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ABSTRACT
One of the selling points of Model-Driven Software Engi-
neering (MDSE) is the increase in productivity offered by
automatically generating code from models. However, the
practical adoption of code generation remains relatively slow
and limited to niche applications. Tooling issues are of-
ten pointed out but more fundamentally, experience shows
that: (i) models and modeling languages used for other
purposes are not necessarily well suited for code genera-
tion and (ii) code generators are often seen as black-boxes
which are not easy to trust and produce sub-optimal code.
This paper presents and discusses our experiences applying
the ThingML approach to different domains. ThingML in-
cludes a modeling language and tool designed for supporting
code generation and a highly customizable multi-platform
code generation framework. The approach is implemented
in an open-source tool providing a family of code generators
targeting heterogeneous platforms. It has been evaluated
through several case studies and is being used for in the de-
velopment of a commercial ambient assisted living system.
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1. INTRODUCTION
Modern systems are complex assemblies of proprietary

and open-source components, frameworks and services which
are re-used, evolved, customized and composed to create and
evolve applications. To cope with this evolution, the indus-
try has adopted techniques such as agile methods, DevOps,
continuous testing and virtualization. As pointed out in [19]
and [3], to make a difference MDE has to propose solutions
which fit in this reality, focus on specific problems and fit in
the software development process as a whole.

In this paper, we present the ThingML approach devel-
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oped as the result of a set of collaborations with industry
partners and in an effort to bring the benefits of MDE in a
practical setup usable by a wide range of developers. The
ThingML approach focuses on the customizability of its code
generators while providing the abstraction that developers
need to improve productivity [15]. The approach does not
aim at replacing programming or hiding source code but in-
stead at helping developer produce better source code more
efficiently. As noted by France in [8] programming and mod-
eling are complementary activities.

The contribution of the paper is two-fold. First it de-
tails our experience applying MDE in practice and discusses
the lessons learned over the three main iterations of the
ThingML tool. Second it describes the resulting approach
and more specifically discuses the code generation frame-
work build around the ThingML language in order to allow
developers to easily customize the code generators for the
need of their specific target platforms and projects.

The ThingML code generation framework has been used
to generate code in 3 different languages (C/C++, Java
and Javascript), targeting around 10 different target plat-
forms (ranging from tiny 8bit microcontrollers to servers)
and 10 different communication protocols. In addition, the
ThingML approach is currently being used by the Norwe-
gian company Tellu for the development of a new range of
eHealth and fall detection systems called Safe@Home, to be
deployed in elderly homes.

The remainder of this paper is organized as follows. Sec-
tion 2 details how the ThingML approach was iteratively
refined and discusses lessons learned from each iteration.
Section 3 presents the resulting ThingML approach, the
code generation framework and discusses how it has been
specialized to support a wide set of platforms. Section 4
discusses the communication extension points and plugins
of the framework. Section 5 gives on overview of 3 sys-
tems developed with ThingML: the Tellu Safe@Home sys-
tem, a micro-aerial vehicle platform and an Arduino based
IoT framework. Finally, Section 6 discusses related work and
Section 7 concludes by summarizing the key lessons learned.

2. CONTEXT AND BACKGROUND
The ThingML language and tool are the results of our ex-

periences in applying MDE in practice to a range of different
contexts during the last 5 years. The systems developed with
ThingML include different types of projects ranging from
case studies in research projects to product development in
industry projects. In terms of the application domains, the



first use cases for ThingML were embedded systems (for ex-
ample sensor networks in the oil and gas domain) but it
has more generally been applied to Internet of Things (IoT)
from which it got its name, Cyber-Physical Systems (CPS),
home and building automation, medical devices, robotics,
etc.

The ThingML approach is targeted at distributed reactive
systems and is especially beneficial for applications which in-
clude heterogeneous platforms (which can range from tiny
microcrontollers to cloud servers) and heterogeneous com-
munication channels. To that extent, and if compared to
the UML, ThingML can be considered as a domain specific
modeling language (DSML). It is however not specific to
any business domain which allows its use for a wide range
of applications.

While models and MDE can be beneficial for many other
purposes (e.g. requirements, testing) and actors in the soft-
ware development process, the goal of ThingML is to bring
MDE to the late design and the implementation phases of
the software life cycle as well as to support maintenance
and evolution tasks. The purpose of ThingML is to allow
modeling software components and to automatically gener-
ate complete modules of code ready to be deployed. The
target user group for ThingML is thus a broad range of soft-
ware developers and architects.

2.1 Initial work with UML
The initial work leading to ThingML was aiming at apply-

ing MDE for the development of embedded software together
with industrial partners. The embedded system develop-
ment teams we worked with were composed of highly skilled
developers. They follow processes which had been refined
over the years and were able to deliver systems with tight
reliability and performance constraints. In terms of model-
ing, these teams did not use UML or any UML tools but
typically did use state machines in order to design, discuss
and document the high level functionality of the different
components of their systems. One team had a practice (and
a textual notation) to systematically formalize those state
machines in a wiki used by the development team. These
models would be typically later transformed to code in a
systematic but fully manual way, even though a number of
open-source and commercial tools also existed to generate
code from state machines.

Lessons learned
From the state of the art, UML together with profiles such
as MARTE and SYSML appeared as natural choices to in-
troduce MDE. Reusing standards has a number of benefits:
UML is typically already used (to some extent) in design
phases and/or for documentation purposes, tools are avail-
able, etc.

When it comes to code generation and implementation,
many commercial UML tools include code generators.

However, while proposing a method based on UML was
encouraged by decision makers and software designers, its
use by the embedded systems development teams proved
very impractical and counter-productive. Developers had no
prior knowledge of UML and the UML modeler was difficult
to use, only a very small sub-set of UML/SYSML/MARTE
was relevant for the task, and the code generators were only
able to generate incomplete code from statecharts (either
without any action code or with action code written in text

boxes). After a short trial, an approach based on a generic
UML tool was rejected by practitioners.

2.2 Version 1
After the initial experiment using UML, a first version

of the approach was proposed based on non-UML state ma-
chine tools dedicated to embedded system development. The
approach was built as a three layer architecture: a domain
layer, an application layer and a hardware and driver layer.
The domain layer specifies a set of domain components (which
could be both hardware or software) as well as their inter-
faces in terms of asynchronous messages. A simple textual
DSL allowed for the definition of the domain model and a
code generator was used to systematically generate APIs
from the domain model and communication code [7]. The
benefit of this explicit domain model was to ensure a decou-
pling between the application part which remained platform
independent and the hardware/driver part which is by na-
ture highly platform dependent.

The application layer was fully modeled using a commer-
cial state machine tools (IAR VisualSTATE) and could only
manipulate the components and messages defined in the do-
main model. The IAR VisualSTATE code generator was
used to generate a complete module implementing the ap-
plication which could be linked to the domain model API.
In the state machine, the variables and actions were writ-
ten directly in C. The driver and hardware layer consisted
of manually implementing the APIs defined in the domain
model. The approach ensured that each component was im-
plemented in a separate module.

Lessons learned
The benefit of this first version was a good decoupling be-
tween the developers of the different drivers and the develop-
ers of an application. The use of a commercial modeling tool
dedicated to state machines and embedded systems proved
a lot more practical than the tailoring of a generic UML
tool. The textual DSL used for the definition of the domain
model also proved easy to use by the developers.

Some of the drawbacks included the difficulty of graphi-
cally specifying complex state machines and writing actions
as C code in text boxes, the loose connection between the
domain model and the state machine tool and the fully man-
ual implementation of the driver/hardware layer.

2.3 Version 2
The second version of the ThingML tool was built as a

single textual domain specific modeling language. It keeps
the principles of the previous approach: the mandatory def-
inition a component with explicit asynchronous message in-
terfaces and the possibility to define both platform indepen-
dent components and platform specific components indepen-
dently. However, it does not rely anymore on any external
tool or code generator. The component model previously
defined is extended with a state machine model to specify
the behavior of the components and an action language de-
fines platform independent guards and actions in the state
machines [5]. For platform specific code, a kick-down mecha-
nism allows embedding platform code in the model. Finally,
a configuration model also allows assembling components in
order to generate code for complete assemblies of compo-
nents.

This second version of ThingML was applied to a set of



use cases and a set of code generators has been developed
and specialized to accommodate for different target plat-
forms and programming languages. Those target platforms
included C for microcontrollers, C for POSIX/Linux, and
the JVM. Experience showed that the textual notation for
the state machine was beneficial for editing and implement-
ing the components behavior. The benefit of the textual
syntax are its usability for developers, ability to handle large
state machines, ability to support storage and versioning in
any code repository, etc. The only drawback is that it does
not allow to easily get an overview of the state machines.
To provide this graphical overview, a transformation is pro-
vided in order to export graphical UML representation of
the ThingML state machines.

Lessons learned
The experience from using the second version of ThingML
showed a good usability of the proposed modeling languages
(mostly based on UML) and the ability to generate code
suitable for a wide range of target platforms (from micro-
controllers to servers).

However, one limitation was that for each different tar-
get platform and even for each different project or applica-
tion, the code generators had to be tailored and customized
for the specific need in order to generate satisfactory code.
While the code generator was implemented in Scala using a
set of templates and helpers, customizing it often required a
good understanding of its inner working, required a signif-
icant effort and often resulted in duplicating large parts of
the code generator in order to make minor changes to the
generated code.

3. THINGML APPROACH (VERSION 3)
The third and current version of the ThingML approach

keeps the language unchanged but includes a complete rewrite
of the code generator as a plain Java Object-Oriented frame-
work designed to be easily customized by the developers for
their individual organization and project needs. The follow-
ing sections detail the design and usage of this version of
ThingML.

The code generator is actually a family of compilers1,
each targeting a specific language (currently C, Java and
JavaScript). Considerable effort has been made to identify
and expose extension points (that will be detailed in Section
3.2) that enable deep customization providing adaptability
to various platforms.

3.1 ThingML DSL
The ThingML language relies on two key structures: Things

that represents software components, and Configurations
that describe their interconnection. A Thing is an imple-
mentation unit, also referred to as component or process in
other approaches. A Thing can define properties, functions,
messages, ports and a set of state machines. The properties
are variables which are local to a thing and can be accessed
globally from within a thing (e.g. from a function or in a
state machine). The functions are local to a thing. They
can be used from anywhere in a thing but are not visible
(private) from other things. The only public interface of a
Thing is through the ports, which can send and receive a
set of messages. The messages (and their signatures) are

1or, more precisely, model-to-text transformations

defined within a thing but can only be sent and received
through ports.

The internal behavior of a thing, is implemented using a
mix of:

1. Imperative programming to express simple procedures,
either directly using the ThingML platform-independent
action and expression language, or using the features
of the target language (C, Java, JS, etc.) and wrapping
existing libraries, or a combination of both options.

2. Event-Condition-Action (ECA) to express simple if-
then rules to react on events in a stateless fashion

3. Composite State machine, conforming to UML state-
charts to react on and orchestrate events in a stateful
fashion

Ultimately, a ThingML compiler transforms a configura-
tion into fully operational code in a targeted language, ready
to be built and run. A configuration is a set of instances of
previously defined things, and a set of connectors between
two ports from those instances. By default, ThingML con-
nectors are local connectors, which only allows for the com-
munication between instances deployed on the same physical
node. However, in a realistic setup, the logic needs to be dis-
tributed across several nodes, and inter-node communication
is thus required. Therefore, we have added the possibility
to connect a port with the outside of the configuration (see
Section 4).

3.2 ThingML Code Generation Framework
The ThingML code generation framework defines a fam-

ily of compilers able to transform a ThingML model into
fully operational code in various languages. So far C, C++,
Java and JavaScript are supported as target language. Each
compiler is composed of a set of code generators, each of
them responsible for the compilation of a specific sub-set of
ThingML.

This modular structure allows for the customization of
some extension points, while all the others can be reused
as-is. The figure 1 presents the 10 different extension points
we have identified.

Figure 1: ThingML framework extension points

These extension points are separated into two groups: the
ones corresponding to the generation of code for “Things”
and the ones corresponding to the generation of code for



Configurations (or applications). In the metamodel, the cou-
pling between these two things is through the instances of
Things which are contained in configurations. In the gen-
erated code, the idea is to also keep a separation between
the reusable code which is generated for Things (types) and
the code generated to combine instances of Things together
into an application. Each extension point is basically an in-
terface (or abstract class) in the code generation framework
with a set of methods responsible for generating the code
associated to a given model element. Note that extension
points can overlap, in the sense that they can potentially
read the same model elements. Model elements cannot be
modified (read-only) during the code generation process, but
different extension points can share information through a
common context. This way, different extension points can
agree on naming conventions, etc. For example, an action
responsible for setting the value of a property needs to know
how the property is actually named in the generated code
(generated by another extension point).

1) Actions / Expressions / Functions: This part of
the code generator corresponds to the code generated for ac-
tions, expressions and functions contained in a Thing. The
generated code mostly depends on the language supported
by the target platform (C, Java, etc.), and the code gen-
erators should be quite reusable across different platforms
supporting the same language. The implementation of this
extension point consists of a visitor on the Actions and Ex-
pressions part of the metamodel. New code generators can
be created by inheriting from that abstract visitor and im-
plementing all its methods. Alternatively, if only a minor
modification of an existing code generator is needed, it is
possible to inherit from the existing visitor and only over-
ride a subset of its methods.

2) Behavior implementation: This part of the code
generator corresponds to the code generated from the state
machine structures and ECA contained in Things. There are
main strategies and frameworks available in the literature in
order to implement state machines. Depending on the capa-
bilities, languages and libraries available on the target plat-
form, the platform expert should have the flexibility of spec-
ifying how the behavior is mapped to executable code. In
some cases, the code generator can produce the entire code
for the state machines, for example using a state machine
design pattern in C++ or Java, and in other cases the code
generator might rely on an existing framework available on
the target platform, such as state.js for executing JavaScript
state machines. To allow for this flexibility, the ThingML
framework should provide a set of helpers to traverse the
different metaclasses responsible for modeling the behavior
and leave the freedom of creating new concrete generators
and/or customizing existing code generator templates.

3) Ports / Messages / Thing APIs: This part of
the code generator corresponds to the wrapping of ”things”
into reusable components on the target platform. Depend-
ing on the target platform, the language and the context in
which the application is deployed, the code generated for a
“thing” can be tailored to generate either custom modules
or to fit particular coding constraints or middleware to be
used on the target platform. At this level, a Thing is a black
box which should offer an API to send and receive messages
through its ports. In practice, this should be customized by
the platform experts in order to fit the best practices and
frameworks available on the target platform. As a best prac-

tice, the generated modules and APIs for things should be
manually usable in case the rest of the system (or part of it)
is written directly in the target language. For example, in
object oriented languages, a facade and the observer pattern
can be used to provide an easy to use API for the generated
code. In C, a module with the proper header with structures
and call-backs should be generated.

4) Connectors / Channels: This part of the code
generator is in charge of generating the code corresponding
to the connectors and transporting messages from one Thing
to the next. This is the client side of the APIs generated
for the Things. In practice, the connector can connect two
things running in the same process on a single platform or
things which are remotely connected through some sort of
network. This specific point is described with more details
in Section 4.

5) Message Queuing / FIFOs: This part of the gener-
ator is related to the connectors and channels but is specif-
ically used to tailor how messages are handled when the
connectors are linking two things running on the same plat-
form. When the connectors are between things separated
by a network or some sort of inter-process communication,
the asynchronous nature of messages is ensured by construc-
tion. However, inside a single process specific additional
code should be generated in order to store messages in FI-
FOs and dispatch them asynchronously. Depending on the
target platform, the platform expert might reuse existing
message queues provided by the operating system or a spe-
cific framework. If no message queuing service is available,
like on the Arduino platform for example, the code for the
queues can be fully generated.

6) Scheduling / Dispatch: This part of the code gen-
erator is in charge of generating the code which orchestrates
the set of Things running on one platform. The generated
code should activate successively the state machines of each
component and handle the dispatch of messages between the
components using the channels and message queues. De-
pending on the target platform, the scheduling can be based
on the use of operating system services, threads, an active
object design pattern or any other suitable strategy.

7) Initialization and ”Main”: This part of the code
generator is in charge of generating the entry point and ini-
tialization code in order to set up and start the generated
application on the target platform. The ThingML frame-
work provides some helpers to list the instances to be cre-
ated, the connections to be made and the set of variables to
be initialized together with their initial values.

8) Project structure / build script: This extension
point is not generating code as such, but the required file
structure and builds scripts in order to make the generated
code well packaged and easy to compile and deploy on the
target platform. The ThingML framework provides access
to all the buffers in which the code has been generated and
allows creating the file structure which fits the particular
target platform. For example, the Arduino compiler con-
catenates all the generated code into a single file which can
be opened by the Arduino IDE. The Linux C code generator
creates separate C modules with header files and generates a
Makefile to compile the application. The Java code genera-
tors create Maven project and pom.xml files in order to allow
compiling and deploying the generated code. The platform
expert can customize the project structure and build scripts
in order to fit the best practices of the target platform.



9) Checker: This part of the framework provides sup-
port for validating an input ThingML model before gener-
ating code from it. It not only includes syntactical checks,
but also a customizable set of rules that apply to the appli-
cation logic expressed in a model. While most of this rules
are generic and apply to all compilers regardless of the tar-
geted language, some are specific to a certain platform or
language. Checking the deterministic nature of transition in
a state machine can be useful disregarding the target lan-
guage whereas verifying that no float type is defined on 64
bits on a platform that does not support it only makes sense
on this specific platform. This system of rules can easily be
extended (by adding rules) to enrich existing compilers, or
to support validation for a new one. It is the role of the
checker to collect and enforce rules added by every module
of the compiler in use.

10) Code generator testing framework: In order to
validate code generators, the code generator testing frame-
work provides an extensible set of tests, with currently 140
tests. Those are ThingML models of programs from which
expected outputs (oracle) are provided. As much as possible
those model demonstrate one specific aspect of the ThingML
language. Therefore, the framework is able to test a com-
piler, and check that these models are indeed transformed
into code that produces the expected outputs. By compar-
ing the outputs of different compilers, it is also possible to
detect possible misalignement in the semantics implemented
by these different compilers. The testing framework can be
simply extended by adding new test models.

Figure 2: ThingML compilers SLoC distribution

The ThingML code generation framework is implemented
as an Object-Oriented Java framework. Figure 2 shows the
distribution of LoC for the different ThingML compilers. It
reveals that the effort required to develop a compiler tar-
geting a dialect from a supported language is significantly
smaller than developing a new one from scratch.

For example, the Linux C and Arduino code generators
actually share 95% of their code, meaning that the Linux
and Arduino experts can really focus on the 5% differences
between those two platforms. They mainly differ on the
”Main” generator, and the ”Build” generator, as the struc-
ture of the generated code expected differs on this points.
(Note that one of the biggest source of line for the POSIX
is network plugins.)

Similar gains have been obtained between plan Node.JS
(JavaScript) and Espruino (The block corresponding to the
slocs of Espruino is to the right of the one representing
JavaScript). It is also noticeable than compiler targeting
language of higher level (java, JavaScript) are implemented
using fewer slocs.

4. COMMUNICATIONS
As mentioned earlier, an important extension point is the

customization of the code generation for connectors. The
goal of this extension point is to enable the seamless ex-
change of messages with software components running on a
remote device, implemented or not in ThingML. In the end,
communication is transparent for the developer, who can
send a message just by calling port!message(parameters)

and react to incoming messages using event port?message

do ... end, as in a plain ThingML program. The follow-
ing section aggregate the different conclusion drawn during
our case studies (detailed in Section 4.2 and 4.3).

Typically, a ThingML component can be required to com-
municate with three type of components:

ThingML system: In some situations, a developer can
model application with ThingML for both ends of the com-
munication. In this case, communication stacks can be fully
generated. The code generation framework must be exten-
sible in order to flexibility on the choice of the transport
protocol.

Open systems: In some other case, a ThingML com-
ponent needs to communicate with another software com-
ponent, whose sources are accessible to the developer. It is
either possible to adapt the ThingML end, or to adapt the
other one by generating code in its language. In addition
to the support of a specific protocol, the code generation
framework must also be adaptable in terms of message en-
coding. Indeed, the encoding must be understandable by
the non-ThingML part of the application, or this part must
be changed to understand ThingML messages.

Proprietary systems: In many cases a ThingML com-
ponent will have to communicate with external closed-source
components, whose implementation cannot be modified. In
this case, the only option is to adapt the ThingML end both
in terms of encoding and transport.

Regardless of the situation, code needs to be generated (at
least for the ThingML end) in order to handle the following
tasks:

Encoding/Decoding: In order to exchange data be-
tween different platforms, a serialization scheme must be
chosen. While there exist numerous solutions and standards,
many distributed applications need to leverage several of
them. Indeed, the choice among them can be driven by
various concerns (bandwidth, human readability). Further-
more, it is not always a choice, in the case where a com-
ponent needs to communicate with a proprietary system,
which already fixed the format for some exchanges.

Sending/Receiving: Code must be generated to sup-
port both message emission and reception adapted to the
targeted protocol. For most cases these operations rely heav-
ily on a pre-existing library in the targeted language. But it
can require additional aspects depending on the paradigm.
For example, for synchronous communications, a message
can not necessarily be sent at any time, and some queuing
might be required.

Configuration and Link management: Before any
message exchange occurs, a network interface has typically
to be configured, and depending on the protocol a connec-
tion might have to be established. Furthermore, some net-
work paradigms require some additional logic such as keep-
ing track of connected clients.



Platform Type Language Memory

Avr 8bits2 Micro Controller C/C++ 2-8 KB
TI MSP430 Micro Controller C/C++ 8 KB
ARM Cortex PSoC 4 Embedded Processor C/C++ 32KB
Espruino (ARM) Embedded Processor javascript 48KB
MIPS (Atheros AR9331) Embedded Processor C/C++ 64 MB
Raspberry Pi Embedded Processor C/C++, javascript, java 0.5-1 GB
Intel Edison Embedded Processor C/C++, javascript, java 1 GB
x86 Processor C/C++, javascript, java GBs
Linux/Windows Cloud C/C++, javascript, java GBs

Table 1: Platforms currently supported by the ThingML code generation framework

Encoding/Decoding is a separated aspect. Two strate-
gies can be used to enforce this separation and ensure the
reusability of the code generators:

ThingML Component ThingML can always be used to
wrap existing native library and model an ad-hoc compo-
nent handling the previously described tasks. This can be
especially interesting when the network is at the heart of
the logic of the application. While this solution may be the
less demanding in terms of initial effort, upgrading the com-
ponent with new messages with different signatures can be
tedious mainly because of serialization/parsing. Therefore,
as much as the code relative to encoding/decoding should
be generated.

Adapt the code generator In the long run, effort in
maintenance will be greatly reduced by adapting the code
generation framework in order to fully generate communication-
related code. Even if the initial effort may seem more im-
portant, the reuse of already available modules for similar
tasks can significantly lessen it.

4.1 Plugin Mechanism
As communication can be broken up into two separated

aspects, Serialization and Transport/Link management, the
ThingML code generation framework propose a plugin mech-
anism as an extension point on this issue. It defines two main
abstract classes describing two types of inter-operable plu-
gins: Network plugins and Serialization plugins. Network
plugins generate code supporting the transport of raw mes-
sages and manage the logic relative to the network paradigm.
Serialization plugins handle the format of these messages.
This approach allows a programmer to de-correlate trans-
port and format of messages, offering a better re-usability.
As each protocol, format or implementation comes with its
own limitations, plugins are authorized to add rules to the
ThingML checker. It offers the possibility to validate the
input model with customized (and situation specific) con-
straints. For example, a plugin handling a low level protocol
with payloads of limited size could check that the model does
not contain messages that are too long. But this mechanism
can also be used in order to check that each information re-
quired to configure the interface (e.g., the network address
of the remote peer, the baudrate of the link, path of the
interface) is indeed provided. Or even checking that a same
hardware interface is not used twice with different settings
at the same time.

4.2 Network Plugins / Transport
In this section, we list the different protocols experimented

and sum up the requirement that they raise.

UART: We experimented two different situations with
Universal Asynchronous Receiver Transmitter. The first sce-
nario was to use it in a point to point context. The first issue
encountered was that it provide for a stream of byte, so a
message system needed to be built on top of that in order
to support separation of encoding and transport. The first
method implemented was to allow for message preceded by
a header containing the size of the message, the second was
to use a system including a start byte, a stop byte, and an
escape byte. The second scenario targeted a ring shape net-
work, with both static and dynamic discovery of the size
of the ring. After what messages had to include a TTL in
order to determine if they were to be forwarded to the next
neighbor or not.

I2C: Inter-Integrated Circuit provide synchronous mas-
ter/slave communications. Therefore its use requires asym-
metrical code for the master and the slaves. We experi-
mented with a system of asynchronous exchanges built on
top of it, based on slave messages queuing until master so-
licitation. But a simple master request / slave response can
also be used. Static address configuration was used.

MQTT: MQTT propose a publish / subscribe message
exchange through the mean of a centralized broker. It brings
up the aspect of topic subscription and topic selection (in
case of multiple topics publication). It also demonstrates
the need for error management.

Websocket: Websocket relies on Client/Server connec-
tion which, once established, allows for exchanges at the
initiative of both sides. On the server side, the generated
code must enable the management of multiple connections
and therefore offer the possibility of sending messages to one
specific client, in addition to broadcast. The application can
also require being notified when a new client connects or dis-
connects. On the client side, applications must be able to
detect if the connection is broken or fails to be established.
While all this interaction might not be relevant to the ap-
plication and then can be hidden, in some case they are
required.

REST: We conduct experiments with HTTP used to
communicate in a REST style. As it was based on HTTP,
it is a form of Request / Response exchange. It showed
the need for failure management (and retry), which can be
hidden to the application and fully generated or not.

ROS: ROS is a publish / subscribe broker. Different from
MQTT, the setup of a ROS connection is centralized, while
the rest of the exchanges can be peer to peer. Also, ROS
provides a way to generate an API from message signature
description similar to ThingML, enabling a straighforward
integration to our framework. It enables high rate, low la-



tency exchanges, which call for proper buffer configuration
when used with resource constrained devices.

Bluetooth: Bluetooth can in fact be used with a UART
plugin, through the Serial Port Profile. Once the connection
is established, a Bluetooth device using SPP can be seen as
a classic Serial channel. In order to do so, it is necessary to
declare custom ThingML messages corresponding to setup
instructions for the Bluetooth device and to translate them
into instruction that the device can understand.

BLE, Zwave: Some experiments with BLE and Zwave
devices showed that a separate serialization scheme is not
necessarily needed as one can be provided in the library en-
abling communication with some devices.

Through these experiments, it quickly appears that a part
of the complexity coming from these various communication
protocols can be hidden from the model, because they are
not relevant to the application logic (Automatic re-sending
of messages, connection establishment, a part of error man-
agement, encryption). Network plugin can generate code
handling these ”technicalities”.

Meanwhile, a part of this complexity needs to be exposed
to the ThingML code to enable a communication manage-
ment flexible enough. In order to do so, the ThingML code
generation framework differentiates two aspects of commu-
nication management (See Figure 3):

Configuration: Through the mean of annotation on
the ThingML keyword protocol, configuration at design time
can be provided to the code generator in order to generate
a tailor-made network interface. Control: A part of the
communication handling (such as error management, client
management) is inherently dynamic and hence the need for
information exchange between the application logic and the
generated network library at run time.

Figure 3: Overview of generated network library

Two broad types of annotations can be used to control
more precisely a generated library at run time. Annotated
messages can be transformed into instructions addressed at
the generated network library and not forwarded (for exam-
ple, a re-connection instruction). Similarly annotated mes-
sages can become feedback originating from the network li-
brary and transmitted to the application (for example if the
connection has been lost). But additional parameters (that
will not be forwarded) can also be added to messages in or-

der to customize at run time the way those messages are
forwarded (for example destination information).

thing fragment myMsgs { //Control at run time
message reconnect()
@websocket_instruction "reconnect";

message connection_lost()
@websocket_feedback "connection_lost";

message msg1(Param : Float, ClientID : UInt16)
@code "101" //ID for serialization purposes
@websocket_client_id "ClientID";

}

protocol Websocket //Configuration at Design time
@websocket_server "true"
@websocket_max_client "16"
@websocket_enable_unicast "true"
@serialization "msgpack"

;

configuration myCfg {
instance i : myThing // The thing myThing can send

// messages through websocket in a
connector i.myPort over Websocket //transparent way

}

This architecture offers a trade-off between abstraction
and customizability. It allows to hide or expose parts of the
communication paradigm on demand, depending on what
the application requires. It provides a way to extend the
ThingML code generation framework for message exchanges,
while relying if necessary on serialization plugins described
in the following section.

4.3 Serialization Plugins / Encoding
Serialization plugins are in charge of generating both the

serialization and parsing of a set of ThingML messages. Note
that serialization and parsing are not necessarily perfect mir-
rors, as ports can be asymmetrical.

Binary: Efficiency, both in term of messages size and
parsability, is required when communicating with resource-
constrained devices. The simplest way to serialize data is to
write them in forms of raw bytes. This kind of serialization is
very similar to the way message are en-queued in ThingML
generated FIFOs in C, so it can be generated with very little
modification to the code generator.

Message Pack: MessagePack3 is a lightweight data se-
rialization format inspired by JSON but binary-coded. As
in JSON the size depends on its value and not only on its
type. While implementations of a message pack library ex-
isted for most common languages, we had to implement our
own library to cope with the constraints of our platform for
this experiment (an AVR 8 bits microcontroller)4.

JSON, SenML, XML: SenML5 defines media types for
representing simple sensor measurements in JSON. SenML
native libraries for the targeted languages already exist, but
the maintenance of a serialization / de-serialization is te-
dious. Meanwhile, they can often be wrapped in code gener-
ator in a straightforward way, which greatly lessen the main-
tenance effort. Nonetheless, for resource constrained devices
library implementing this standard must be both chosen and
used carefully in order to be viable, as a straightforward im-
plementation for those rather verbose formats can quickly
use up the available RAM of a microcontroller.
3http://msgpack.org/
4http://github.com/HEADS-project/arduino msgpack
5http://tools.ietf.org/html/draft-jennings-senml-10



Proprietary/Custom: In order to integrate proprietary
(or non customizable) devices, adopting a fixed set of mes-
sages in addition to a specific serialization is often required,
as showed our experimentation with some Bluetooth devices,
or with the Multiwii Serial Protocol for some drone flight
controller. In this case in addition to the serialization as-
pect, it is necessary to model the set of pre-existing messages
in ThingML in order to make them usable.

//ThingML definition
message myMessage(UInt8 u, Int32 i) @code "6";
//ThingML use
port!myMessage(3,-257)
//Raw byte array
00 06 03 ff ff fe ff
//Message Pack
81 a9 6d 79 4d 65 73 73 61 67 65 92 03 d1 fe ff
//Json
{"myMessage":{"code":6, "u":3, "i":-257}}

In the end, in order to be flexible enough, the code gen-
eration framework must provide a way to integrate rapidly
existing native library to enable the use of standard serializa-
tion schemes. But it also needs to support custom/proprietary
communication protocols, by modeling their existing mes-
sages in ThingML and generating code compatible with non-
modifiable software and hardware components.

Moreover, to meet the various needs of compatibility, a
serialization plugin needs to be usable in two different ways:

• It can either be provided to a network plugin in order
to generate fully executable code for the ThingML end.

• It can also be used to generate the methods separately
in order to integrate them directly in sources written
in the targeted language.

These different usages offer more flexibility on the choice
of the end to adapt. One can either adapt the ThingML end
of a link, but also the end running a software component
written in another language. While enabling this choice, it
fits the maintainability requirement as it allows regeneration
of code after modification of the set of messages.

5. THINGML IN PRACTICE
This section provides a brief overview of three projects

in different domains developed with ThingML (Version 3),
which all take advantage of the code generation framework.

5.1 TellU Safe@Home System
TellU’s Safe@Home system [14] is built around a home

gateway which runs on a Raspberry Pi 2 (1 GHz ARMv7,
1GB RAM, Linux). This gateway is connected to a number
of field nodes (typically one per main room in the house)
via WiFi, and also to the TellU Cloud via Ethernet. The
gateway is currently implemented in Node.JS, as most of
the technical libraries were already available (Z-Wave, Blue-
tooth Low Energy, MQTT, etc) and could rapidly be inte-
grated by TellU to implement their gateway.

The cloud back-end is implemented in Java and has been
developed by TellU over the past ten years. This represents
an important legacy for TellU. The back-end communicates
with the rest of the system through edge connectors, cur-
rently offering APIs over HTTP/REST and MQTT.

Field nodes run on an Intel Edison (400 MHz x86, 1GB
RAM, WiFi and Bluetooth Low Energy (BLE)). Each field

node has a pressure cell integrated in order to provide an
accurate measurement of the pressure in each room. Fields
nodes are also currently implemented in Node.JS using In-
tel’s MRAA library to control the Edison’s GPIOs.

A wearable sensor node running on a low power resource-
constrained ARM Cortex M3 (80 MHz, 256 KB RAM) also
integrates a pressure cell and regularly broadcasts air pres-
sure measurement to all field nodes that are in the BLE
range (typically 10m indoor). Based on these pressure mea-
surements and the intensity of the BLE signal, field nodes
can determine the position of the person in the house and if
the person has fallen (by computing an air pressure differ-
ential between the person’s sensor and the fixed pressure in
the field node). Due to the stringent resource constraints on
this device (driven by the fact the wearable sensors should be
able to run several days on a single charge), this device has
to be implemented in C. The only alternative is assembly.

In addition, a set of sensor nodes is deployed in differ-
ent rooms to measure temperature and light. Those nodes
run on an Arduino Yùn, which is composed of a resource-
constrained microcontroller (16 MHz AVR-8bit, 2.5 KB RAM,
no OS) and an embedded Linux processor (400 MHz MIPS,
64 MB RAM, WiFi, OpenWRT). The microcontroller part
of the Yùn is used to interact with the physical temperature
and light sensors while the MIPS CPU and its embedded
WiFi is used to communicate with the Gateway.

Finally, the gateway also integrates a Z-Wave radio chip
that interacts with a set of devices (switches, etc). Those
devices are proprietary and the firmware they run as well as
the protocol they use to communicate cannot be modified.

Lessons learned
Many developers at TellU have a previous experience with
UML and code generation using the JavaFrame approach [9].
For reasons similar to the ones described in Section 2.1, none
of the legacy TellU back-end was developed using UML.As
TellU’s vision is now to push some of their code as close
as possible to the physical world (in gateways and even
devices), the ability of ThingML to quickly wrap existing
code (either theirs or open-source library) was an acceler-
ator for them to implement this vision. TellU’s developers
were skilled Java (server-side) and JavaScript (in browser)
developers, used to x86 architecture and HTTP/REST pro-
tocols. They are now deploying Node.JS and C code on a
large set of heterogeneous devices.

5.2 Micro-aerial vehicle platform
The goal of this project was to create a lightweight indoor

aerial vehicle platform to support a set of research projects.
ThingML was chosen to implement the software framework
and provide a way to easily build drone with different sets
of sensors and algorithms.

The platform (a quadcopter) is built around a Quanum
Pico 32-bit Flight Controller board, including mainly a mi-
crocontroller STM32F103CB, an Inertial Measurement Unit
(IMU) MPU-6050, and a radio receiver CYRF6910. This
board runs an open source firmware (cleanflight).

Our approach consists into providing support for exten-
sion of the flight controller through additional an board
based on an ATmega32u4 microcontroller where code can
be deployed to interact with new sensors. In this example,
we will detail the use of a ToF (Time of flight) altitude sen-
sor to create a semi autonomous micro aerial vehicle, self



Figure 4: Hardware configuration of the drone

regulating its altitude as illustrated in Figure 4.
The firmware run by the flight controller understand com-

mand formatted with MultiWii Serial Protocol over a UART.

0 8 16 24 32 40 ... ...
*---*---*---*---*---*---------*---*
| $ | M |Dir|len| T | Payload |CRC|
*---*---*---*---*---*---------*---*

MSP is a message-based protocol that allows request /
response exchanges with the flight controller. Messages are
formed (as shown above) of a header (containing the payload
length), a payload of parameters, and ends with a CRC.

Before being able to generate MSP messages from ThingML,
three things need to done: (i) MSP messages need to be
model in ThingML, (ii) the ThingML UART plugin must
be configured to read MSP header and extract the size of
the payload and then build a message-oriented system on
top of the stream-oriented system that is UART, and (iii)
an MSP serialization plugin must be written.

thing fragment MSPMsgs {
message req_MSP_RC() @code "105";
message MSP_RC(rc1: UInt16, rc2: UInt16, rc3: UInt16,

rc4: UInt16, rc5: UInt16, rc6: UInt16,
rc7: UInt16) @code "361";

message MSP_SET_RC_OFFSETS(roll : UInt16, pitch : UInt16,
yaw: UInt16, throttle: UInt16) @code "80";

...
}

As request messages and their response share the same
name and ID in MSP, while not the same signature, they
must be defined as two different messages, by prefixing re-
quest message with ’req ’. MSP message IDs are limited to
one byte in length. As ThingML allows for longer IDs, we
added a MSP-specific rule to the plugin in order to check
that no message with an ID greater than 511 (one byte plus
a bit for direction) is used on a connector using MSP.

Lessons learned
The effort to integrate support for MSP in the ThingML
code generation framework represents a 130 LoC MSP se-
rialization plugin, and the modeling of the MSP messages
with ThingML. As for the communication layer, it could
reuse the existing UART plugin with no modification.

All the serialization plugins (binary, JSON, MSP, Mes-
sage Pack) and communication plugins (UART, WebSocket,
MQTT, etc) implemented so far are all within 100-300 LoC.
This indicates that integrating a new serialization or a new
protocol is rather accessible.

Figure 5: Arduino Yùn Controller

5.3 Arduino Yùn IoT Framework
This experiment consisted of using the ThingML frame-

work to fully generate code targeted at Arduino Yùn6 and
exploiting its networking capabilities.

In this situation, the Arduino Yùn is in charge of control-
ling in real time actuators and sensors with its microcon-
troller chip. In addition, its CPU can process the data, store
them locally temporarily, forward them to a server regularly,
and enable control over actuators and data for clients.

This scenario relies on multiple platforms (Atmega32u4
microcontroller, Atheros AR9331 processor, Server, clinet
web browser) and various communications (Serial link be-
tween the Yùn two chips, HTTP REST, MQTT, Websocket
between the AR933S and the rest of the network). Commu-
nications libraries targeting embedded platform need to be
integrated to the code generator. The build generator has
been customized to enable cross compilation for MIPS.

This adaptation now allows the modeling and generation
of diverse applications targeting this kind of network of de-
vices such as a hardware debugger for Arduino Yùn7 and
the ViMoSys a vibration monitoring system8.

Lessons learned
This experiment involves a large set of protocols, that all
could be easily integrated as plugins. In addition, it required
to adapt the existing C compiler in order to support the
MIPS architecture. As the code generated by ThingML does
not rely on any library (other than the ones needed by the
network plugins) and only uses well-supported features of
the target language, the only extension point that needed to
be modified was the build generator in order to generate a
different Makefile.

6. RELATED WORK
This section briefly discusses related work regarding the

adoption of MDE in practice and approached for implement-
ing modular code generators.

6.1 Adoption of MDE
Over the years, the community has made significant effort

to develop the MDE vision. However, there is still relatively

6https://www.arduino.cc/en/Guide/ArduinoYun
7https://github.com/Lyadis/Yun-Arduino-Debugger
8https://github.com/Lyadis/Yun-IMU



limited work reporting on the result and lesson learned from
the practical adoption of MDE in the software development
process [1]. Among the existing literature on the topic, it is
worth mentioning [18] which contains a set of paper report-
ing on a MDE success stories.

In [19] the authors present the result of a survey built from
39 interviews with MDE practitioners. The paper explores
the obstacles to the practical adoption of MDE in the indus-
try and especially focuses on the tooling. The study build
on previous work [12] which reports on the industry practice
of MDE and [11] which focuses more on the organizational
impact of MDE [19].

Our experience applying MDE for the implementation of
distributed reactive system corresponds a very specific use
of MDE but our findings confirms the general observation
presented in [19]: tools should be matched to the users (and
not the other way around), MDE should be strategically
applied to specific problems and not blindly to the whole
development process and finally, the development process
remains more important than the tool itself.

In [3] Clarke and Muller discuss their respective expe-
riences in building start-up companies around MDE tools.
The paper details the lessons learned from these experiences
both in terms from the entrepreneur point a view and from
the technical point of view. The paper points 13 technolog-
ical issues for the adoption of MDD. Many of these issues
match our observation in applying ThingML with industry
partners. More specifically the adoption of UML, matu-
rity issues, misconceptions about platform independence and
practical aspects such as text vs. diagram and code genera-
tion confirm our own experience.

6.2 Code generation frameworks
In [17] the authors identify and motivate the need for bet-

ter practices to develop modular and re-usable code genera-
tors. The paper proposes to reuse product line mechanisms
to model, structure and compose families of code genera-
tors. In [16] the same group proposes a concept for code
generator composition applied to a robotics case study. The
motivation for this work is similar to our motivations for
building the ThingML code generation framework and goes
one step further in formalizing the valid extension points
and alternative combinations. The ThingML approach is
bottom-up and has been built around using a traditional
object-oriented approach. However, we do acknowledge the
need for additional information, especially in order to add
constraints to define the valid combination of plugin across
the different extension points.

In [20] the authors propose to use aspects to create mod-
ular code generators. The approach allows un-tangling the
different aspects of the code generator in order to improve
the flexibility and maintainability of code generators. The
second version of the ThingML tool was implemented using
similar ideas and weaving the code generator components as
aspects into the meta-model using Scala case classes. While
the design was elegant, this solution made it very difficult for
the average developer to modify and customize the code gen-
erator to its needs. That is why the code generation frame-
work was fully re-implemented using classic object-oriented
design and Java as the programming language.

In [13] the authors propose a code generation framework
for CPS. The paper insists on the multi-disciplinary nature
of building software for CPS. The proposed model include

a set of 3 views: a functional model, platform model and a
runtime model. The code generation framework allows gen-
erating code for microcontrollers, DSPs and FPGAs. The
approach has been applied to the case study of a Lathe CNC
System. The notation used are graphical and code genera-
tion is template based. As compared to the ThingML frame-
work, it is unclear how customizable the generated code can
be and what is the cost of adding support for new platforms.

In [2] the authors propose a DSL for robot programming.
The DSL abstract over the programming APIs provided by
ROS and allow generating code. The language proposed is
very specific to robotics and even to the type of robot de-
veloped in the case study. Compared to ThingML, the lan-
guage is way more specific to the application and its broader
applicability remains to be demonstrated.

7. DISCUSSION AND CONCLUSION
The ThingML approach and tool are developed as an

open-source project. The implementation of the different
versions of the tool as well as the code generators and plug-
ins described in this paper are available on Github [4]. The
features of the language and tool are documented through
a set of tutorial and exercises available in a separate repos-
itory [10]. Over the past 2 years, over 400 students and
developers have used ThingML.

At this point, the main lessons we can draw from our
experiences applying ThingML are:

1. ThingML builds on a rich MDE state of the art. Sev-
eral iterations, both on the approach and tools, have
however been necessary for being usable and beneficial
for practitioners.

2. Having a single integrated language with a clear se-
mantics together with dedicated tool support was a
key to succeed. Approaches combining and composing
different models and formalisms, turned out impracti-
cal [6]. We believe that more research and tooling is
needed before such techniques can be practical for the
domains we have considered.

3. One benefit of MDE (and ThingML) is the ability to
have platform-independent specifications. However, to
remain practical MDE approaches should not require
more modeling/formalization than is useful/exploited:
MDE should not introduce any overhead when no ben-
efit is expected or desired (e.g. target platforms are
known a priori, building on existing libraries/APIs,
interfacing with existing/legacy components). This is
critical for adoption since no modern software system
is developed from scratch, and re-modeling those ar-
tifacts (a.k.a re-inventing the wheel) is simply not ac-
ceptable.

4. Code generation is not popular among practitioners.
This bad reputation is typically based on experiences
with tools producing code with low readability, hard
to integrate with existing systems and other compo-
nents and very hard to maintain and/or evolve. Our
experience with ThingML is that MDE should produce
better code more efficiently rather than propose to re-
place code with models. We believe that it is critical to
provide practitioners with ways to fully customize the
code generators to their needs, habits and projects.
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