
BARRIERS TO SYSTEMATIC MODEL

TRANSFORMATION TESTING

Presented By: Lobna AbuSerrieh

Benoit Baudry, Sudipto Ghosh, Franck Fleurey,

Robert France, Yves Le Traon, Jean-Marie Mottu

1

Contents

2

 Model Driven Engineering

 Model Transformation Testing

 Example

 Characteristics / barriers of Model Transformation testing

 Approaches to overcome these barriers

Introduction

 Model Driven Engineering (MDE) :

• Models constitutes the basic units of the development.

• Automated Model transformation plays critical role in

MDE.

• Airbus uses automatic code generation from SCADE

models for embedded controllers in Airbus A380.

• Objecteering: UML and MDA CASE tool which supports

MDE.

3

Model Transformation/ Example

4

 Flattening a state machine

MT

a. Hierarchical state machine b. Flattened state machine

Model Transformation/ Metamodel

5

A Hierarchical State Machine Metamodel

Model Transformation/ OCL

6

 It is usually necessary to define constraints more

precisely; And it must be added to the metamodel.

 OCL is commonly used to define additional constraints.

Model Transformation Testing

7

 The correctness of transformation is essential to the

success of MDE.

 A fault in transformation can introduce a fault in the

resulted transformation model.

 Since model transformations are meant to be reused,

faults present in them may result in many faulty models.

8

 Testing :

 Prepare the Input – Run – evaluate the Output

 Testing Model Transformation:

1. Generate test data

2. Define test adequacy criteria

3. Construct an Oracle

Model Transformation Testing/ Activities

MTT/ Generate test data

9

Test Model for the Flattening Transformation

Characteristics of Model transformation

10

 Model transformation has some unique characteristics

which make testing it challenging:

1. Transformation Input and output Complexity.

2. Model management tools.

3. Various Transformation languages.

Characteristics of Model transformation

11

 Model transformation has some unique characteristics

which make testing it challenging:

1. Transformation Input and output Complexity.

2. Model management tools.

3. Heterogeneity of Transformation languages.

Complexity of Input and Output data

12

 Models are often large.

 The metamodels can themselves be large & complex.

 Additional constraints using OCL increases the metamodel

complexity.

 OCL is a rich language with which it is possible to define

complex constraints relating a large number of elements

in the metamodel.

Complexity of Input and Output data/
Input Data

13

 This complexity affects the generation of test models.

 Manual test data generation is error-prone.

 Automatic test data generation is a complex constraint

solving problem;

 It is possible to define a large number of test adequacy

criteria;

 However, lack of historical data makes it difficult to

determine the effectiveness of these criteria and the fault

models they can target.

Complexity of Input and Output data/
Output Data

14

 Output Complexity complicates the oracle problem.

1. When the expected output model is available, the oracle

needs to compare two models. Then the oracle problem

complexity is NP-complete.

2. If the oracle is specified by listing expected properties of the

output model, then building this oracle is complicated by

the complexity of the output metamodel that describes the

output model.

Characteristics of Model transformation

15

 Model transformation has some unique characteristics

which make testing it challenging:

1. Transformation Input and output Complexity.

2. Model management tools.

3. Heterogeneity of Transformation languages.

H/Model Management Environment

16

 The construction of models involves either:

1. writing a program that builds the metamodel instances. Or

2. using model editors to manually build the instances, e.g. EMF.

 Visualizing output models is difficult because graphical editors

often do not provide adequate support for layout of diagrams

that are produced by a transformation.

 A confusing layout complicates manual analysis and the

comparison of two graphical representations. Specially with

regression test.

Characteristics of Model transformation

17

 Model transformation has some unique characteristics

which make testing it challenging:

1. Transformation Input and output Complexity.

2. Model management tools.

3. Heterogeneity of Transformation languages.

Heterogeneity of Transformation Languages

18

 A Large number of model transformation languages and

techniques exist.

 Transformations can be implemented with general purpose

programming languages; or languages dedicated to model

transformations (e.g. QVT). In addition to tool-specific

transformation languages, e.g. Objecteering, MetaEdit+.

 Testing techniques need to take this diversity into account.

Promising Approaches/
Input Complexity

19

 A constructive approach where models are built first and the

constraints are checked afterwards

 Generating objects and assemble them according to

specific criteria in order to build complete models.

 Limitation: Large number of of generated models do not

satisfy complete set of constraints

 Use SAT solvers to deal with a larger amount of constraints and

generate instances that satisfy the constraints.

Promising Approaches/
Output Complexity

20

Dealing with the Oracle Complexity:

1. When generating a model; test the output model directly.

2. Using partial oracle that checks only specific properties of

the output.

3. Using patterns to express pre- and post-conditions for the

transformation.

4. Using “Design by Contract” when building a model

transformation.

Promising Approaches/
Model Management Environments

21

 Model differencing: compares the model produced after

execution of a test case with an expected model.

 EMFCompare tool is available in the Eclipse framework.

 Versioning of models can benefit testing.

 CVS Model is an open source initiative that proposes a tool

for versioning of models.

Promising Approaches/
Heterogeneity of Transformation Languages

22

 Dealing with this issue can be tackled by:

1. Specific criteria and associated test generation techniques

for each particular language.

2. Black box techniques that ignore the actual language used

for the transformation.

3. A white-box approach generates test models based on the

structure of the rules used to implement the transformation.

Conclusion

23

 Some of the major challenges are identified.

 Solutions to some of the testing problems exist, but need more

improvement and work.

 A benchmark of realistic models and model transformations

for validation and comparison purposes is needed.

Questions and Discussion

24

