The Rise of the (Modelling) Bots:
Towards Assisted Modelling via Social Networks

Sara Pérez-Soler, Esther Guerra, Juan de Lara, Francisco Jurado
Universidad Auténoma de Madrid (Spain)

Abstract—We are witnessing a rising role of mobile computing
and social networks to perform all sorts of tasks. This way, social
networks like Twitter or Telegram are used for leisure, and they
frequently serve as a discussion media for work-related activities.

In this paper, we propose taking advantage of social networks
to enable the collaborative creation of models by groups of users.
The process is assisted by modelling bots that orchestrate the
collaboration and interpret the users’ inputs (in natural language)
to incrementally build a (meta-)model. The advantages of this
modelling approach include ubiquity of use, automation, assis-
tance, natural user interaction, traceability of design decisions,
possibility to incorporate coordination protocols, and seamless
integration with the user’s normal daily usage of social networks.

We present a prototype implementation called SOCI0, able to
work over several social networks like Twitter and Telegram, and
a preliminary evaluation showing promising results.

Index Terms—Collaborative modelling; meta-modelling; social
networks; natural language processing

I. INTRODUCTION

According to recent studies [1], 70% of American citizens
are users of social networks. People exploit social networks
like Twitter, Telegram or Facebook, often on a daily basis,
to be in contact with friends, share media, organize leisure
activities, or discuss work-related issues in an agile manner.

The use of social networks for Software Engineering has
been recognised as having high potential impact in practices
and tools [2], [3]. One of the reasons is that they enable agile
and lightweight means for coordination and information shar-
ing. However, some identified open challenges include their
use to increase community and end-user involvement, enhance
project coordination, and improve development activities [3].

In this work, our goal is to profit from the benefits and
potential of social networks to assist in a particular Software
Engineering task: modelling and meta-modelling. For this pur-
pose, we propose the collaborative modelling through social
networks assisted by modelling bots that interpret the messages
of users in order to construct a model or meta-model. User
messages can be expressed either in natural language (NL),
or they can be commands for model evolution. In the first
case, the bot interprets the messages using NL processing
techniques [4], [S] and derives update actions over the current
model version. The approach is inherently collaborative, and
integrates seamlessly with the normal usage of social networks
to which users are familiar with. Moreover, it naturally leads to
an accurate documentation of the traceability and provenance
of the different design decisions incorporated into the model.

This paper motivates and presents usage scenarios for mod-
elling bots, and presents a working prototype called SOCIO

that is able to orchestrate model construction across both
Twitter and Telegram. We have performed an initial user
evaluation with promising results that encourage pursuing
further research in this direction.

The rest of this paper is organized as follows. Section II
motivates our approach, identifies envisioned scenarios, and
elicits a set of requirements. Section III details the components
of our proposal. Section IV describes architecture and tool
support. Section V shows the results of our preliminary
evaluation. Section VI compares with related work, and finally,
Section VII ends with the conclusions and future work.

II. MOTIVATION AND USAGE SCENARIOS

The main motivation for this work is being able to benefit
from the collaborative and ubiquitous nature of social networks
— applications that people use on a daily basis — to perform
assisted lightweight modelling. To this aim, we propose repur-
posing social networks based on micro-blogging (like Twitter
or Telegram) as front-ends for the modelling activity, where
dedicated bots interpret certain user messages to assist in the
model construction. This way, the assisted modelling process
seamlessly integrates with the normal use of social networks
for discussion.

This approach enhances flexibility in modelling because it
can be used in mobility and does not require installing new ap-
plications, but users can rely on apps they are already familiar
with. When working on mobile devices, interacting via short
messages can be easier and faster than using a diagramming
tool, and can serve to quickly prototype models. Moreover,
people with little or no background in computer science or
modelling may be able to actively participate in modelling
sessions. This may foster the collaboration of domain experts
with teams of engineers. By recording the messages processed
by the bot, the approach can trace information of the design
decisions (who made what), so that every decision can be
justified or rolled back.

This approach can be useful in several scenarios. First, to
allow engineers quickly prototyping models when and where
needed (e.g., in working meetings, but also when travelling
home). Second, to assist teams of engineers collaborating
with domain experts (who may lack a computer science
background) to create domain models or meta-models. Third,
in the educational domain, to enable groups of students
the collaborative resolution of modelling exercises. In this
scenario, bots could be configured for gamification activities
or blended learning. Finally, being based on social networks,

NL description
Houses have windows
NL command

parse tree

it . NL processing rules
2
select
NL rule(s) . . WordNet

O ¢
extract
actions

(NP (NNS houses))
(VP (VBP have)
(NP (NNS windows)))))

traceability
model

existin,
users message ~---- e g le- 4
socigl L N model
/[network = ;/actions K
H l B I / \ « wWr !
U . ' Mike! Tha‘t is wrong! © e m
| o i ¥ : : update
f PN :< --------------------------------------- ; delete ; model
o d :
L W ' EEErTm) el I connect |
social < feedback || creation date: Thu Apr 27 16:36:41 CEST 2017 creation date: Sun Apr 30 16:42:25 CEST 2017 ' '
---------------------- creation by creation by T e
network e e eisgam G
A ~ «News
S —_—_———— (©) window produce
feedback feedback
Fig. 1. Overview of our approach to assisted modelling via social networks

the modelling process can involve a large number of people.

Hence, we foresee its use to crowdsource modelling decisions.
In order to give support to these scenarios, we identify the

following requirements for our envisioned approach:

« Interaction through NL (to permit use by domain experts)
and commands (more suitable for modelling experts).
Anyhow, commands should have a flexible and natural
syntax to minimize mistakes and user frustration.

o Traceability mechanisms able to justify design decisions
and find their provenance.

« Integration of multiple social networks, so that users can
use their preferred one.

« Support for both modelling and meta-modelling.

o Customizable collaboration protocols, e.g., supporting
user roles and voting.

« Interoperability with accepted modelling frameworks, like
the Eclipse Modelling Framework (EMF) [6].

Next, we detail our first steps towards realizing this vision.

III. APPROACH

Fig. 1 sketches our approach to modelling via social
networks. Users can interact within the network of choice
by sending messages directed either to the other partners
(label 1c) or to the modelling bot (labels la-1b). The former
messages permit discussing and coordinating, and they are
handled by the network normally (i.e., they are regular text
messages). Instead, messages directed to the bot are used for
building models, and their format may depend on the particular
social network. For instance, to send a message to the bot in
Twitter, the message must mention the username of the bot
(@modellingBot), while in Telegram, the message should start
by /. The way of organising the collaboration also depends on
the particularities of the social network. In Twitter, users of
our system will normally be followers of the bot supervising
the modelling process, so that every message sent to the bot
will be received by its followers. In Telegram, users would
create a group with the users interested in the modelling task,

including the bot. In this way, every sent message will be
received by all members of the group.

Messages directed to the bot are received by the users of the
social network, just like any other message, but in addition,
they are processed by the bot. We distinguish two kinds of
such messages: management commands (label 1b) and model
update messages (label la). The former allow performing
project management tasks, like querying the existing mod-
elling projects, creating a new model, or recovering the history
of changes performed in a model. The bot processes such
messages (label 7) and sends the result to the social network
as a diagram embedded in an image file. The figure shows an
example, where the set of available projects is returned as a
package diagram (output of activity labelled 7). On their side,
model update messages (label 1a) can be either commands
or descriptions. The former are imperative actions to directly
manipulate a model, e.g., to add a class or feature, change its
type, or delete an element. The latter are descriptive statements
of the domain concepts, like “houses have windows”.

Both commands and descriptions are expressed in NL.
Hence, they are processed by a NL parser (label 2) which
produces a parse tree of the sentences in the message. Support-
ing commands in NL provides flexibility because there is no
need to adhere to a strict syntax. The system has an extensible
library of NL processing rules, able to handle different kinds
of NL phrases (label 3); currently, we support rules targeted
to meta-model construction. From the current model state and
the information inferred from the message, we synthesize a
number of model update actions (label 4). As our approach
is incremental, sometimes it is necessary to refer to existing
model elements. In order to provide flexibility and avoid
redundancies, we allow for synonyms which are sought using
WordNet [7], a lexical database for the English language. We
will describe our NL processing approach in Section III-A,
and the extraction of model update actions in Section III-B.

The extracted actions are applied to the current version of
the model to make it evolve. Moreover, the system maintains a
traceability model to keep track of why the model was updated,

and by who (label 5). We will explain model building and
traceability in Section III-C. Finally, the bot emits a feedback
message (label 6), which is received through the social net-
work. The feedback to model update messages consists of an
image of the updated model, with annotations indicating the
last modifications. Section III-D will illustrate some steps in
a model construction session, and the feedback obtained.

A. Natural Language Processing

We use the Stanford NL parser [5] to process model update
messages, both commands and descriptions. The parser creates
a parse tree with the grammatical relations of the words in the
message, as Fig. 1 shows for message “houses have windows”
(see output of activity labelled 2). This tree identifies the noun
phrases (NP) that may provide information about the model,
and the syntactical role of each part of the phrase. For example,
in the tree of Fig. 1, “houses” and “windows” are tagged as
common plural nouns (NNS), while “have” is tagged as a verb
in present tense which is non-3rd person singular (VBP).

The parsed messages are interpreted according to a number
of rules, which we currently base on the work of Arora and
collaborators [4]. Each rule specifies the combination of word
classes that activate the rule, usually based on the presence
of certain verbs, as well as the model update actions that
should be performed when the rule is matched. Our rules
currently handle the construction of meta-models only, but
since our approach is extensible, we plan to expand the set
of rules to tackle the construction of models, likely instances
of previously defined meta-models using this same approach.
We consider the following rules:

Verb to be: When the main verb of the phrase is “to be”,
it can indicate either an inheritance relation between two
classes (e.g., “Kitchen is a room”, “Service may be premium
service or normal service”), or the type of a feature (e.g.,
“Name is string”, “The bank of the customer is BLUX”). If
the phrase contains an expression of the form “A of B” or
a genitive “B’s A”, then the rule infers that A is an attribute
or reference of B.

Verb to have: When the main verb is “to have”, or synonyms
of it like “characterized by” and “identified by”, this rule
infers the subject of the sentence is a class, which has a
feature. Deciding whether the feature is a reference or an
attribute depends on the information there is in the meta-
model about the feature. If there is not enough information,
the feature is assigned an “open” type which may be re-
fined by subsequent messages. As an example, the message
“Bulky packages are characterized by their width, length
and height” triggers the creation of features width, length and
height with open type in class BulkyPackage.

Transitive verb: This rule handles all verbs with a subject
and a direct object. It creates classes for the subject and
direct object, and a reference whose name is the verb. For
example, the phrase ‘“The simulator shall send log messages”
triggers the creation of classes Simulator and LogMessage, and
the reference send from the former to the latter.

Contain: Verbs like “contain”, “be made of”, “include” and
“be composed of” imply a composition relation between
two classes. For example, the phrase “A delivery is made of
packages” creates a composition relation between the classes
Delivery and Package, and also creates the classes if they do
not exist yet.

Add: This rule handles imperative sentences (with implicit
subject) whose verb is “add”, “create”, “make”, etc. These
are interpreted as commands with a flexible syntax, resulting
in the creation of classes, attributes or references. For
example, “add house” will create the class House, while
“create room in house” adds a feature room to class House.

Remove: This rule is similar to the previous one but for dele-
tion. It considers imperative verbs synonyms of “remove”,
like “delete” and “erase”.

Model update messages can include several sentences and
more than one verb, like in “Add house and remove windows”.
Moreover, the processing of one message may trigger several
NL rules, in which case, we apply the rule with higher priority.
In particular, rules seeking for specific verbs have higher
priority than the more general rule seeking transitive verbs.

B. Model Update Actions

As abovementioned, each NL rule specifies the model
update actions to be applied when the rule is selected. The
possible actions are the following:

Add class: This action is issued when the rule finds a com-
mon name that should be a class. The class is not created
if one exists with the same or synonym name. Supporting
synonyms provides flexibility and avoids redundancy. We
apply accepted modelling styles for class names (i.e., sin-
gular, camel case).

Make class abstract/concrete: Classes can be set to abstract
or concrete using their name or a synonym. If the class does
not exist, then an add class action is issued as well.

Set parent class: This action sets an inheritance relation be-
tween two classes, creating the classes if they do not exist.

Remove parent: This action removes an inheritance relation.
If the class does not exist, the action will make no changes.

Add attribute: This action is issued by the “verb to have”
rule (e.g., “packages have weight”) and in case of genitive
cases (e.g., “package’s name”). The attribute is added to the
given class or to a synonymous one, creating a new class if
it does not exist. If the class already owns a reference with
same name, it is replaced by an attribute. The attribute’s
upper cardinality is set to 1 if the attribute name is singular,
or to * if it is plural. At this point, the attribute type is left
open, so that it can be refined later.

Add reference: This action is issued by the “transitive verb”
and “contain” rules, and it works similarly to the previous
action. If the owner class already defines an attribute with
the same name, it is replaced by a reference.

Modify feature type: We support primitive data types like
int, float, String, boolean and Date for attributes, while the
type of references must be a class. The feature is created if
it does not exist.

' actions

*

History Sentence Action

modelpath: String
auxpath: String

*Iusers lIcreation *Imsgs

text: String element: EObject

*lsentences f f

@‘ «New»
GoodsTransportCompany

@ GoodsTransportCompany

User Message Update | Add || Delete |
name: String text: String old: EObject
nick: String date: Date new: EObject
channel: String undoable: bool = false
user * |MSgs

® 2
“a goods ‘a O e
transport handle delivery
company e has a e
[numeric
Zalndles ” (é\ «New» identifier” @ Delivery
eliveries \-)Delwery int [0,1] identifier

Fig. 2. Traceability meta-model

Remove class: It removes a class and its features.
Remove feature: It removes one or several features.

Any action can be undone and redone through commands.

C. Model Update and Traceability

The actions derived from the messages are applied to the
current model version. In some cases, these actions may
lack some information. For instance, the action that adds
an attribute may miss the specific type of the attribute, in
which case, its type is left “open” so that it can be refined
later. Similarly, as removing a class would let the references
pointing to the class dangling, we add a provisional “ghost”
class as target of these references. We foresee an automated
mechanism that completes all these “open” design decisions
with sensible defaults in a final stage.

We also maintain traceability information of each message
sent to the bot, including the sender and the model update
actions it triggers. We use a model-based approach to record
the traceability data, building a traceability model conformant
to the meta-model in Fig. 2 for each model being constructed.
Class User keeps track of the participant users and the social
network (channel) they employed to send the messages. We
store all messages directed to the bot, and distinguish the
message used to create the model. Actions point to the model
elements affected by the action using reference element, whose
type is EObject as this is the base class in EMF, the imple-
mentation technology we use. To keep track of the removed
elements which are no longer in the model, we store them in
an auxiliary model. Finally, Update actions point to the old and
new versions of the updated element in the auxiliary model,
and to the current version of the element in the model.

An image of the updated model diagram is sent to the
collaborator users. The modified model elements are marked in
the diagram, and a note explains the performed changes. This
information is read from the traceability model. The trace can
also be queried using the management command history, which
sends a diagram with the traceability information to the users.

D. Example

Fig. 3 illustrates a typical modelling session. The rectangles
labelled 1-4 contain NL messages that a user sends, while the
diagrams are the feedback provided by the modelling bot.

The first message is handled by the “transitive verb” rule.
This creates classes for “good transport company” and “de-
livery”, and a reference for “handle”. The cardinality of the

© GoodsTransportCompany
R —

©GoodsTransponCcmpany
——

handle

handle
‘a delive'ryC @ |

dise “bulky
is made of packages are (© peivery
packages. © peivery characterized IO TS
Packets can gclOiti{denifle by their
be bulky, width, length
heavy or and height” backage
fragile” package
q.* bl
fé\‘ «New» ©Package
Lpackage

AN

@ Bulky

¢ New» D «New» ¢ “New»
@>Heavy @Fraglle @) Bulky ” EO,I}]widlhh
22 [0,1] lengtl

22 [0,1] height

Fig. 3. Some steps in a model construction session

reference is many as “deliveries” is in plural. The created
classes have singular, camel case names. The newly created
elements are shown in green. For space constraints, the figure
omits the explanation of changes which the bot also produces
as notes in the diagram.

The second message is handled by the “verb to have” rule,
which adds an integer attribute to class Delivery. The bot assigns
an upper cardinality of 1, as there is no plural.

The third message contains two phrases. The first one is
handled by the “contain” rule, which creates class Package and
reference package. The second one is handled by the “verb to
be” rule, which creates the inheritance hierarchy. This phrase
makes use of the word “packet”, which is as a synonym of
“package”, and hence, no new class is added for it.

The fourth message, processed by the “verb to have” rule,
creates three features in class Bulky. At this point, there is no
information on whether they should be attributes or references,
and hence, this is left open (shown with “?7”).

IV. ToOoL SUPPORT

We have developed a prototype tool for our approach called
Socio (from assisted modelling through social networks).
Fig. 4 shows its architecture. The tool supports Twitter and
Telegram, though it can be extended with further social
networks by implementing an interface. This means that users
of different social networks can interact with each other.

Independently of their provenance, all bot-processable mes-
sages are enqueued and processed one-by-one. NL processing
is performed using the Stanford parser and WordNet. The cre-

i N Stanford 75, (8 wordNet
‘z ' ': : parser @ =) Vordhe

' : $ model repository (EMF) &
) | Twitter AN K aux

! ! ‘ model Hmstory H model ‘

~ 16 V4 ‘ model Hhistory H maou;d ‘
) ' ': :
users | Telegram ! .
\"562:;'&7"/ PlantUML » Socio
networks

Fig. 4. Architecture of our tool SOCIO

Hi, let's discuss on the requirements
for the transport company

| /newproject 1.5

| can help you create and
manager models.

/start - start or restart the bot
/projects - show a list of projects
[newproject - create and set a
new project

/setproject - select a project to
the chat

/history - show a project's history
Jtalk - start a conversation with
the bot

Jundo - undo the last message
/redo - redo the last undo

/help - see a command list

[newproject
Alright, a new project. How are
we going to call it? Please choose
a name for the project.

ModellingBot
Alright, a new project. How are we going...
| Transport

¥
| PRI
Transport
Excellent! Now there is a new
project with the name transport

0 =

)

(

(a

-

initializing the bot (Telegram) (b) discussion and project creation

ModellingBo < Tweet v 4
AN
talk

Talk, the bot listens.

Test @testModelling - 18m
@ oModelingBot #transport Bulky
M packages are characterized by their

width, length and height.
ModellingBot

Talk, the bot listens.
A delivery is made of packages.
Packages can be bulky, heavy or
fragile.

. Modelling Bot

@ModellingBot

En respuesta a @testModelling

transport

Modell

A delivery is made of packages. Pa...
transport

Traducir del inglés

(©) GoodsTransportcompany
—

handle

0.3
(@©) peiivery

(d) interaction via Twitter

(c) providing NL descriptions

Fig. 5. Some steps in a modelling session via Telegram (a-c) and Twitter (d)

ated models are stored using EMF [6], the de-facto modelling
standard nowadays. SOCIO currently supports the collaborative
construction of meta-models, but we plan to give support to the
creation of instance models in the future. Due to the message
length limit of widespread social networks, the feedback is
frequently given as a diagram image that may include the
current model state, its history, or the set of available projects.
These images are generated using PlantUML [8].

To illustrate the tool’s capabilities, Fig. 5 shows a sample
modelling session over Telegram and Twitter. It reflects the
discussion of a set of engineers and the bot for building a
meta-model for a transport delivery company.

Steps (a-c) correspond to the interaction in a Telegram group
to which the engineers and the bot belong. The bot is started
in step (a), and it replies with all available commands. This

is a normal message that is received by all members of the
group. Step (b) shows one discussion message between the
engineers, which is interchanged using the social network
normally. It also shows a message directed to the bot, asking
the creation of a new model project. In step (c), a NL message
describing requirements for the meta-model is directed to the
bot. This is performed using the \talkk command, after which
the bot prompts the user to talk, and the user replies with a NL
sentence. The bot processes the sentence, updates the meta-
model, and returns an image of it. The image can be enlarged
and shared with other Telegram groups and users via email or
external services like Dropbox. Step (d) shows the interaction
with the bot using Twitter. This requires mentioning the bot
account and the model project. Interestingly, in addition to
the traceability provided by Socio using the meta-model of
Fig. 2, the organization of messages in a life-line which can
be browsed at convenience, as provided by Telegram, is also
an excellent means to track down design decisions.

V. EVALUATION

To assess the suitability of our proposal, we have conducted
a preliminary evaluation with 10 participants organized in
4 Telegram groups: 2 groups of 2 people, and 2 groups of
3 people. They were asked to create a meta-model for e-
commerce in 15 minutes but with no other restriction, and
then complete a questionnaire with 3 parts: two with Likert-
scale questions, and a last one with free text questions.

All participants had a computer science background (post-
graduate or last year degree students) and were non-native
English speakers. The average declared modelling expertise
was 62,5% (out of a maximum of 100%), and the level of
English was 72,5%. Six conducted the task using the mobile,
2 the web browser, and 2 the desktop Telegram application.

The first part of the questionnaire consisted of the 10
questions of the System Usability Scale (SUS) [9], a de-facto
standard to measure system usability. SOCIO obtained 74%,
which indicates good usability. Interestingly, the users that
gave the lowest SUS scores were those with less modelling
expertise or level of English (the bot must be addressed in
English). In particular, the Pearson correlation coefficient was
0,660 with a significance level 0,038.

The second part of the questionnaire comprised 8 questions
evaluating four aspects: (1) suitability of NL to build models
w.r.t. using an editor, (2) precision of the bot to interpret NL,
(3) enough functionality in the command set, and (4) whether
they liked embedding a modelling tool in a social network, or
they would prefer a separate collaborative tool. We obtained
around 75% for aspects 1 and 4, indicating that participants
considered NL as a suitable interaction mechanism, and they
appreciated the idea of collaborating through social networks.
Aspect 3 was rated 60%, which is acceptable but leaves
room for enriching the command set. Regarding aspect 2, the
statement “bot-generated models agree with the provided NL
phrases” was scored 62,5%. However, all participants observed
some mismatch between the NL phrases and the obtained
models, which suggests the need to improve the precision of

the bot to interpret NL. Again, the users assigning a low score
were those with less modelling or English expertise.

In the free-text questions, several participants identified
as positive the possibility to use the tool on the phone,
and being fun, easy-to-use and quicker than other modelling
tools. They also suggested some improvements, like the need
for coordination mechanisms, and commands to change the
reference cardinalities. We will tackle this in future work.

Regarding interaction, participants used more often de-
scriptive NL to interact with the bot (80%) than imperative,
command-like messages (20%). This suggests that NL was
found useful to complete the task. Overall, 50% were discus-
sion messages and 50% were bot-directed messages. Talking
to the bot was balanced in all groups, but in one group where
a participant took the role of coordinator and basically sent
messages to the other participants. This need for discussion
justifies the inclusion of the modelling tool in a social network.

The study is preliminary, with several threats, like the low
number of participants, the limited group size, the similar
participant background, the fact that participants were non-
native speakers, and the lack of a precise modelling goal which
permitted evaluating the produced artefacts. However, the
positive results encourage further research on this approach.

VI. RELATED WORK

The impact and potential of collaborative and participa-
tory modelling has been recognised by several disciplines —
like water resources management and sustainable develop-
ment [10], or smart product design [11] — to enhance their
modelling and decision-making processes. However, typically
these works do not propose a concrete method or tool.

In the context of Software Engineering, collaborative mod-
elling has been used for model construction [12] and collab-
orative creation of domain-specific languages [13]. However,
these approaches do not use social networks or NL processing.
Instead, they rely on collaborative graphical model editors [12]
or ad-hoc tools [13], with no assistant support.

Nowadays, people are used to social networks, and this
fact has made organizations to adapt and introduce a social
network perspective within their development processes [14],
[15]. In this sense, an interesting example of a distributed
problem-solving model that combines human and machine
computation is crowdsourced software engineering [16]. Many
commercial platforms like TopCoder (www.topcoder.com),
Bountify (bountify.co) or uTest (www.utest.com) permit re-
cruiting online labour to work on specific tasks, like coding
and testing. However, as far as we know, there is no proposal
on assisted collaborative modelling over social networks.

Our work proposes using NL to both human collaboration
and bot interaction. NL processing techniques have been used
within Software Engineering to derive UML diagrams/domain
models from text [4], [17]. Our contribution in this context
is to use an interactive, incremental approach, and the use of
social networks to embed both assistance and collaboration.

Altogether, the use of social networks for collaborative mod-
elling based on NL processing is a novel research direction.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel approach to
collaborative modelling via social networks, with assistant bots
able to process NL messages. We have created prototype tool
support working over Telegram and Twitter, and performed an
initial evaluation obtaining encouraging results.

In the future, we will incorporate customizable collaboration
protocols for different styles of decision making, e.g., based
on votings, or roles. We will develop support for building
instances of meta-models, and for querying the model elements
provenance. We will consider other types of bots, e.g., a
quality assurance bot which monitors the current model state
to suggest improvements, or gamification bots. We plan to use
WordNet’s super-subordinate relations to propose inheritance
relations, as well as investigate the use of speech recogni-
tion for modelling. Finally, we foresee developing scalability
mechanisms, e.g., by pruning the bot feedback to return only
the modified model elements and their context.

ACKNOWLEDGMENT

Work funded by the Spanish MINECO (TIN2014-52129-R)
and the R&D programme of Madrid (S2013/ICE-3006).

REFERENCES

[1] Pew Research Center, http://www.pewinternet.org/fact-
sheet/social-media/.

[2] A. Begel, R. DeLine, and T. Zimmermann, “Social media for software
engineering,” in Proc. FOSER@FSE. ACM, 2010, pp. 33-38.

[3] M. D. Storey, C. Treude, A. van Deursen, and L. Cheng, “The impact
of social media on software engineering practices and tools,” in Proc.
FoSER@FSE. ACM, 2010, pp. 359-364.

[4] C. Arora, M. Sabetzadeh, L. C. Briand, and F. Zimmer, “Extracting
domain models from natural-language requirements: approach and in-
dustrial evaluation,” in Proc. MoDELS. ACM, 2016, pp. 250-260.

[5] M. Marneffe, B. Maccartney, and C. Manning, “Generating typed
dependency parses from phrase structure parses,” in Proc. LREC, 2006.

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[71 G. A. Miller, “Wordnet: A lexical database for english,” Comm. ACM,
vol. 38, no. 11, pp. 39-41, 1995.

[8] Plant UML, http://plantuml.com/.

[9] J. Brooke, “SUS: A retrospective,” J. Usability Studies, vol. 8, no. 2,

pp. 2940, 2013.

M. Hare, “Forms of participatory modelling and its potential for

widespread adoption in the water sector,” Environmental Policy and

Governance, vol. 21, no. 6, 2011.

T. Ahram, W. Karwowski, and B. Amaba, “Collaborative systems

engineering and social-networking approach to design and modelling

of smarter products,” Behav. Inf. Tech., vol. 30, no. 1, pp. 13-26, 2011.

J. Gallardo, C. Bravo, and M. A. Redondo, “A model-driven de-

velopment method for collaborative modeling tools,” J. Network and

Computer Applications, vol. 35, no. 3, pp. 1086-1105, 2012.

J. L. C. Izquierdo and J. Cabot, “Collaboro: a collaborative (meta)

modeling tool,” PeerJ Computer Science, vol. 2, p. e84, 2016.

F. O. Zaffar and A. Ghazawneh, “Knowledge sharing and collaboration

through social media - the case of IBM,” in Proc. MCIS, 2012.

C. Manteli, H. Vliet, and B. Hooff, “Adopting a social network per-

spective in global software development,” in Proc. ICGSE, 2012, pp.

124-133.

T. D. LaToza and A. van der Hoek, “Crowdsourcing in software engi-

neering: Models, motivations, and challenges,” IEEE Software, vol. 33,

no. 1, pp. 74-80, 2016.

M. LandhduBer, S. J. Korner, and W. F. Tichy, “From requirements to

UML models and back: How automatic processing of text can support

requirements engineering,” Software Quality Journal, vol. 22, no. 1, pp.

121-149, 2014.

(10]

(11]

[12]

[13]
[14]

[15]

[16]

(17]

