Generating and Evaluating Choices for Fixing Inconsistencies in Design Models

Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein

CSC2125: Topics in Software Engineering
Or Aharoni

UML Model

Video-on-demand (VOD) model in UML

Consistency and inconsistencies Rules in UML

C1: operations=message.receiver.base.operations return (operations->name->contains(message.name))

Inconsistency 1: Message *play* is not defined as a method in Class *Streamer*

C2: startingPoints = find state transitions equal first message name startingPoints->exists(object sequence equal reachable sequence from startingPoint)

Inconsistency 2: Behavior of class *Streamer* (statechart) does not allow for message *play* to follow message *connect*

C3: in=message.receiver.base.incomingAssociations;? out=message.sender.base.outgoingAssociations;? return (in.intersectedWith(out)<>{})

Inconsistency 3: Calling direction of Message *draw* does not match association direction between classes *Display* and *Streamer*

Ensure that a message in the sequence diagram is declare as a method in the receiver's class

Ensure the behavior of a sequence of a message is allowed by state machine

Ensure that the calling direction of the message is allowed by calling direction among classes

Inconsistencies Rules in UML from Meta-model

The Problem

- Identify all potential locations where to fix this inconsistency.
- Identifying how to change that location.

- Fixing Rules for all Locations
- Fixing rule for Consistency Rules
- Consistency rules differ among users

The Problem: Fixing Rules for all Locations

- Change method name
 - Message.Name
- Change the receiver of the message
 - Base.operation

R1	message stream[name]	I-only
4	message stream[receiver]	I-only
	object d[base]	C&I
	class Display[methods]	C-only
	method select[name]	C-only
	method play[name]	C-only
	method stop[name]	C-only

The Problem: Fixing rule for Consistency Rules

Interplay among multiple consistency rule

The Problem: Consistency rules differ among users

Different designers often use different consistence rules

Resolution rule define for one designer is useless for another

The Approach:

How we generate the initial set of choices?

Choice Generation Functions:

- Generate all possible values that specific fields of a model element.
- Independent from the consistency rules

1	m:Message.receiver:	
	choices = m.interaction.classifierRoles	
2	m:Message.name:	
	choices = {}	
	foreach (method in m.receiver.base.methods)	
	choices.insert(method.name)	
3	ae:AssociationEnd.multipliciy	
	choices = $\{1, 01, 1n, 0n\}$	
4	c:Class.namespace	
	choices = {}	
	foreach (a in c.associations)	
	foreach (oc in a.classifiers)	
	choices.insert(oc.namespace)	

What rules to re-evaluate to eliminate false choices?

- Choice generation function produce false rule.
- The elimination relay on the attributes.
- Check all the ways to fix the problem
 - Changing the receiver of the message
 - Changing the name of the message

Impact of changes: Is the approach correct?

- Only correct if it can identify all consistency rule instances affected by the fix
- One issue affects multiple elements
- Limitation of work is it restricted to single change

The Approach

- 39 small to large UML models
- 24 types of consistency rules found in industry.
- 14 types of typical locations for fixing inconsistencies.
- Only 17% of all relevant locations were evaluated

The Approach

- False location is a location for which no valid choice exists, bar suggest 11.2%
- By exploring choices we are able to automatable detect these false locations

Figure 10. Number of Locations for Fixing Inconsistencies (with/without false ones)

Conclusion

Strength of the approach

- Approach does not suggest false choices
 - Able to identify all consistency rules affected by the rules automatically
- Use a white-box constraints.
- The approach was made on UML, how ever it can be transfer to other meta-models.
- The approach tool provide "On-line" suggestions of choices.
- 40% had a single valid choice
 - Possible automated correction

Weaknesses of the approach

- Technique can make a change in one location at a time
- The approached was checked on IBM Tool only .
- The approach tested on small group of models.

Discussion

- Do you think in the future there will be possible auto-correction?
- What rollback mechanism shell be put? If any?
- Do you think that we need to have logs in the system?
- Do you think the approach be develop from the code to the model?
 (Like MVVM)