution of subsets of the test suite by their relation
to changes.

Test case prioritization orders frequency of test case execution, executing all of
them eventually but reducing the frequency of those deemed least likely to reveal faults
by some criterion. Alternate execution is a variant on prioritization for environments
with frequent releases and small incremental changes; it selects a subset of regression
test cases for each software version. Prioritization can be based on the specification
and code-based regression test selection techniques described below. In addition, test
histories and fault-proneness models can be incorporated in prioritization schemes. For
example, a test case that has previously revealed a fault in a module that has recently
undergone change would receive a very high priority, while a test case that has never
failed (yet) would receive a lower priority, particularly if it primarily concerns a feature
that was not the focus of recent changes.

Regression test selection techniques are based on either code or specifications.
Code-based selection techniques select a test case for execution if it exercises a portion
of the code that has been modified. Specification-based criteria select a test case for
execution if it is relevant to a portion of the specification that has been changed. Code-
based regression test techniques can be supported by relatively simple tools. They
work even when specifications are not properly maintained. However, like code-based
test techniques in general, they do not scale well from unit testing to integration and
system testing. In contrast, specification based criteria scale well and are easier to ap-
ply to changes that cut across several modules. However, they are more challenging to
automate and require carefully structured and well-maintained specifications.

Among code-based test selection techniques, control-based techniques rely on a
record of program elements executed by each test case, which may be gathered from
an instrumented version of the program. The structure of the new and old versions
of the program are compared, and test cases that exercise added, modified, or deleted
elements are selected for re-execution. Different criteria are obtained depending on the
program model on which the version comparison is based, e.g., control flow or data
flow graph models.

Courtesy Pre-print for U. Toronto 2007/1

Regression Test Selection Techniques

431

Control flow (CFG) regression techniques are based on the differences between the
control flow graphs of the new and old versions of the software. Let us consider, for
example, the C function cgi_decode from Chapter 12. Figure 22.1 shows the original
function as presented in Chapter 12, while Figure 22.2 shows a revison of the program.
We refer to these two versions as 1.0 and 2.0, respectively. Version 2.0 adds code to fix
a fault in interpreting hexadecimal sequences ’ $xy’ . The fault was revealed by testing
version 1.0 with input terminated by an erroneous subsequence ’ $x’ , causing version
1.0 to read past the end of the input buffer and possibly overflow the output buffer.
Version 2.0 contains a new branch to map the unterminated sequence to a question
mark.

Let us consider all structural test cases derived for cgi_decode in Chapter 12, and
assume we have recorded the paths exercised by the different test cases as shown in
Figure 22.3. Recording paths executed by test cases can be done automatically with
modest space and time overhead, since what must be captured is only the set of program
elements exercised rather than the full history.

CFG regression testing techniques compare annotated control flow graphs of the
two program versions to identify a subset of test cases that traverse modified parts of
the graphs. The graph nodes are annotated with corresponding program statements, so
that comparison of the annotated CFGs detect not only new or missing nodes and arcs,
but also nodes whose changed annotations correspond to small, but possibly relevant
changes in statements.

The CFG for version 2.0 of cgi_decode is given in Figure 22.4. Differences between
version 2.0 and 1.0 are indicated in grey. In the example, we have new nodes, arcs and
paths. In general, some nodes or arcs may be missing, e.g., when part of the program is
removed in the new version, and some other nodes may differ only in the annotations,
e.g., when we modify a condition in the new version.

CFG criteria select all test cases that exercise paths through changed portions of
the CFG, including CFG structure changes and node annotations. In the example, we
would select all test cases that pass through node D and proceed towards node G and
all test cases that reach node L, i.e., all test cases except TC1. In this example, the
criterion is not very effective in reducing the size of the test suite because modified
statements affect almost all paths.

If we consider only the corrective modification (nodes X and Y), the criterion is
more effective. The modification affects only the paths that traverse the edge between
D and G, so the CFG regression testing criterion would select only test cases traversing
those nodes, i.e., TC2, TC3, TC4, TC5, TC8 and TC9. In this case the size of the test
suite to be reexecuted includes % of the test cases of the original test suite.

In general the CFG regression testing criterion is effective only when the changes
affect a relatively small subset of the paths of the original program, as in the latter case.
It becomes almost useless when the changes affect most paths, as in version 2.0.

Data flow (DF) regression testing techniques select test cases for new and modi-
fied pairs of definitions with uses (DU pairs, cf. Sections 6.1, page 77 and 13.2, page
238). DF regression selection techniques reexecute test cases that, when executed on
the original program, exercised DU pairs that are deleted or modified in the revised
program. Test cases that executed a conditional statement whose predicate has been
altered are also selected, since the changed predicate could alter some old definition

Courtesy Pre-print for U. Toronto 2007/1

control flow
(CFG) regression
test

data flow (DF)
regression test

432

System, Acceptance, and Regression Testing

1 #include "hex values.h"
2 /** Translate a string from the CGl encoding to plain ascii text.
3 " '+’ becomes space, %xx becomes byte with hex value xx,
4 other alphanumeric characters map to themselves.
5 * Returns 0 for success, positive for erroneous input
6 - 1 = bad hexadecimal digit
7
8 int cgi_decode(char *encoded, char *decoded) {
9 char *eptr = encoded;
10 char *dptr = decoded;
11 int ok=0;
12 while (*eptr) {
13 char c;
14 C = “eptr;
15 if(c=="+"){ /* Case 1: '+ maps to blank */
16 *dptr="";
17 telseif (c=="%") { /* Case 2: '%xx’is hex for character xx */
18 int digit_high = Hex_Values[*(++eptr)]; /* note illegal => -1 7/
19 int digit-low = Hex_Values[*(++eptr)];
20 if (digit_high == -1 || digit_low == -1) {
21 /* *dptr="?"; %/
22 ok=1; /* Bad return code */
23 } else {
24 *dptr = 16™ digit_high + digit_low;
25 }
26 } else { /* Case 3: Other characters map to themselves */
27 *dptr = *eptr;
28 }
29 ++dptr;
30 ++eptr;
31 }
32 *dptr="\0"; /* Null terminator for string */
33 return ok;
34 }

Figure 22.1: C function cgi_decode version 1.0. The C function cgi_decode translates a
cgi-encoded string to a plain ASCII string, reversing the encoding applied by the com-
mon gateway interface of most web servers. Repeated from Figure 12.1 in Chapter 12
at page 215

Courtesy Pre-print for U. Toronto 2007/1

Regression Test Selection Techniques

433

1 #include "hex values.h"
2 /** Translate a string from the CGl encoding to plain ascii text.
3 7 '+’ becomes space, %xx becomes byte with hex value xx,
4 other alphanumeric characters map to themselves, illegal to '?".
5 * Returns 0 for success, positive for erroneous input
6 1 = bad hex digit, non-ascii char, or premature end.
7
8 int cgi_decode(char *encoded, char *decoded) {
9 char “eptr = encoded;
10 char *dptr = decoded;
11 int ok=0;
12 while (*eptr) {
13 char c;
14 C = “eptr;
15 if(c=="+"){ /* Case 1: '+ maps to blank */
16 dptr=" ';
17 }elseif (c=="%"){/* Case 2: "%xx’is hex for character xx */
18 if (! (*(eptr + 1) && *(eptr +2))) { /*\ %xx must precede EOL */
19 ok = 1; return;
20 }
21 /* OK, we know the xx are there, now decode them */
22 int digit_high = Hex_Values[*(++eptr)]; /* note illegal => -1 %/
23 int digit-low = Hex_Values[*(++eptr)];
24 if (digit_high == -1 || digit_low == -1 {
25 /* *dptr="?"; %/
26 ok=1; /* Bad return code */
27 } else {
28 *dptr = 16 digit_high + digit_low;
29 }
30 } else { /* Case 3: Other characters map to themselves */
31 *dptr = *eptr;
32 }
33 if (! isascii(*dptr)) { /* Produce only legal ascii */
34 *dptr="72";
35 ok=1;
36 }
37 ++dptr;
38 ++eptr;
39 }
40 *dptr =" \0"; /* Null terminator for string */
41 return ok;
42}

Figure 22.2: Version 2.0 of function cgi_decode adds a control on hexadecimal escape
sequences to reveal incorrect escape sequences at the end of the input string, and a new
branch to deal with non-ASCII characters.

Courtesy Pre-print for U. Toronto 2007/1

434 System, Acceptance, and Regression Testing

Id Test case Path

TC1 | “” ABM

TC2 | “test+case%1Dadequacy” ABCDFL..BM

TC3 | “adequate+test%0Dexecution%7U” ABCDFL..BM

TC4 | “%3D” ABCDGHLBM

TC5 | “%A” ABCDGILBM

TC6 | “a+b” ABCDFLBCELBCDFLBM

TC7 | “test” ABCDFLBCDFLBCDFLBCDFLBM
TC8 | “+%0D+%4J” ABCELBCDGIL..BM

TC9 | “first+test%9IKtest%K9” ABCDFL..BM

Figure 22.3: Paths covered by the structural test cases derived for version 1.0 of func-
tion cgi_decode. Paths are given referring to the nodes of the control flow graph of
Figure 22.4.

use associations. Figure 22.5 shows the new definitions and uses introduced by modi-
fications to cgi_decode.! These new definitions and uses introduce new DU pairs and
remove others.

In contrast to code-based techniques, specification-based test selection techniques
do not require recording the control flow paths executed by tests. Regression test cases
can be identified from correspondence between test cases and specification items. For
example, when using category partition, test cases correspond to sets of sets of choices,
while in finite state machine model-based approaches, test cases cover states and tran-
sitions. Where test case specifications and test data are generated automatically from
a specification or model, generation can simply be repeated each time the specification
or model changes.

Code-based regression test selection criteria can be adapted for model-based re-
gression test selection. Consider for example the control flow graph derived from the
process shipping order specification in Chapter 11. We add the following item to that
specification:

Restricted countries: A set of restricted destination countries is maintained, based
on current trade restrictions. If shipping address contains a restricted destina-
tion country, only credit card payments are accepted for that order, and shipping
proceeds only after approval by a designated company officer responsible for
checking that the goods ordered may be legally exported to that country.

The new requirement can be added to the flow graph model of the specification as
illustrated in Figure 22.6

"When dealing with arrays, we follow the criteria discussed in Chapter 13: A change of an array value
is a definition of the array and a use of the index. A use of an array value is a use of both the array and the
index.

Courtesy Pre-print for U. Toronto 2007/1

Regression Test Selection Techniques 435

int cgi_decode(char *encoded, char *decoded)

v

{ char *eptr = encoded; A
char *dptr = decoded;
int ok = 0;

(" while (eptr) { (B)«

/ False LTruh
char c; Cc
c = *eptr;
if (c=="+"){
vﬁFaIse—/FTru
D
[elseif (c=="%"){ q

False—)¥Trueﬂv
(o

o @)

int digit_high = Hex_Values[*(++eptr)]; q

else
*dptr = *eptr;
}

int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

vﬁFaIse—)gTrueﬁv

else { H) (ok=1;
*dptr = 16 * digit_high + }

digit_low;

L
C W

N
*dptr = "\0"; Tru
return ok;

}

++dptr; @
++eptr,

) |

Figure 22.4: The control flow graph of function cgi_decode version 2.0. Grey back-
ground indicates the changes from the former version

Courtesy Pre-print for U. Toronto 2007/1

436

System, Acceptance, and Regression Testing

Variable Definitions Uses

*eptr X
eptr X
dptr Z w
dptr ZW
ok YZ

Figure 22.5: Definitions and uses introduced introduced by changes in cgi_decode.
Labels refer to the nodes in the control flow graph of Figure 22.4

We can identify regression test cases with the CFG criterion that selects all cases
that correspond to international shipping addresses, i.e., test cases TC-1 and TC-5 from
the table below. The table corresponds to the functional test cases derived using to the
method described in Chapter 14 on page 261.

Case | Too Ship Ship Cust Pay Same CC
small where method type method addr valid
TC-1 | No Int Air Bus CC No Yes
TC-2 | No Dom Land - - - -
TC-3 | Yes — - - — - -

TC-4 No Dom Air — - — _
TC-5 No Int Land - - - —

TC-6 | No - - Edu Inv - -

TC-7 No - - - CC Yes -

TC-8 No - - - CC - No (abort)
TC-9 No - - - CcC - No (no abort)

Models derived for testing can be used not only for selecting regression test cases,
but also for generating test cases for the new code. In the example above, we can use
the model not only to identify the test cases that should be reused, but also to generate
new test cases for the new functionality, following the approaches described in Chapter
11.

22.7 Test Case Prioritization and Selective Execution

Regression testing criteria may select a large portion of a test suite. When a regression
test suite is too large, we must further reduce the set of test cases to be executed.

Random sampling is a simple way to reduce the size of the regression test suite.
Better approaches prioritize test cases to reflect their predicted usefulness. In a con-
tinuous cycle of retesting as the product evolves, high priority test cases are selected
more often than low priority test cases. With a good selection strategy, all test cases are
executed sooner or later, but the varying periods result in an efficient rotation in which
the cases most likely to reveal faults are executed most frequently.

Courtesy Pre-print for U. Toronto 2007/1

Test Case Prioritization and Selective Execution

437

(Shipping address in {restricted countries})
yes

eoves L g
("order in {allowed goods}) J

<

@

(7]
<

Figure 22.6: A flow graph model of the specification of the shipping order functionality
presented in Chapter 11, augmented with the “restricted country” requirement. The
changes in the flow graph are indicated in black

Courtesy Pre-print for U. Toronto 2007/1

438

System, Acceptance, and Regression Testing

execution history
priority schema

fault revealing
priority schema

structural priority
schema

Priorities can be assigned in many ways. A simple priority scheme assigns priority
according to the execution history: Recently executed test cases are given low priority,
while test cases that have not been recently executed are given high priority. In the
extreme, heavily weighting execution history approximates round robin selection.

Other history-based priority schemes predict fault detection effectiveness: Test
cases that have revealed faults in recent versions are given high priority. Faults are
not evenly distributed, but tend to accumulate in particular parts of the code or around
particular functionality. Test cases that exercised faulty parts of the program in the past
often exercise faulty portions of subsequent revisions.

Structural coverage leads to a set of priority schemes based on the elements covered
by a test case. We can give high priority to test cases that exercise elements that have
not recently been exercised. Both the number of elements covered, and the “age” of
each element (time since that element was covered by a test case) can contribute to the
prioritization.

Structural priority schemes produce several criteria depending on which elements
we consider: statements, conditions, decisions, functions, files, etc. The choice of the
element of interest is usually driven by the testing level. Fine grain elements such
as statements and conditions are typically used in unit testing, while in integration or
system testing one can consider coarser grain elements such as methods, features, files,
etc.

Open research issues

System requirements include many non-functional behavioral properties. While there
is an active research community in reliability testing, in general assessment of non-
functional properties is not as well-studied as testing for correctness. Moreover, as
trends in software develop, new problems for test and analysis follow emphasis on
particular non-functional properties. A prominent example of this over the last several
years, and with much left to do, is test and analysis to assess and improve security.

Selective regression test selection based on analysis of source code is now well-
studied. There remains need and opportunity for improvement in techniques that give
up the safety guarantee (selecting all test cases that might be affected by a software
change) to obtain more significant test suite reductions. Specification-based regression
test selection is a promising avenue of research, particularly as more systems incorpo-
rate components without full source code.

Increasingly ubiquitous network access is blurring the once-clear lines between
alpha and beta testing and opening possibilities for gathering much more information
from execution of deployed software. We expect to see advances in approaches to gath-
ering information (both from failures and from normal execution) as well as exploiting
potentially large amounts of gathered information. Privacy and confidentiality are an
important research challenge in post-deployment monitoring.

Courtesy Pre-print for U. Toronto 2007/1

