
MODEL TRANSFORMATION TESTING,
THE STATE OF THE ART

Gehan Selim, James Cordy, Juergen Dingel,

Presented by: Lobna AbuSerrieh

INTRODUCTION
Model Driven Development

2

Model

Code

Transformations

TRANSFORMATION CORRECTNESS

Formal Methods : Heavyweight

Testing :

- executes a transformation on input models then

validates the actual output matches the expected

output.

- Automatable test activities

- Lightweight, Low computational complexity

3

PHASES OF MODEL TRANSFORMATION TESTING

1. Test Case Generation

2. Test Suite Assessment

3. Building the Oracle

4. Execute and evaluate

4

PHASE 1: TEST CASE GENERATION

 Define test adequacy criteria, then Build test cases

that achieves its coverage. And it can be done by

using:

− Black-Box testing: based on transformation

specification.

− Gray-box testing: based on the accessible parts of

transformation implementation.

− White-Box testing: based on transformation

implementation

5

BLACK- BOX TEST CASE GENERATION
METAMODEL COVERAGE

 Adequacy criteria for Class diagrams

− Association end multiplicity criterion

− Generalization criterion

− Class attribute criterion

6

BLACK- BOX TEST CASE GENERATION
METAMODEL COVERAGE

 Adequacy criteria for Interaction diagrams

− Each message on a link

− All message path

− Collection coverage

− Condition coverage

− Full predicate coverage

− Transition coverage

7

BLACK- BOX TEST CASE GENERATION
METAMODEL COVERAGE

 Adequacy criteria for statecharts

− Full predicate coverage

− All content- dependency relationships

− Transition coverage

− transition- pair coverage

− Complete sequence coverage

− All configurations transition coverage

 8

BLACK- BOX TEST CASE GENERATION
CONTRACT COVERAGE

Achieving input contracts of Model transformation

 Constructing metamodel of only those elements are

actually used in pre/post conditions of transformation

 Combine contract-based and metamodel based.

And footprints(number of times test model covers

each criterion).

9

WHITE-BOX TEST CASE GENERATION
 Most of the Studies are done without case studies

and no detailed results.

 Transforming rules to a source metamodel template.

 Assessing ATL rules by profiling:

1. Compilation resulted XML file to extract the rules.

2. Transformation to be executed. And using the
resulted log file to assess the coverage(rule,
instruction, decision).

 Grammar testing, Each rule to be triggered in every

possible context.

10

PHASE 2: TEST SUITE ASSESSMENT

 Achieved Coverage to assess the test suite quality.

 Mutation analysis, evaluate the sensitivity of the test

case to faults in transformation.

 Injecting faults by applying mutation operators and

generate mutants.

− Different results: Killed mutant.

− No faults: the mutant is alive

11

PHASE 3: BUILDING THE ORACLE FUNCTION

Compares The actual output with expected one.

 if the expected output is available, then Compare.

 If it is not available, validates the resulted output with

the predefined output properties or contracts

12

PHASE 3: BUILDING THE ORACLE FUNCTION
COMPARISON
if the expected output is available, then Compare:

13

Test Case Constructor
(Input Model, Expected Output, Transformation Strategy)

Test Engine
Execute, Compare

Test Analyzer
Visualize using colors and shapes

A framework uses Model comparison

PHASE 3: BUILDING THE ORACLE FUNCTION
CONTRACTS
If the expected output is not available, validates the

result with the predefined output properties or contracts.

 Tracts, set of OCL constraints and a tract test suite.

 Improving Transformation contracts:

1. Vigilance: dynamically detect errors

2. Diagnosability: effort to locate a fault

14

PHASE 3: BUILDING THE ORACLE FUNCTION
CONTRACTS

 Vigilance can be improved by Analyzing a test suit and

repeatedly using mutation analysis, until achieving an

acceptable mutation score.

 Other proposed an improved vigilance and diagnosabiliy

by using mathematical modeling.

15

QUESTIONS
 Gray-Box Testing , is it feasible to depend on partial

implementation while considering other parts as black box

testing?

 Class diagrams, statecharts, and sequence diagrams are

the common used while testing transformation, what about

other types of diagrams?

 Is Model comparison as oracle function clear enough?

 Since 2012 when this paper was written, and many related

studies were without case studies or reliable results, any new

updates were added to testing MDT?

16

	Model Transformation Testing,�The State of the Art
	Introduction
	Transformation Correctness
	Phases of Model transformation testing
	Phase 1: Test case generation
	Black- Box Test case generation�Metamodel coverage
	Black- Box Test case generation�Metamodel coverage
	Black- Box Test case generation�Metamodel coverage
	Black- Box Test case generation�Contract coverage
	White-Box Test case generation
	Phase 2: Test Suite Assessment
	Phase 3: Building the oracle function
	Phase 3: Building the oracle function�Comparison
	Phase 3: Building the oracle function�Contracts
	Phase 3: Building the oracle function�Contracts
	Questions

