
Model Checking
Lots of Systems

Efficient Verification of Temporal Properties
 in Software Product Lines

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay,
Jean-François Raskin (2010)

Presented by Laura Walsh 1

Overview

1. Introduction of Software Product Line Engineering

2. Motivations and Challenges

3. Featured Transition System

4. Model Checking Approach

5. Case Study and Results

6. Strengths and Weaknesses

7. Conclusion

8. Discussion

2

Software Product Line Engineering

The development of software products in families (similar products of a system that
share core features and also have independent, variable features).

3

Main question:
How can we best describe (and verify)
all the different products of a family?

Definitions

Software Product Line (SPL): a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way

Software Product Line Engineering (SPLE): promotes reuse of the software lifecycle
when developing several similar systems.

● SPLE is beneficial to the development of embedded and critical systems
(which makes formal modelling and verification of SPLE very important!)

4

Running Example

5Figure 1: Several variants of a vending machine

Motivation and Challenges

When developing families of products with different features, two major challenges are:

1. Scalable modelling
2. Efficient verification of the system behaviour

6

Contribution

1. Featured Transition System
○ Extension of existing Transition System

2. Dedicated Model Checking Technique (supported by proof of concept tool)
○ For verification of desired properties

7

Base Concepts

“We assume that the reader is familiar with automata theory and has basic knowledge
of formal verification”

8

Feature Diagram
● a type of diagram used to express the variability of the software product line

9

Figure 2: FD for the vending machines of Figure 1.

FD = (N, r, DE)

● N = set of features = {v, b, s, t, f, c}
● r = root node (here, it is v), r ∈ N
● DE = set of decomposition edges

between features, DE ⊆ N x N =
(v,b),(v,f),(v,c),(b,s),(b,t)}

[[d]]FD = semantics of a feature diagram d
(the set of valid products)

{ {v, b, t}, {v, b, t, f}, {v, b, t, c}, {v, b, t, f, c},
 {v, b, s}, {v, b, s, f}, {v, b, s, c}, {v, b, s, f, c},
{v, b, s, t}, {v, b, s, t, f}, {v, b, s, t, c}, {v, b, s, t, f, c}}

Transition System

M = (S, Act, trans, I, AP, L)

● S = set of states
● Act = set of actions
● trans = set of transitions

between states, encoded
with actions
⊆ S × Act × S

● I = set of initial states
● AP = set of atomic

propositions
● L = labelling function

S → 2 AP
10

An execution of transition system M is an infinite legal
execution paths of the system. The semantics of a TS, [[t]]TS
is given by its set of executions (all possible legal paths of
execution).

A transition system is a directed graph with labelled vertices.

Figure 1: Several variants of a vending machine

Featured Transition System

A transition system in which each transition is labelled with the feature it originated
from.

11
Figure 3: FTS of the vending machine

Same components as a TS
(S, Act, trans, I, AP, L), plus:

● d = (N, r, DE) is a
feature diagram

● γ = labels transitions
with features
(trans -> N)

● > = priority relation
(⊆ trans x trans)

Featured Transition System

12

Projection: obtaining the behaviour of one
particular product given the overall
featured transition system

Figure 3: FTS of the vending machine Figure 1: Transition systems for four products

{v, b, s}

{v, b, s, t}

{v, b, s, c}

 {v, b, s, f}

Featured Transition System

FTS Semantics vs. TS Semantics

● FTS semantics are not equivalent to TS semantics
○ TS’s do not account for the priority relations which are very important in the FTS
○ Using TS model checking techniques would generate false positives

● FTS-specific model checking algorithm is required

13

Reachability in Featured Transition Systems

● Model checker is meant to perform a search in the state space of the Featured
Transition System and thus needs an execution model that is faithful to the FTS
semantics

● We want our model checker to indicate the products for which a property does (or
does not hold)

EXPLORING THE STATE SPACE OF A FEATURED TRANSITION SYSTEM

● We need a proper execution model that keeps track of products and respects
transition priorities

14

Reachability in Featured Transition Systems

Solution: construct a reachability relation R0 as you explore the state space

-> Which states are reachable by which products?

- The initial states of the FTS are reachable for all products.

- From a reachable state s0, another state s1 is reachable if there exists a transition
(encoded in trans) from s0 to s1 which runs action α, AND there is no higher priority
relation between s0 and another state (s2) on action α’.

15

Reachability in Featured Transition Systems

16

Set of
States

States Reachable By

Initial states {s1} All products

Reachable
from s1

{s2,
 s3}

s2: reachable by products
which contain the feature v
(for pay) but do NOT contain
the feature f (for free, which
has priority over the pay/v
transition)

s3: reachable by products
which contain the feature f

Reachable
from s2

{s3} Same products which could
reach s2

Model Checking Featured Transition Systems

Goal:

● Verify regular and ω-regular properties
○ If a property is satisfied by the Featured Transition System, then it also must be satisfied

by every product of the Software Product Line
○ If a property is violated, the algorithm should report a counter-example as well as the

products of the Software Product line that violate the property
● A model satisfies a temporal property if all its projections satisfy the property

Aside: classical model checking algorithms only return a counter-example if there’s a violation of a
property. Here, we would like both a counter example and a list of the products which violate the
property, to help the engineer correct the model.

17

Model Checking Featured Transition Systems

Problem: If there’s a violation, a counter example and list of offending products is
returned. But in this case, we don’t know which (if any) products DID satisfy the
property! (We would like to have this information!)

Solution: The model checker will return an exhaustive list of the violating products. So,
we will implicitly know which products satisfy the property (all products that are not
mentioned on the violation list)

18

Model Checking Featured Transition Systems

● Automata-based model checking
● Verifies regular and ω-regular properties (expressed by finite automata and Büchi

automata, respectively)

Check whether the synchronous product of the system (an FTS) with the automaton (FA
or BA) representing the negation of the property has an empty language.

- If the language is empty: your property is satisfied
- If the language is not empty: your property is not satisfied

Synchronous product = FTS⊗ a

19

Case Study

Mine Pump Controller

System is made up of:
● Water pump
● Sensor measuring the water

level
● Sensor measuring the level of

methane in the mine

20

The system should activate the pump once the water level reaches a set threshold, but
only if the methane is below a critical limit.

Case Study

Five separate Featured Transition
Systems were used to model the
min pump system and its
environment:
1. Control structure of the

program
2. Changes to the system state
3. Water level
4. Methane Level
5. State of the pump

21

These separate FTSs were combined into two overall
system FTS: One with 1828 states and 4612 transitions, the

other with 29760 states and 69856 transitions

Results

Classical model checking algorithm vs. author’s proposed model checking algorithm
(implemented in Haskell - functional programming language)

22

Future Work

● Further optimize their approach

● Incorporate the use of Boolean expressions in the labelling of transitions
○ This would allow for more robust representations, such as the possibility to express a situation in

which one transition is associated with more than one feature

● Define translations from high-level modelling languages (e.g. StateCharts,
Promela) to FTS (to allow for usability in an industrial setting)

● Develop merging techniques which create a single FTS from multiple TS’s

23

Conclusion

● Challenge: to efficiently model and verify the variety of products which contain
different features within a software product line

● Contributions: Featured Transition System representation of an SPL &
Dedicated model checking technique using an automata-based model checking
approach

● Case study benchmark results showed their method was on average 3.5x faster
than the classical model checking algorithm

24

Strengths

- Good explanation of the motivations
for this work, the challenges
associated, and their improvements
upon existing work

- Quite a computational improvement
compared to classical approaches!

- Great ideas for improvements
through future work

25

Weaknesses

- A lot of prior knowledge assumed
(and minimal re-explanation of these
concepts)

- Not many concrete examples given of
the concepts proposed/explained

- More figures would have been helpful
(there are only three, and they are in
the first three pages)

Discussion: Does anyone have strengths and weaknesses to add?

Weaknesses

26

Discussion

1. How did you find the technical depth of this paper?
○ Was the paper totally understandable / difficult to understand?

2. What could the authors have done to make their paper more accessible and
understandable?

3. What do you think the Related Work section adds to the paper?

27

Questions

1. What kind of audience was this paper written for?
a. Part of the International Conference on Software Engineering

2. Did the authors end up doing the future work they proposed?
a. Seems like yes!

3. Was this a highly original approach at the time (2010)?
a. What was typically done until this approach was proposed?

28

