
WHAT DO YOU SEE?

GRAPHICAL PROGRAMMING
ARE WE SEEING THE SAME THING?

AZADEH (AZZY) ASSADI

CSC 2125H1S

DR. M. CHECHIK

WHY LOOKING ISN’T ALWAYS SEEING: READERSHIP
SKILLS AND GRAPHICAL PROGRAMMING

• Objective:
• How programmers actually use different representations

• Challenges the assumption that graphical representations are unproblematically more
‘transparent’, more accessible, comprehensible, and memorable than textual

• No single representation is a panacea, but that we need to identify appropriate criteria
for choosing representational ‘horses’ for cognitive ‘courses’

GOOD GRAPHICS RELIES ON SECONDARY
NOTATION

• Secondary notation comes from analog mapping used by electrical engineers

• “The use of layout and perceptual cues (element as such as adjacency, clustering,
white space, labelling, …) to clarify information (such as structure, function or
relationships) or to give hints to the reader” (Petre, M and Green T.R.G., 1992)

• This is NOT part of the formal system

• Subject to personal style and individual skills
• Experience and personal skill impact the graphical representation based on how secondary

notations are used
• E.g. Novice’s design considered more difficult to comprehend b/c of the layout – different

grouping (not logical, confused signal flow, neglected conventions, etc.)
• Potential for miss-cues if notations not used correctly

WHAT IS THE DIFFERENCE HERE?
GRAPHIC OR TEXT?

EXPERIENCE INFLUENCES VIEWING STRATEGY

• Reading comprehension using various
graphical and textual representations
of nested conditional structures

• Results:
• Graphics were significantly slower than

text in all conditions
• Strategy differences were strongly

related to prior experience (more
experience = more flexible and
appropriate performance relative to the
question and secondary notation)

• Petri representations (Moher et al,
1993)

• Similar experiment

• Results:
• No instances in which graphical

representations out-performed their
textual counterparts

• Performance strongly depended on
layout of the Petri nets

• Difference due to secondary notations

NOVICES VS EXPERTS: OBSERVED STRATEGY
DIFFERENCES

NOVICE
• Rigid strategies and more chaotic

• Did not account for the structure of task or
of the notation

• Mismatch of strategy and notation

• Lack of secondary notation therefore
tended not to match strategy to the question

• Confused during a reading or mistrusted their
responses

EXPERT

• Consistent as a group with different
subjects choosing similar strategies

• Used practice trials to identify strategy
for style of question

• Strategy matched the question

• Used text to guide their graphic
reading when presented together.

DETERMINING WHAT IS RELEVANT

NOVICE
• Distracted by syntax or surface features

• A visible symbol is interpreted as a relevant
symbol – if its there it must be relevant

• Uneasy about completeness of their review

• Unable to satisfy themselves that they had
read the diagram thoroughly

• Unable to recognize secondary notational
cues

EXPERT
• Better able to develop overviews and significance

of detail

• Strategies based on different information

• Used secondary notation cues to limit search to
limited portions of the structure

• Acquired abilities to ‘see’ what is ‘invisible to non-
experts

• Graphics reading was uniformly slower than text

WHAT MAKES EXPERTS EXPERT

• Not just domain knowledge but knowing how and when to use it

• Knowing that at times certain things are left out to capture other more relevant things
– i.e. context specific inclusion and omission

• Secondary notations that are buried in experience and heuristics and rarely
formalized or codified – i.e. experts just know

• They just know expert’s work from another or a novice

• They don’t play by any hard and fast rules – i.e. apply and break rules in a
systematic way while still maintain consistency of application that gives cues to
structure and makes it understandable to other experts

WHY GRAPHICAL REPRESENTATIONS SO
APPEALING?
• ? An alternative to text

• ? Higher level of description for the desired
action. Ie. More info with less clutter – difficult
to compare with text on par

• ? Provides ‘gestalt’ – i.e. insight into the
structure as a whole? But programmers
couldn’t recognize structural similarities
among graphical representations – did find it
in textual representation

• ? Higher abstraction level – easier to derive
a mental model if relations are captured.

Possibility of too literal transcription of the
domain

• ? Accessible – cobol effect, pictures may
seem less daunting but can take longer to
read and easy to misunderstand if novice

• ? More comprehensible

• ? More memorable

• ? more fun – secondary notations are outside
the rules so there is more freedom to ‘play
around’; illusion of accessibility

ROLE OF GRAPHICS IN PROGRAMMING NOTATION

TEXT

• Text = graphics with very limited
vocabulary

• Precision of expression

• Doesn’t rely on perceptual responses

• Easily translated from visual to other
modes

GRAPHICS

• Graphics = unlimited vocabulary

• Lacks precision

• Impression of the whole

• Rules of interpretation not clearly
defined

CONCLUSIONS

• Graphical readership is an acquired skill
• Novices confuse visibility with relevance

• Experts take advantage of secondary notation cues to enable them to recognize sub-
term groupings to match patterns

• Readership skills in perception and interpretation are learned

CONCLUSIONS

• Experts and novices have different notational needs
• Experts should utilize expert languages with a broader scope of secondary notations as

they would be more likely to benefit from it and more likely to create complex programs
that would benefit from it

• Novices need more constrained systems in which secondary notations are minimized to
reduce potential for miss-cueing and misunderstanding

• Less skilled groups are less likely to benefit from secondary notation

• Graphics require readership and production skills the same way as text does

CONCLUSIONS

• Accept the bad with the good:
• Individual skill and insight is key in understanding/recognizing cues

• Need to be able to link perceptual cues to important information which requires guiding
the reader with appropriate cues

• There is no universal way of interpreting graphics

• There is greater capacity to go wrong compared to text

• Icons have the benefit of built in mnemonics but can become too detailed/complex (e.g
Prograph) and can become too fragmented

CONTEXT: THIS IS A
POST-OP FILM TAKEN
ON A PATIENT WHO
HAS JUST HAD A VP
SHUNT PUT IN.

QUESTION: WHAT DO
YOU SEE?

SOME LANDMARKS

WHAT DO YOU SEE?

WHAT DO
YOU SEE?

REFERENCES

• Moher, T.G., Mak, D.C., Blumenthal, B., and Leventhal, L.M. Comparing the
comprehensibility of textual and graphical programs: The case of Petri nets. In C.R.
Cook, J.C. Scholtz, and J.C. Spohrer, Eds., Empirical Studies of Programmers: Fifth
Workshop. Ablex, 1993, 137–161.

• Petre, M. Why looking isn’t always seeing: readership skills and graphical
programming. Communications of the ACM, 38(6), 1995

• Petre, M., and Green, T. R. G. Requirements of graphical notations for professional
users: Electronics CAD systems as a case study. Le Travail Humain 55, 1 (1992), 47–
70.

THANK YOU

	What do you see?
	Graphical Programming�Are we seeing the same thing?
	Why Looking isn’t always seeing: Readership Skills and Graphical Programming
	Good graphics relies on secondary notation
	What is the difference here?�Graphic or Text?
	Experience influences viewing strategy
	Novices vs Experts: Observed Strategy Differences
	Determining what is relevant
	What Makes Experts Expert
	Why Graphical representations so appealing?
	Role of Graphics in Programming Notation
	Conclusions
	Conclusions
	Conclusions
	Context: This is a post-op film taken on a patient who has just had a VP shunt put in.��Question: What do you see?
	Some Landmarks
	What do you see?
	Slide Number 18
	References
	Thank you

