Detection of Conflicting Functional
Requirements in a Use Case-Driven
Approach

Jan Hendrik Hausmann, Reiko Heckel and
Gabi Taentzer, 2002

Presented by: Laura Walsh

Motivation

Implementation ?

Verification

Find conflicting requirements as early as possible!

Motivation

Cost of Change Requests Over Time

120

100
g 80
L 60
8 40
20
0

1 2 3 4 5 6

Requirements Design Build Integration Test Pre-

Production

SDLC

Goal

- Analyse the requirements of the
system before starting to build it, in
order to identify whether there may
be conflicting requirements

How the customer How the project How the anayst How the programmer | How the buziness
eqplained it leader undestood it designed it | wrote it | analyst described it

- Add information to UML models
which tell the modeller where there
is the potential for conflicts

Houn the project hat operations
was documented inztalled

| | How the customer

i1 B i1
| How it was supported What the customer
| | was billed |1 e |

I really needed

Types of Consistency to Maintain

1. Consistency of aspects

Use cases refer to situations from the problem domain which are not
represented in the static model.

2. Consistency of views

Semantic overlap between use cases expressing different requirements.

Running Example

1 B s a—
Customer — Bill 1 Shop
cash total 0.1 B 1
0.1 0.1 3
0.1 > F 1
Cal'l 1 Gmd 0.4 RBCk Cﬂﬁhﬂﬂx
valup amount

Figure 1: Class diagram of the shop

Class diagram - to represent static requirements

1/ <==tA
Customer / Clerk

LY

I{ <<rgfine>> \ <<refine>>

settle bill

Figure 3: Use case diagram of the shop

Use case diagram- to represent dynamic requirements

:Customer :Customer | :Customer I | :Customer |-\. Bl
take cart [cma!a b"r"> 1 total = 0

[con | [i_|
I:Cuslomerl—-i Cart | I:Custmner]"'—‘[:Cart | I Cwslome—l—'[:Cart I I :Customer H :Cart |

i

| :Rack }— :Good | [:Rack | [:Good | -Bill :Good :Bill

:Good
total =y =X fotal = y+x value = x
o Bill : JME 1 Bill] _
cash total=x cash=y-x total=x :Shop :CashBox
— O:.% amount = y+x
[Cat J— :Good—I] [Good]
/y/ -Bill —__:Good
(e] s =
Figure 4: Action specifications for use case buy goods Figure 5: Action specifications for use case sell goods

Action specifications - to represent functional requirements

Rules

Cu:Customer Ca:Cart Cu:Customer Ca:Cart
B:Bill G:Goad B:Bill G:Good
iotal = y value = x| total = y+x value = X

L R

: Box

o(Cu) = c1, o{Ca) = c2,
o(B) = b1, o(G) = g1,
o(x) = 20, o(y) = 10
o(x) = 30, ofy) = 10

amount = 1000

:Qﬂﬁh Box

amaount = 1000

Figure 7: Application of the rule bill good

Representing the Model

Typed graph transformation system G = <TG, C, P, >

TG = Type Graph (an abstract representation of the class diagram)
C = Constraints (what is allowable in the system)
P = Rule/action names

Tt = mapping between rule names (from P) and the expression of the rule in TG

What Causes a Conflict?

|mh=50

:Cash Box
amount = 1000 : N
G
pay Bill seftle Bill
H, % H
H ﬂ | I[:Customer iE'!
cash = 10 \zﬁ\lataltdﬂ 1 cash 50 \,ML‘W=4D
h\\}\J h\\{_ [|

|

:Cash Box :Cash Box
amount = 1000 ! amount = 1040 —I :Shop I
Li—

Figure 9: A conflict between pay bill and settle bill

Parallel Independence:
there can be no overlap in
the items that are deleted
by two transformations

Sequential Independence:
there can be no overlap in
the items that are created
by two transformations

Finding Conflicts

The Attributed
Graph Grammar
System:

A Development
Environment for
Attributed Graph
Transformation
Systems

The Homebase

Find all critical pairs
among
transformations (can
be done using graph
transformation
system AGG)

PAAGG ¥1.1.00

[C=R] takeCart
selectGood
[C=R] jpayBill
[L*=R] createill
[E=R] billGood
setlieBill

Rules of Shopping

[L*R] takeCart
L*R] selectGood
[L*R] payill
[L*R] createBill

(§07) Lett of payBill overtaps Left of settieBill 3)

2:Custormar
cash=cash

]

4:8ill

total=x

_'Lmumwmumum g

10:CashBox

amount=amount

eft of payBill overlaps Left of settleBill (2)

Bill CashBox

fotal=x amount=amount

Customer

Good

Bill

va lua=y

total=x

Cart

CashBox

amount=amount

cash=cash

Cuslomar

cash=cash

eft of payBill overlaps Left of settleBil (1)

1:Good 8 4:Bill

H 2:C a

total=x

vilue=y

cash=cash

10:CashBox

armount=amount

Strengths

- Simple implementation that has the potential for great
improvement (of efficiency, cost cutting) to the requirements
phase of software modelling

- Approach allows modeller to use their own CASE tool (along
with AGG tool which already exists)

Weaknesses

- No study on whether their proposed additions to use case
models would actually help modellers

- Astheclass diagram grows larger and more complicated,
there will be many conflicts to sort through. Is it reasonable to

expect modellers to manually review each flagged potential
conflict?

Final Thoughts / Questions

- Small scope of the study

- Which (if any) techniques have been widely adopted since this
paper was published?

Discussion

- How could the scope have been expanded?

- What are some ways that the researchers could have
conducted a study to find out if their ideas had a significant
Impact?

- Do you think this process has the potential to be used by
modellers? Why or why not?

