
On Visual
Formalisms
Paper Published: May 1998
Author: David Harel
Presenter: Mike Maksimov

Introduction to
Visual Formalisms

Why do we need visuals (e.g. graphs)?

● We live in a visually driven society.

● A visual image simplifies interpretation of data.

● Big amounts of data can be represented in a

smaller form, making assimilation easier.

Graphs in Computer Science:

● Logical Circuits

● Activity Diagrams

● State Diagrams

● Entity Relationship Diagrams

● Etc.

First we will look at:

The work of Leonhard Euler. Creator of the two well
known topo-visual formalisms.

● The Formalism of Graphs
● Euler Circles

Definition of a graph in its most basic
form:

● A set of points, or nodes, connected by edges

or arcs. The role is to represent a (single) set of

elements S and some binary relation R on them.

● The precise meaning of the relationship R is

part of the specific application and use case,

and can represent any kind of relationship.

● The nodes similarly can represent a range of

the most concrete to the most abstract

examples.

Types of topo-visual
formalisms

Good for:

● Representing a set of elements together with a

special type of relation(s) on them.

Euler Circles/Venn Diagrams

● Closed curves partition the plane into disjoint

inside and outside regions.

● A set is represented by the inside of a curve.

● This gives the topological notions of enclosure,

exclusion and intersection.

Types of topo-visual
formalisms

Good for:

● Representing a collection of sets, together with

some structural (i.e. set-theoretical)

relationships between them.

There is a problem! Observation

● In many cases, both capabilities are

needed.

● In order to compensate for this fact,

many of the visualizations are far more

complex than they have to be.

● It is often also desirable to identify the

Cartesian product of some of the sets.

Something that the previous formalisms

lacked.

Solution = Higraphs

Higraphs

Characteristics:

● Higraphs modify and combine Euler’s two

topo-visual formalisms into one,

supporting the capabilities of both.

● They are also extended in order to easily

represent Cartesian products.

● Higraphs are ultimately Euler circle curves

connected to each other by edges or

hyperedges.

● Every set is labeled by a “blob” for easier

reference.

● Blobs that hold no other blobs are called

“atomic” sets.

● If there is an intersection without a blob inside

(e.g. T & R), that intersection does not mean

anything.

● Explicit blobs allow the reference to the

difference of blobs (e.g. A - D).

Conventional Euler/Venn representation The addition of “blobs”.

Adding Cartesian
Products

● The notation is a partitioning by
dashed lines.

● J is no longer the union of K, N, I, L,
M. It is now used to represent the
product of the union of elements.

J = W x X = (K&N) x (I&L&M).

Adding Edges

● Edges are sorted into high-level
(e.g. E to A), low-level (e.g. N to K)
and inter-level (e.g. U to E).

● Each set of interest having its own
contour also enables more
connection flexibility.

Use cases:

● E-R diagrams
● Activity charts
● State diagrams
● Etc.

What benefit do higraphs add to
these cases?

● Higraph edges are not limited to
connecting elements to elements, but can
connect sets to sets.

● They are not “flat”, and support a notion of
hierarchy.

● Reduce clutter, resulting in a more clear
and concise picture.

Higraph Applications

Cons:

● The diagram is “flat”.
● The “is a” nodes convey

information of the structural,
set-theoretical relationship type.

● Explicitly having to place such
nodes each time will cause
clutter and become
unmanageable in more complex
diagrams.

E-R diagram Standard Example

E-R diagram - Higraph Implementation

E-R diagram Example #2

Standard E-R
Diagram

Higraph E-R
Diagram

State diagram cons:

1. They are “flat” and provide no natural
notion of depth, hierarchy or modularity.

2. They are uneconomical with regards to
representing transitions.

3. Sequential in nature. They do not cater for
concurrency in a natural way.

State diagram
example

Traditional State
Diagram

Higraph
Statechart

Statecharts - Higraph extension of
state diagrams.

Statecharts = State Diagram + Depth +
Orthogonality + Broadcast Communication.

Higraph Statechart benefits:

● They capture orthogonality by the
partitioning feature of Higraphs, that is,
by the unordered Cartesian product.

● The transitions are much easier to
follow due to less clutter.

● There is a notion of depth/hierarchy.
● The problem of the exponential growth

blowup is somewhat mitigated.

State diagram
example #2

Traditional
State Diagram

Higraph
Statechart

Benefit of broadcasting:

● Transitions are much easier to follow.
● Example (fig. 18): If we are in (B, F, J) and

an external event m comes in, then the
next configuration will be (C, G, I), by
virtue of e being generated in H and
triggering the two transitions in A and D.

State diagram
example #3

Fig. 17.
Traditional
State Diagram

A final lesson to take with you

● Graphical notations and formalisms are
important for expressing information.

● They are extremely diverse.
● There is not one set that can be used for

everything.

Last Note

Discussion
Pros and Cons

