

When and How to Use Multi-Level Modelling

Authors: J. De Lara, E. Guerra & J. Sánchez Cuadrado Presenter: Nick Fung January 29, 2018

Running Example

- Task
 - Create a model-based computer system for managing the products sold in a bookstore

Running Example

• Task

Create a model-based computer system for managing the products sold in a bookstore

- M0 (Terminal) Model
 - Representation of a system

- M0 (Terminal) Model
 - Representation of a system
- M1 Metamodel
 - Abstract syntax of models
 - Prescription of what can be represented

• M0 (Terminal) Model

- Representation of a system
- M1 Metamodel
 - Abstract syntax of models
 - Prescription of what can be represented
- M2 Metametamodel
 - Metamodelling facilities
 - Auto-descriptive

Limitations of Architecture (1)

- Type-Objects (Clabjects)
 - New types (i.e. classes) cannot be instantiated dynamically

Limitations of Architecture (1)

• Type-Objects (Clabjects)

- New types (i.e. classes) cannot be instantiated dynamically

Limitations of Architecture (1)

• Type-Objects (Clabjects)

- New types (i.e. classes) cannot be instantiated dynamically

Limitations of Architecture (2)

• Dynamic Features

New features cannot be added to a type

Limitations of Architecture (2)

- Dynamic Features
 - New features cannot be added to a type

Limitations of Architecture (3)

Auxiliary Domain Concepts

- New entities relevant to an existing type cannot be added

Limitations of Architecture (3)

Auxiliary Domain Concepts

- New entities relevant to an existing type cannot be added

Limitations of Architecture (4)

Relation Configuration

- Reference types (i.e. relations) cannot be reconfigured

Limitations of Architecture (4)

Relation Configuration

- Reference types (i.e. relations) cannot be reconfigured

Limitations of Architecture (5)

• Element Classification

- New classifications for (new) classes cannot be created

Limitations of Architecture (5)

• Element Classification

- New classifications for (new) classes cannot be created

Two-Level Solutions (1)

Explicit Modelling

- Model dynamic types, relations, etc. at the M0 level
- Flexible, but yields complicated models

Two-Level Solutions (2)

Promotion

- Model types at M0 and transform into a meta-model
- Flexible, but may require complex transformation

Two-Level Solutions (3)

- Powertypes
 - Types whose instances are subtypes of another type
 - Limited to modelling features in the next two levels

Two-Level Solutions (4)

Stereotypes

- Extensions of the metametamodel
- Limited to modelling domain concepts at two levels

Potency

- Model elements are clabjects
- All elements are instantiable (for given number of times)

Potency

- Model elements are clabjects
- All elements are instantiable (for given number of times)
- Orthogonal Classification Architecture
 - Metamodelling facilities available at all meta-levels
 - Two kinds of types: ontological & linguistic

• Type-Object

Type-Object

Relation Configurator

Field Study

• Results

- Over 400 metamodels surveyed
- 84 contain at least one type-object
- 459 occurrences of patterns in total

Field Study

Results

- Over 400 metamodels surveyed
- 84 contain at least one type-object
- 459 occurrences of patterns in total

Discussion Points

- Which approach is more "natural"?
- Is multi-level modelling a workaround?

Electronic Health Record (EHR)

Requirements

- Capture holistic view of patient
- Applicable/extensible to all clinical domains
- Applicable for all clinical environments

Conclusions

Multi-Level Modelling

- Potency
- Orthogonal Classification Architecture

Design Patterns

- Type-Object Pattern
- Dynamic Features
- Dynamic Auxiliary Domain Concepts
- Relation Configurator Pattern
- Element Classification

• Discussion

– When to use multi-level modelling?