Model Checking
Lots of Systems

Efficient Verification of Temporal Properties
in Software Product Lines

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay,
Jean-Francois Raskin (2010)

Presented by Laura Walsh

Overview

1. Introduction of Software Product Line Engineering
Motivations and Challenges

Featured Transition System

Model Checking Approach

Case Study and Results

Strengths and Weaknesses

Conclusion

© N o O & w b

Discussion

Software Product Line Engineering

The development of software products in families (similar products of a system that
share core features and also have independent, variable features).

Main question:
How can we best describe (and verify)
all the different products of a family?

Definitions

Software Product Line (SPL): a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assetsin a

prescribed way

Software Product Line Engineering (SPLE): promotes reuse of the software lifecycle
when developing several similar systems.

e SPLE is beneficial to the development of embedded and critical systems
(which makes formal modelling and verification of SPLE very important!)

Running Example

(a) Basic vending machine (c) With a cancel purchase function

serveSoda. open
pay baCh ange soda .:sgrves oda_ open pauhan ge Soda Se—2P
close J cance close

return

(b) Selling tea and soda

soda serveSoda

(d) Distributing soda for free

free ”Soda._%erves da
skip J

Figure 1: Several variants of a vending machine

pay ._.change

tea

Motivation and Challenges

When developing families of products with different features, two major challenges are:

1. Scalable modelling
2. Efficient verification of the system behaviour

(a) Basic vending machine (c) With a cancel purchase function

serveSoda. open
\.‘nghange’. soda .§grve80da open pay change Soda P

(b) Selling tea and soda
soda serveSoda

(d) Distributing soda for free

free ”soda.%erveSO‘j'%
skip J

Contribution

1. Featured Transition System
o Extension of existing Transition System

2. Dedicated Model Checking Technique (supported by proof of concept tool)

o For verification of desired properties

Base Concepts

“We assume that the reader is familiar with automata theory and has basic knowledge
of formal verification”

VendingMachine
v
Beverages FreeDrinks CancelPurchase
b f &
Soda Tea

- t Products from Figure 1:

. (a) Basic ={v, b, s}
Legend: (b) Tea and soda ={v, b, s, &

AFid (c) Cancel function ={v, b, s, ¢}

AN (d) Soda for free ={v,b, s, f

Feature Diagram

e atype of diagram used to express the variability of the software product line
FD = (N, r, DE)

VendingMachine
x e N=setoffeatures={v, b, s,t,f, c}
/ l \ e r=rootnode (here,itisv), r €N
Beverages FreeDrinks: | |CancelPurchase e DE=setof decomposition edges
b e
/.\ between features, DE & Nx N =
(v,b),(v,f),(v,c),(b,s),(b,t)}
Soda Tea
- I Products from Figure 1: _ _
— (a) Basic —{v, b, s} [[d]].,= semantics of a feature diagram d
egene (b) Iearandeeda =i b &8 (the set of valid products)
(c) Cancel function ={v, b, s, ¢}
/?\= And (d) Soda for free ={v, b, s, f}

{ {V’ b, t}’ {V’ b, t, f}, {V, b) t, C}1 {V, b, t? f’ C},

1 . H H N {Vl b’ S}, {V7 b’ S’ f}7 {Vl b7 S7 C}, {V’ b7 S’ f’ C}’
Figure 2: FD for the vending machines of Figure 1. .b, s, th{v.b.s, t.f}, {v. b, 5. t. ch{v, b s, t. f, cl}

Transition System

A transition system is a directed graph with labelled vertices.

(a) Basic vending machine (b) Selling tea and soda

soda serveSoda

pay ’ghange’. soda_serveSoda_ open pay_ change open
close j tea ervelea
close

(c) With a cancel purchase function

pay change Soda Sgresoga, open (d) Distributing soda for free
m dose free . _soda_ serveSoda

skip

Figure 1: Several variants of a vending machine

An execution of transition system M is an infinite legal
execution paths of the system. The semantics of a TS, [[t]]
is given by its set of executions (all possible legal paths of
execution).

TS

M = (S, Act, trans, |, AP, L)

S = set of states

Act = set of actions

trans = set of transitions
between states, encoded
with actions

C SxActxS 5 81
| = set of initial states

AP = set of atomic
propositions

L = labelling function
S>24P

10

Featured Transition System

A transition system in which each transition is labelled with the feature it originated
from.

return/c cancel/c
% IS serveSoda/s
pay/v change/v - T

; »O

Same componentsasa TS
(S, Act, trans, I, AP, L), plus:

e d=(N,r,DE)isa
feature diagram

e y=labels transitions
with features
(trans -> N)

e >=priority relation
(S trans x trans)

Priorities oo . 5 PRV

skip/f openfv
—_— > —P

Figure 3: FTS of the vending machine

(a) Basic vending machine

pay bghange’. soda_serveSoda_ open
close —/_'

(b) Selling tea and soda
soda

Featured Transition System

{v, b, s}

Projection: obtaining the behaviour of one
particular product given the overall
featured transition system

return/c cancel/c
pay/v change/v

22,

serveSoda

{v,b,s, t}

(c) With a cancel purchase function

P serveSoda open

(d) Distributing soda for free

{V’ b) S’ C}

Priorities —~e°1,, - PaYV

close/v skip/f open/v {v,b,s, f}
e > ——

free soda_ serveSoda

skip J

Figure 3: FTS of the vending machine

Figure 1: Transition systems for four products

12

Featured Transition System

FTS Semantics vs. TS Semantics

Vfts o [fts]ers € [TS(fts)]rs

e FTS semantics are not equivalent to TS semantics

o TS’sdo not account for the priority relations which are very importantin the FTS
o Using TS model checking techniques would generate false positives

e FTS-specific model checking algorithm is required

13

Reachability in Featured Transition Systems

e Model checkeris meant to perform a search in the state space of the Featured
Transition System and thus needs an execution model that is faithful to the FTS

semantics
e We want our model checker to indicate the products for which a property does (or

does not hold)

EXPLORING THE STATE SPACE OF A FEATURED TRANSITION SYSTEM

e We need a proper execution model that keeps track of products and respects

transition priorities

14

Reachability in Featured Transition Systems

Solution: construct a reachability relation R, as you explore the state space
-> Which states are reachable by which products?

- Theinitial states of the FTS are reachable for all products.

- From areachable state s0, another state sl is reachable if there exists a transition
(encoded in trans) from s0 to s1 which runs action a, AND there is no higher priority
relation between s0 and another state (s2) on action a’.

15

Reachability in Featured Transition Systems

Set of States

States
Initial states | {s1}

return/c cancel/c
A 6 Reachable | {s2,
5
payiv changefv from sl s3}

22,

Priorities

closefv

freé)f ayiv 7
> > 220V,
skip/f openfv

p S 2 P >

Reachable {s3}
from s2

Reachable By

All products

s2: reachable by products
which contain the feature v
(for pay) but do NOT contain
the feature f (for free, which
has priority over the pay/v
transition)

s3: reachable by products
which contain the feature f

Same products which could
reach s2

16

Model Checking Featured Transition Systems

Goal:

e \Verify regular and w-regular properties
o If aproperty is satisfied by the Featured Transition System, then it also must be satisfied
by every product of the Software Product Line
o Ifapropertyisviolated, the algorithm should report a counter-example as well as the
products of the Software Product line that violate the property

e A model satisfies a temporal property if all its projections satisfy the property

Aside: classical model checking algorithms only return a counter-example if there’s a violation of a
property. Here, we would like both a counter example and a list of the products which violate the
property, to help the engineer correct the model.

17

Model Checking Featured Transition Systems

Problem: If there’s a violation, a counter example and list of offending products is
returned. But in this case, we don’t know which (if any) products DID satisfy the
property! (We would like to have this information!)

Solution: The model checker will return an exhaustive list of the violating products. So,
we will implicitly know which products satisfy the property (all products that are not
mentioned on the violation list)

18

Model Checking Featured Transition Systems

e Automata-based model checking
e \Verifies regular and w-regular properties (expressed by finite automata and Buchi

automata, respectively)

Check whether the synchronous product of the system (an FTS) with the automaton (FA
or BA) representing the negation of the property has an empty language.

- Ifthe language is empty: your property is satisfied
- Ifthe language is not empty: your property is not satisfied

Synchronous product =FTS® a

19

Case Study e

t
o surface control room

Mi P C 1 methane sensor A
Ine Pump Controller o STVIO NN
P oorflo;v sensor monitoring
carbon monoxide station
System is made up of: sensor -
e \Water pum —~—]PUMp
P P . e control
e Sensor measuring the water S : — station o
level
. L . high-water level detector
e Sensor measuring the level of =
sump A ——

methane in the mine low-water level detector

Fig. 1 Control of mainpump for mine drainage

The system should activate the pump once the water level reaches a set threshold, but
only if the methane is below a critical limit.

Case Study

Five separate Featured Transition
Systems were used to model the
min pump system and its
environment:

1. Control structure of the
program

Changes to the system state
Water level

Methane Level

State of the pump

A

e to surface
surtace control room
methane sensor -
- environment
airflow sensor monitoring
o= -
carbon monoxide station
sensor
i PUMP
pump
con!rol
J - station -
L . high-water level detector
L*M ~—
sump W — low-water level detector

Fig. 1 Control of mainpump for mine drainage

These separate FTSs were combined into two overall

system FTS: One with 1828 states and 4612 transitions, the
other with 29760 states and 69856 transitions .

Results

Table 1: Benchmark results for exhaustive counter example search ExtMC(FTS, ¢).

4 features, 4 products 9 features, 64 products
Formula ¢ Cur. Our Diff. Cur. Our Diff.
(1.1) OO(start A Omsg A (methane = palarm)) v | 9389s 5563s 1.69 | 57.706s 8.162s 7.07
= (OO0 (methane = Qpumpof f)
(1.2) -0O0(start A Omsg A (methane = {palarm)) X | 25.741s 37.663s 0.68 | 138.970 s 102.716 s 1.35
(1.3) OO(start A Omsg) = O(pumpon = Qrunning) v | 5084s 4308s 1.18 | 13.716s 5317s 258
(1.4) OO0(msg A Qlevel) = OO (lowwater = Qpumpoff) v | 4970s 4.156s 1.20 [16.450s 4.926s 3.34
(1.5) O0(msg A QOlevel A ready) vV | 5172s 4.462s 1.16 | 14981s 5.033s 298
= O((highwater A O'methane) = Qpumpon)
(1.6) O0(msg A QOlevel A ready) X | 5437s 4405s 1.23 | 17.741s 4914s 3.61
= O((highwater \!methane) = Qpumpon)

Classical model checking algorithm vs. author’s proposed model checking algorithm
(implemented in Haskell - functional programming language)

22

Future Work

Further optimize their approach

Incorporate the use of Boolean expressions in the labelling of transitions

o This would allow for more robust representations, such as the possibility to express a situation in
which one transition is associated with more than one feature

Define translations from high-level modelling languages (e.g. StateCharts,
Promela) to FTS (to allow for usability in an industrial setting)

Develop merging techniques which create a single FTS from multiple TS’s

23

Conclusion

e Challenge: to efficiently model and verify the variety of products which contain
different features within a software product line

e Contributions: Featured Transition System representation of an SPL &
Dedicated model checking technique using an automata-based model checking
approach

e Case study benchmark results showed their method was on average 3.5x faster
than the classical model checking algorithm

24

Strengths

- Good explanation of the motivations
for this work, the challenges
associated, and their improvements
upon existing work

- Quite a computational improvement
compared to classical approaches!

- Great ideas for improvements
through future work

Weaknesses

- Alot of prior knowledge assumed
(and minimal re-explanation of these
concepts)

- Not many concrete examples given of
the concepts proposed/explained

- More figures would have been helpful
(there are only three, and they are in
the first three pages)

Discussion: Does anyone have strengths and weaknesses to add?

25

Weaknesses

mal definition for FA and BA is given below. The language

of an FA (resp. BA) consists of finite (resp. infinite) words
and can be empty (accepts no word).

[dl;p S P(N).

26

Discussion

1. Howdidyou find the technical depth of this paper?
o Wasthe paper totally understandable / difficult to understand?

2. What could the authors have done to make their paper more accessible and
understandable?

3. What do you think the Related Work section adds to the paper?

27

Questions

1. Whatkind of audience was this paper written for?
a. Partof the International Conference on Software Engineering

2. Didthe authors end up doing the future work they proposed?

a. Seems like yes!

3. Was this a highly original approach at the time (2010)?

a. What was typically done until this approach was proposed?

28

